
 1

Enhanced real-time mass spectrometry breath analysis for the diagnosis of 

COVID-19 

 

Running title: real-time MS for COVID-19 diagnosis 

 

Camille Roquencourt,1 Hélène Salvator, 1,2,3 Emmanuelle Bardin,1,4,5 Elodie Lamy,4 Eric Farfour,6 

Emmanuel Naline,1 Philippe Devillier,1,3 Stanislas Grassin-Delyle1,4 

 

1Exhalomics®, Hôpital Foch, Suresnes, France ; 2Service de pneumologie, Hôpital Foch, Suresnes, 

France ; 3Laboratoire de recherche en Pharmacologie Respiratoire – VIM Suresnes, UMR 0892, 

Université Paris-Saclay, Suresnes, France ; 4Université Paris-Saclay, UVSQ, INSERM, Infection et 

inflammation (2I), U1173, Département de Biotechnologie de la Santé, Montigny le Bretonneux, 

France ; 5Institut Necker Enfants Malades, U1151, Paris, France ; 6Service de biologie clinique, 

Hôpital Foch, Suresnes, France. 

 

“Take home message”: Artificial intelligence-enhanced mass spectrometry breath analysis might 

be of value for non-invasive, safe, cost-effective, high-throughput screening for COVID-19 in order 

to halt the spread of the virus and provide appropriate care to infected people. 

Keywords: COVID-19; breath analysis; proton transfer reaction mass spectrometry; machine 

learning; metabolomics 

Corresponding author: Stanislas Grassin-Delyle; Université Paris-Saclay, UVSQ, INSERM; 

UMR 1173 Infection et inflammation (2I); Département de Biotechnologie de la Santé; UFR 

Simone Veil – Santé; 2, avenue de la source de la Bièvre, F-78180 Montigny le Bretonneux, 

France; E-mail address: stanislas.grassin-delyle@uvsq.fr; Phone: +33-170-429-422. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2023. ; https://doi.org/10.1101/2023.06.21.23291712doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.06.21.23291712
http://creativecommons.org/licenses/by/4.0/


 2

ABSTRACT 

 

Background: Although rapid screening for and diagnosis of COVID-19 are still urgently needed, 

most current testing methods are either long, costly, and/or poorly specific. The objective of the 

present study was to determine whether or not artificial-intelligence-enhanced real-time MS breath 

analysis is a reliable, safe, rapid means of screening ambulatory patients for COVID-19. Methods: 

In two prospective, open, interventional studies in a single university hospital, we used real-time, 

proton transfer reaction time-of-flight mass spectrometry to perform a metabolomic analysis of 

exhaled breath from adults requiring screening for COVID-19. Artificial intelligence and machine 

learning techniques were used to build mathematical models based on breath analysis data either 

alone or combined with patient metadata. Results: We obtained breath samples from 173 

participants, of whom 67 had proven COVID-19. After using machine learning algorithms to 

process breath analysis data and further enhancing the model using patient metadata, our method 

was able to differentiate between COVID-19-positive and -negative participants with a sensitivity 

of 98%, a specificity of 74%, a negative predictive value of 98%, a positive predictive value of 

72%, and an area under the receiver operating characteristic curve of 0.961. The predictive 

performance was similar for asymptomatic, weakly symptomatic and symptomatic participants and 

was not biased by the COVID-19 vaccination status. Conclusions: Real-time, non-invasive, 

artificial-intelligence-enhanced mass spectrometry breath analysis might be a reliable, safe, rapid, 

cost-effective, high-throughput method for COVID-19 screening.  
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INTRODUCTION 

There have been more than 640 million confirmed cases of COVID-19 since the start of the 

pandemic [1]. The reference diagnostic testing technique is based on the detection of genetic 

material from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal 

swabs via a reverse transcription polymerase chain reaction (RT-PCR) [2]. This sampling and 

testing strategy is time-consuming, requires qualified personnel, and involves costly biological 

consumables. SARS-CoV-2 viruses are shed from the respiratory tract for about 10 days after 

disease onset in patients with mild COVID-19 and 20~40 days after disease onset in patients with 

severe COVID-19 [3]. False-negative test results may occur in up to 20% to 67% of patients, with 

positive SARS-CoV-2 PCR tests for 93% of bronchoalveolar fluid samples, 72% of sputum 

samples, 63% of nasal swabs, and 32% of pharyngeal swabs [2, 4]. Rapid antigen detection (RAD) 

tests for a SARS-CoV-2 infection have also been developed; they are just as specific as RT-PCR 

assays but are much less sensitive (~70%) [5]. Hence, the need for non-invasive, reliable, easy-to-

use, cost-effective, validated diagnostic and screening tests with a rapid turn-around-time is still 

major. 

Breath analysis is a non-invasive, real-time, point-of-care technique based on the detection of 

volatile organic compounds (VOCs). The thousands of VOCs in human breath identified to date are 

related to physiological and pathological processes (e.g. infections and inflammation) [6, 7]. A 

number of studies have highlighted the value of breath VOC analysis for the diagnosis of COVID-

19, using real-time [8-10] and offline [11-13] mass spectrometry (MS), ion mobility spectrometry 

[14, 15], Fourier-transform infrared spectroscopy [16], surface-enhanced Raman scattering [17], 

other sensor technologies (electronic noses) [18-20], and detection dogs sniffing sweat samples [21-

24]. Artificial intelligence and machine learning techniques have been frequently applied to the 

field of breath analysis in general and the diagnosis of COVID-19 in particular; support vector 

machines, principal component analysis, random forests, artificial neural networks, elastic nets and 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2023. ; https://doi.org/10.1101/2023.06.21.23291712doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.21.23291712
http://creativecommons.org/licenses/by/4.0/


 4

decision trees have been used to set up predictive models for diagnosis or disease classification [8, 

13, 18-20]. It is known that MS breath analysis provides high-dimension data. We hypothesized that 

the additional implementation of clinical metadata in machine learning models might improve the 

predictive performance. The objective of the present study was therefore to determine whether or 

not artificial-intelligence-enhanced real-time MS breath analysis is a reliable, safe, rapid means of 

screening ambulatory patients for COVID-19. 
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METHODS 

 

Study design and participants 

We conducted two prospective, open, interventional studies (VOC-COVID-Diag and VOC-

SARSCOV-Dep) in a single university hospital (Foch Hospital, Suresnes, France) and sought to 

assess the value of VOC analysis (using either proton transfer reaction - mass spectrometry (PTR-

MS), electronic noses, or detection dogs) in the diagnosis of COVID-19. The two study protocols 

were registered (VOC-COVID-Diag: EudraCT 2020-A02682-37; VOC-SARSCOV-Dep: EudraCT 

2021-A00167-34) and approved by an independent ethics committee. Written, informed consent 

was obtained from all the participants. The detection dog results have been published elsewhere 

[21]; here, we report the results of the real-time MS analysis. 

The participants were (i) adults (aged 18 or over) who had to be screened for COVID-19 in the 

emergency department or (ii) healthy adult volunteers (both vaccinated and unvaccinated) free of 

COVID-19. The main exclusion criterion was pregnancy. The symptoms frequently associated with 

COVID-19 were used to calculate a COVID-19 symptom score (SS) on a scale of 0 to 4, based on 

the absence (scored as 0) of nonspecific symptoms (fever, cough, sore throat, malaise, headache, 

nausea, vomiting, diarrhoea), the presence (scored as 1) of one of these nonspecific symptoms, or 

the presence of one (scored as 3) or two (scored as 4) of the most typical, predictive COVID-19 

symptoms (myalgia, anosmia, ageusia, dyspnoea, or hypoxemia)[21].  

 

Study measurements and procedures 

One breath sample per participant was collected by trained staff wearing surgical gloves and 

personal protective equipment. Sampling consisted of a single, deep inhalation and then exhalation 

through a single-use mouthpiece fitted with a non-return valve into a Tedlar® sample bag (SKC 

Inc., Eighty Four, PA, USA), which had previously been flushed with ultrapure nitrogen. The bag 
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was then hermetically sealed for immediate transport to the analysis room. Measurements were 

made with a proton-transfer-reaction quadrupole time-of-flight mass spectrometer (Ionicon 

Analytik GmbH, Innsbruck, Austria), with the following settings: source voltage, 120 V; drift tube 

pressure, 3·8 mbar; drift tube temperature, 60°C; and drift tube voltage, 959 V. The mass spectrum 

was acquired up to m/z 392, with a time resolution of 1 s. We recorded medical data, including 

symptoms frequently associated with COVID-19 (fever, cough, dyspnoea, anosmia, ageusia, 

fatigue, etc.), underlying health conditions, and medications being taken at the time of sampling. 

Each participant’s COVID-19 status was determined with molecular assays (the Alinity m SARS-

CoV-2 RT-PCR assay or ID Now® COVID-19 assay (Abbott, Issy les Moulineaux, France)) of 

nasopharyngeal swabs. The threshold cycle for a positive RT-PCR had to be below 40. Any history 

of a SARS-CoV-2 infection in the months before the time of sampling was determined by applying 

serological assays (COVID-19 BSS®, Biosynex, Fribourg, Switzerland). 

 

Data processing and statistical analysis 

The MS data were processed with the ptairMS package in R [25]. Room air was analysed before 

sample measurement, and breath was differentiated from background air using acetone (m/z 59.049) 

as a tracer VOC. Mass calibration was performed every minute, using the peaks at m/z 21.022, m/z 

60.053, m/z 203.943 and m/z 330.850. After an alignment step, we selected features (i) present in at 

least 60% of the participants in a given group and (ii) with a statistically significant difference in 

signal intensity between room air and exhaled breath in at least 30% of the samples. Missing data 

were then imputed from the raw data; isotopes and saturated ions (m/z 37.028 and 59.049) were 

removed, as were outlier samples (defined as those with Z-score >5 for at least 10% of the features). 

Next, we applied the normalization method for metabolomics data using optimal selection of 

multiple internal standards (NOMIS) [26] method using m/z 21.022 (the primary ion isotope), m/z 
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39.022 (the water cluster isotope) and m/z 55.038 (water trimers) as normalization features. Lastly, 

the data were log-transformed. 

A univariate analysis was performed using Wilcoxon’s signed-rank test and p-values adjusted to 

control for the false discovery rate [27]. In a multivariate analysis of the data, we applied a principal 

component analysis and then a random forest machine learning algorithm with a stratified five-fold 

cross validation repeated four times in order to minimise overfitting. We also applied feature  

selection by backward recursive feature elimination [28] to reduce dimension, improve accuracy 

and select the more relevant feature. This process iteratively ranks features according to their 

importance and removes the weakest one until the performance no longer improves from one 

iteration to the next. Given that the prime objective of high-throughput breath screening is to 

determine which patients should then undergo gold-standard testing, the model’s decision cut-off 

value was chosen to optimize the sensitivity of patient classification. The predictive performance 

was assessed in term of the sensitivity, specificity, negative predictive value (NPV), positive 

predictive value (PPV) and area under the curve. Potential confounding covariates linked to 

COVID-19 status were investigated by applying Wilcoxon’s test or principal component analysis 

within each group, as described previously [9]. 
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RESULTS 

The study population 

Breath samples from 173 participants (included between October 21th, 2020 and June 30th, 2022) 

were analyzed with PTR-MS. One participant was considered to be an outlier and so was excluded 

from the analysis. Of the 172 remaining participants, 106 had a negative RT-PCR test and 67 had a 

positive RT-PCR test. For the majority of patients, the RT-PCR test was performed on the same day 

as the breath analysis (median [interquartile range] time interval: 0 [0-3] days]). The negative and 

positive participants differed with regard to certain demographic and clinical characteristics (Table 

1). 

 

Breath analysis 

Multivariate analysis 

Processing of the real-time PTR-MS data yielded 71 features that were reproducibly detected in the 

exhaled breath of the patient cohort (Supplementary Table 1). In a principal component analysis, a 

plot of the second and third components suggested that the COVID-negative and COVID-positive 

samples were at least partially segregated (Figure 1, and loadings plot in Supplementary Figure 1). 

A base model (consisting of a random forest with 12 features selected from the 71 and a decision 

cut-off of 0.2) classified the patients with a sensitivity of 94%, a specificity of 70%, a negative 

predictive value of 95% and a positive predictive value of 67%, with five-fold cross validation 

repeated four times. The following clinical metadata were then included in the model as explanatory 

variables: the symptom score, prior corticosteroid treatment (as a binary yes/no variable) and 

vaccination status (also as a binary variable). The symptom score and corticosteroid treatment were 

selected by the algorithm and led to an improved final model with 18 VOC features; it classified 

participants with a sensitivity of 98%, a specificity of 74%, a negative predictive value of 98% and 

a positive predictive value of 72% (again with a decision cut-off of 0.2). The receiver operating 
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characteristic curves and metrics for the models (breath only or breath + clinical data) are shown in 

Figure 2.  
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Univariate analysis 

The univariate analysis highlighted two features that were already part of the multivariate model for 

differentiating between COVID-19-positive and -negative participants: in COVID-19-positive 

participants, one feature (m/z 99.08) was more intense and the other (m/z 63.03) was less intense 

(Figure 3). We then queried the Human Breathomics Database [29]. Putative annotations for the 

two compounds are shown in Table 2. 

 

Relationship between breath VOCs and disease severity 

Firstly, the final model’s predictive performance was similar in asymptomatic or weakly 

symptomatic patients (symptom score ≤ 1: sensitivity: 98.3%; specificity: 72%) and symptomatic 

patients (symptom score >1: sensitivity: 97.1%; specificity: 73%). Secondly, in the COVID-19-

positive group we explored the relationship between breath concentrations of the two above-

mentioned features on one hand and virological and clinical variables on the other. The breath 

concentrations were not significantly associated with the Ct in the PCR (median (range) Ct = 24 

(11–37); r = -0.01 for m/z 99.08 and r = 0.2 for m/z 63.03). The symptom score was correlated with 

the breath concentrations of m/z 99.08 (r = 0.32, p = 0.009) but not that of m/z 63.03 (Figure 4). 

Lastly, we assessed VOC expression in between ambulatory participants from the present cohort vs. 

severely ill, intubated, ventilated patients cared for in the ICU from our previous study [9]. The 

breath VOC concentration of m/z 99.08 (but not m/z 63.03) was higher in patients with severe 

disease than in patients with mild disease (Figure 5). 

 

Confounding factors 

We sought to rule out potential confounders unrelated to COVID-19, as we had done previously for 

the oxygen supply in ventilated patients [9]. In the present cohort, prior corticosteroid treatment and 

COVID-19 vaccination were (as expected) associated with the COVID-19 status and so were 
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investigated. The breath concentration of m/z 99.08 was significantly higher in unvaccinated 

COVID-19-negative participants (n=27) than in vaccinated COVID-19-negative participants 

(Supplementary Figure 2). In the former group, 6.5 participants (an average after 5-fold cross-

validation) would have been incorrectly categorized as COVID-19-positive by the final model and 

so would have been referred for a reference test for SARS-CoV-2 infection. In all the other groups, 

there were no confounding effects of COVID-19 vaccination or prior corticosteroid treatment with 

respect to the concentrations of m/z 99.08 and m/z 63.03 (Supplementary Figure 2). The absence of 

a confounding effect was also confirmed for age and sex (Supplementary Figure 3). 
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DISCUSSION 

Our present results show that real-time MS breath analysis enhanced with clinical metadata and 

machine learning tools can reliably diagnose COVID-19 in ambulatory subjects. Furthermore, the 

analysis is non-invasive and has a rapid turn-around time and a low requirement for consumables. 

Due to their very high sensitivity and negative predictive value, this type of breath analysis might 

be of value for the rapid, high-throughput, ambulatory identification of COVID-19-negative people; 

individuals who test positive could be referred for confirmatory testing with a reference method 

(e.g. a nucleic acid amplification assay). Since these confirmatory tests are invasive and time-

consuming, and molecular assay consumables are expensive, the implementation of real-time MS 

breath analysis would probably have both public health and economic benefits. 

With regard to diagnostic performance, the sensitivity of previously reported breath analysis 

methods for the diagnosis of COVID-19 ranged from 68% to 100% [8-13, 15, 16, 18-20]. 

Sensitivities greater than 95% were only achieved for methods whose sensor technologies could not 

identify individual VOCs [16, 17, 19] and/or had analytical runtimes longer than 2 mins (and 

sometimes even 45 mins) [13, 16, 17, 19]. For some of these techniques, the potential confounding 

effects of comorbidities, COVID-19 vaccination status and prior therapies have not been studied 

[16, 17]. When considering the two previous studies of PTR-MS in similar patient populations, one 

reported the down-regulation of specific VOCs [11] and the other gave a sensitivity of just 81% [8]. 

These results suggest that the combination of high-resolution MS systems with dedicated software 

(such as the ptairMS package) [25] can markedly improve analytical performance, peak detection, 

and sample alignment in cohorts of patients. In the above-mentioned studies, the specificity ranged 

from 75% to 100%. Studies of detection dogs sniffing sweat samples or face masks highlighted 

excellent diagnostic performances (sensitivities of 61% to 100%, and specificities of 84% to 94%) 

[21-24], and further strengthened arguments in favour of an odorant signature for COVID-19. 

However, dog-based testing is limited by the time needed for sweat collection or mask wearing, the 
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need to continuously (re)train the dogs, the presence of between-animal differences and variability 

over time, and the inability to identify individual VOCs.  

Rapid antigen detection tests can also be used to screen for SARS-CoV-2 infection, although their 

sensitivity with nasopharyngeal swabs ranges from 12% to 98% [4, 5, 30-32]. The lowest sensitivity 

is observed in asymptomatic or weakly symptomatic patients, which increases the likelihood of 

false-negative results [4, 5, 30-32]. Since up to 50% of cases can be attributed to transmission from 

asymptomatic or presymptomatic patients, the high probability of false-negatives might limit the 

value of RAD tests for mass screening [33, 34]. The predictive performance of our real-time MS 

breath testing was independent of the viral load and the intensity of the COVID-19 symptoms. 

Rapid antigen detection tests have a specificity of close to 100% and give few false-positive results; 

hence, RAD tests are best used to confirm a diagnosis or to differentiate between highly contagious 

individuals (with a high SARS-CoV-2 load) and less contagious individuals. High-throughput 

COVID-19 screening in healthcare establishment or busy public trafficked places could perhaps be 

achieved by combining rapid, sensitive, non-invasive, low-consumable-cost, real-time MS breath 

testing to quickly identify positive patients for referral to a specific confirmatory RAD test. 

Importantly, we found that prior corticosteroid treatment and COVID-19 vaccination did not have a 

significant impact on the diagnosis; in contrast, recent vaccination might interfere with other 

methods (such as canine olfaction) described in the literature [21]. 

One important strength of the present breath analysis study was the use of metadata on the patients’ 

symptoms, vaccination status and medications - all of which can be easily collected at the time of 

sampling). Hence, the use of artificial intelligence (machine learning) algorithms to simultaneously 

process breath analysis data and patient metadata improved the mathematical model’s diagnostic 

performance, relative to models based on breath analysis data alone. Although artificial intelligence 

tools are now widely used to find diagnostic biomarkers for COVID-19 in breath metabolomic data 
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[8, 13, 18-20], the present study is the first to have included both breath data and easy-to-collect 

clinical metadata.  

In order to ensure that features of interest are detected from exhaled breath and are unrelated to 

environmental contamination, our study design and data processing workflow included several 

steps. First, only features with an expression level that differed from room air were considered for 

statistical analysis. Ambient air for this background removal step was taken from the instrument 

room, as ambient air from the room where patients stand is contaminated by all VOCs exhaled by 

the patients. All samples from COVID-19 positive and negative patients were then collected in the 

same place and processed in the same way, with a similar hospitalisation status/time and in a 

random order as the analyses were performed at the time the patients arrived at the hospital. This 

ensures that VOCs from environmental air and any contaminants, which have the same expression 

level regardless of group, are excluded from the statistical analysis. 

With respect to the nature and pathogenic role of VOC biomarkers of COVID-19, the main feature 

of the present study (m/z 99.08) had already been identified in our study of intubated, ventilated 

patient with COVID-19-related acute respiratory distress syndrome [9]. Xue et al. also reported 

cyclohexanone as a candidate COVID-19 VOC biomarker, which m/z for the [M+H]+ ion is 99.08 

[13]. Our present results showed that the expression level of m/z 99.08 was independent of the viral 

load but not the disease severity. All the suggested annotations for this feature correspond to 

ketones and aldehydes. These families have already been reported as potential markers of disease 

states in patients with COVID-19 [10, 11, 13, 15], asthma, or chronic obstructive pulmonary disease 

[35-38] and after an inhaled endotoxin challenge in healthy volunteers [39]. Although these VOCs 

and disease states may be interrelated, the underlying biochemistry has not been fully characterized. 

However, the aldehyde VOC octanal was recently found to be an agonist of the olfactory receptors 

that are expressed in immune cells (such as macrophages) and are involved in the pathogenesis of 

the oxidative stress and inflammatory processes in a murine model of atherosclerosis and in human 
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monocyte-derived macrophages [40]. Hence, olfactive receptors might be targeted by certain VOCs 

in the body and could perhaps be modulated by appropriate pharmacological interventions. 

The main limitations of the present study are related to the sample size; our observations will 

require confirmation in an external validation cohort. Overfitting was however limited during data 

analysis by both feature selection (71 variables were pre-selected from the 173 patients based on 

their reproducibility and difference in intensity between exhaled breath and ambient air, and then 

only 12 where selected by the final machine learning algorithm) and cross-validation. Validation on 

external cohort would also constitute an opportunity to assess the specificity of the COVID-19 

signature, relative to other infectious diseases affecting (or not) the respiratory tract. Although the 

RT-PCR assay is considered to be the gold standard diagnostic technique and was used here as the 

comparator, it also has limitations: inappropriate sampling may give false-negative results, whereas 

a positive result objectifies the presence of viral genetic material in the airways but not necessarily 

intact (virulent) viruses. Lastly, on the basis of our present data, we were unable to determine the 

nature or structure of the VOCs of interest; their formal annotation will require the comprehensive 

use of additional analytical methods. 

The present study also had a number of strengths, including the use of high-sensitivity, real-time 

mass spectrometry capable of quantifying specific VOCs, the implementation of clinical metadata 

to improve the artificial intelligence algorithm, and the good overall diagnostic performance 

(especially the excellent negative predictive value). In contrast to classical GC-MS instruments, 

PTR-MS is easy to implement in a clinical setting as it only requires a power supply and water. 

Breath analysis for COVID-19 diagnosis with PTR-MS analysis may be cost-effective for several 

reasons, although COVID-19 screening techniques and strategies (and therefore the associated 

costs) are highly dependent on the organisational structure (screening centres, outpatient clinics, 

other healthcare establishments, etc.). For example, COVID-19 RT-PCR tests may be carried out on 

almost fully automated nucleic acid extraction and amplification systems, with up to 250 runs per 
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day. Such instrument costs around two hundred thousand euros, plus around €20 per sample for 

consumables and personnel. On the other hand, PTR-MS technology is not widely used; in the 

absence of economies of scale, the cost of an high-resolution, high-sensitivity instrument may be 

twice as much, but the per-test cost of consumables is just a few euro cents and the analysis of a 

patient’s sample takes 1 minute, making it possible to analyse several tens patients a day. Hence, if 

we take the analysis of 10,000 samples as an example, the analysis cost would be approximately the 

same for RT-PCR and PTR-MS, but analysis by PTR-MS would take around 2 times less time than 

with RT-PCR. 

Taken as a whole, our results established a specific breath metabolomic signature which, when 

combined with clinical metadata, allowed reliable, non-invasive, high-throughput COVID-19. We 

now intend embed all the hardware control and artificial intelligence tools for breath and online data 

analysis in a user-friendly, automated software package so that staff with basic training can screen 

for COVID-19 in less than 1 minute per person. This set-up could be used in subsequent validation 

and extension studies. A non-invasive breath analysis workflow with low consumable use 

(disposable mouthpieces only) and a rapid turn-around time might have health economic advantages 

over existing methods by rapidly identifying cases, halting the spread of the virus, and enabling the 

provision of appropriate care to ill people. 
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TABLES 

Table 1: Patient characteristics and treatments 

 COVID - 
(n = 106) 

COVID + 
(n = 67) p value 

Sex (M/F) 50/56 31/36 1 

Age 46 ± 18 56 ± 14 <0.001 

Patients / volunteers (n) 97 / 9 67 / 0 - 

Presence of: (n (%))    

- Fever  15 (14.2%) 32 (47.8%) <0.001 

- Cough  12 (11.3%) 39 (58.2%) <0.001 

- Dyspnoea 12 (11.3%) 34 (50.7%) <0.001 

- Anosmia 3 (2.8%) 10 (14.9%) 0.003 

- Ageusia 1 (0.9%) 7 (10.4%) 0.004 

- Fatigue 8 (7.5%) 30 (44.8%) <0.001 

- Aches 6 (5.7%) 17 (25.4%) <0.001 

Symptom score:  0.32 ± 0.66 2.2 ± 1.1 <0.001 

Medical history: (n (%))    

- High blood pressure 12 (11.3%) 19 (28.4%) 0.008 

- Asthma 3 (2.8%) 9 (13.4%) 0.018 

- Overweight 5 (4.7%) 8 (11.9%) 0.144 

- Diabetes 5 (4.7%) 7 (10.4%) 0.255 

- Organ transplant 1 (0.9%) 4 (6.0%) 0.055 

Previous COVID-19 
infection 12 (11.3%) 0 (0%) - 

COVID-19 vaccination: 79 (74.6%) 13 (19.4%) <0.001 

Previous treatment with 
corticosteroids 

5 (4.7%) 33 (49.3%) <0.001 

Continuous data are presented as the mean ± standard deviation. 
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Table 2: Suggested VOC annotations, after searching the Human Breathomics Database [29] 

 

VOC (m/z) Suggested molecular 
formula Suggested annotation 

99·08 [C6H10O + H]+ 

2-methylpent-2-enal, 3-methylpent-3-en-2-one, 4-
methylpent-2-enal, hex-3-en-2-one, hex-4-en-3-one, 2-
methylcyclopentan-1-one, 4-methylpent-3-en-2-one, 4-

methylpent-3-enal, cyclohexanone, hex-5-en-2-one 

63.03 [C2H6S + H]+ Ethanethiol, methylsulfanylmethane 
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FIGURE LEGENDS 

 

Figure 1: Multivariate analysis. Principal component analysis of the breath signature in participants 

with a positive (red) or negative (blue) PCR test for SARS-CoV-2. 

 

Figure 2: Receiver operating characteristic curve of the basic model (exhaled breath data only) and 

final model (exhaled breath and medical metadata) with random forest, recursive feature 

elimination, and NOMIS after five-fold cross validation repeated four times. AUC: area under the 

curve. 

 

Figure 3: Univariate analysis, showing VOCs whose expression levels differed when comparing 

COVID-19-negative and -positive groups of participants. The data are expressed as normalised 

intensities, and p-values were calculated with Wilcoxon’s test after correction for the false 

discovery rate. 

 

Figure 4: Relationship between the symptom score and the expression levels of m/z 99.08 and m/z 

63.03, as quantified with Spearman’s correlation coefficient. The data are expressed as normalised 

intensities. 

 

Figure 5: Expression levels of m/z 99.08 and m/z 63.03 in participants from the emergency 

department and the ICU. The data are expressed in ppb. The data on patients in the ICU have been 

published in [9]. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2023. ; https://doi.org/10.1101/2023.06.21.23291712doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.21.23291712
http://creativecommons.org/licenses/by/4.0/


 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted June 22, 2023. 
; 

https://doi.org/10.1101/2023.06.21.23291712
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.06.21.23291712
http://creativecommons.org/licenses/by/4.0/


 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted June 22, 2023. 
; 

https://doi.org/10.1101/2023.06.21.23291712
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.06.21.23291712
http://creativecommons.org/licenses/by/4.0/


 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted June 22, 2023. 
; 

https://doi.org/10.1101/2023.06.21.23291712
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.06.21.23291712
http://creativecommons.org/licenses/by/4.0/


 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted June 22, 2023. 
; 

https://doi.org/10.1101/2023.06.21.23291712
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.06.21.23291712
http://creativecommons.org/licenses/by/4.0/


 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted June 22, 2023. 
; 

https://doi.org/10.1101/2023.06.21.23291712
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.06.21.23291712
http://creativecommons.org/licenses/by/4.0/

