1	
2 3	Spatial and temporal clustering of anti-SARS-CoV-2 antibodies in Illinois household cats, 2021- 2023
4 5 6 7	Chi Chen ¹ , Mathias Martins ² , Mohammed Nooruzzaman ² , Dipankar Yettapu ¹ , Diego G. Diel ² , Jennifer M. Reinhart ³ , Ashlee Urbasic ⁴ , Hannah Robinson ⁴ , Csaba Varga ^{1,5*} , Ying Fang ^{1,5*}
8 9 10 11 12	¹ Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
12 13 14 15 16	² Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
10 17 18 19 20	³ Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
20 21 22 23 24	⁴ Veterinary Diagnostic Laboratory at Veterinary Specialty Center, University of Illinois at Urbana-Champaign, Buffalo Grove, Illinois, USA
25 26 27 28	⁵ Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana- Champaign, Urbana, Illinois, USA
29	* To whom correspondence should be addressed:
30	cvarga@illinois.edu (Csaba Varga) and <u>yingf@illinois.edu</u> (Ying Fang)
31	
32 33	Running title: SARS-CoV-2 seroprevalence of IL household cats
34	Keywords: SARS-CoV-2, Cats, Seroepidemiologic Studies
35	1

36 ABSTRACT

37	This study evaluated the seroprevalence of SARS-CoV-2 antibodies in Illinois
38	household cats from October 2021 to May 2023. Among 1,715 samples tested by
39	serological assays, 244 samples (14%) tested positive. High-rate temporal, spatial, and
40	space-time clusters of SARS-CoV-2 cases were assessed within 63 counties in Illinois.
41	Three space-time clusters with higher than expected seroprevalence rates were
42	identified in the northeastern, central-east, and southwest regions of Illinois, occurring
43	between June and October 2022. Young cats had a higher seropositivity than older
44	cats, and the third quarter of the year had the highest odds of seropositivity . This
45	study provides an in-depth analysis of SARS-CoV-2 epidemiology in Illinois
46	household cats, which will aid in COVID-19 control and prevention.
47	
48	Article summary line: SARS-CoV-2 antibody seroprevalence was assessed in
49	Illinois domestic cats, in which a higher seropositivity rate was clustered in the
50	northern, central, and southern Illinois regions with peak periods occurring between
51	June and October 2022.

52

53 INTRODUCTION

54	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative
55	agent of Coronavirus Disease 2019 (COVID-19), is a novel virus that emerged in late
56	2019 in Wuhan, China (1-3). It belongs to the family Coronaviridae within the order
57	Nidovirales, which is a group of positive-stranded RNA viruses possessing unique
58	characteristics (4, 5). SARS-CoV-2 has a broad host range and is the seventh
59	coronavirus that could infect humans (6-8). SARS-CoV-2 gains entry into host cells
60	by binding to the angiotensin-converting enzyme 2 (ACE2) receptor through its spike
61	(S) protein. ACE2 receptors in some animals are similar to those in humans, leading
62	to increased susceptibility to the virus (9). The reported infected animals include cats,
63	dogs, deer, mink, hamsters, etc. (10-14).
64	SARS-CoV-2 has been reported to be transmitted from humans to animals
65	including cats, minks, and hamsters (15-18). Such transmission events raise concerns
66	about potential reservoirs in animal populations, which could lead to further spillover
67	events and threats to public health. Recent serological surveillance in cats reported a
68	seropositivity range of 15% in China, 1% in Germany, and 5% in Portugal (19-21).
69	The prevalence of SARS-CoV-2 in domestic household cats has not been well-defined
70	in the United States of America.
71	In this study, we investigated the seroprevalence of SARS-CoV-2 antibodies in
72	domestic cats in Illinois from October 2021 to May 2023. Spatial, temporal, and
73	space-time scan statistical models were used to identify clusters of higher-than-

74	expected antibody-positive cats. A logistic regression model was constructed to
75	evaluate the impact of age and season on the odds of SARS-CoV-2 seroprevalence in
76	domestic cats. The prevalence, temporality, and space-time clustering of SARS-CoV-2
77	infection in household cats in Illinois could guide future COVID-19 prevention and
78	control programs.
79	METHODS
80	Data sources
81	The study period extended from February 2021 to May 2023, which included
82	1715 serum samples from household cats in 63 counties across Illinois. Samples were
83	obtained from the Clinical Pathology Laboratory at the University of Illinois
84	Veterinary Diagnostic Laboratory (Urbana, IL) and its satellite lab at the Veterinary
85	Specialty Center (Bannockburn, IL). Samples consisted of excess serum submitted for
86	unrelated, clinical purposes to the laboratories. No blood was collected specifically
87	for the purpose of this study. Thus, the method of collection does not constitute
88	animal use and did not require review by the University of Illinois Institutional
89	Animal Care and Use Committee. All data were completely anonymized, with
90	identifiers such as names and addresses removed, and unique IDs assigned to the cat
91	populations to maintain confidentiality.
92	Study setting
93	The research centered on Illinois [Degrees, Minutes, Seconds (DMS) $40^{\circ} 0' 0'' N$,
94	89° 0' 0" W], a state situated in the Midwest of the United States, with its most

95 populous city, Chicago, positioned on Lake Michigan's southwestern coast (Fig 1).

96 Serological tests

97	A blocking enzyme-linked immunosorbent assay (bELISA) for detecting SARS-
98	CoV-2 specific antibody response was developed and validated in-house. The detailed
99	method was described in our previous publication (22, 23). All the serum samples
100	collected from the cats were initially screened by bELISA. The samples with positive
101	bELISA results were subsequently confirmed by virus-neutralizing assay and Lumit [™]
102	Dx SARS-CoV-2 Immunoassay to confirm the positive status. The detailed method
103	for the virus-neutralizing assay was described previously (10), in which SARS-CoV-2
104	variant D614G and Omicron were used to test the neutralizing ability of the serum
105	antibody. Lumit [™] Dx SARS-CoV-2 Immunoassay is a commercial assay (Promega,
106	Madison, Wisconsin). The lumit assay was conducted following the manufacturer's
107	instructions.
108	Logistic regression analysis
109	To assess the impact of the age of cats on the seroprevalence of SARS-CoV-2
110	antibodies, a logistic regression model was constructed. The predictor variable was
111	represented by the age of cats in months while the outcome variable signified whether

- 112 the SARS-CoV-2 antibody was detected or not. An odds ratio (OR), 95% confidence
- 113 intervals, and p-value were calculated for the outcome variable. . An OR of < 1
- 114 indicated that the probability of SARS-CoV-2 antibody positivity decreased with an
- 115 increase in age, and if the OR>1 then the probability of positivity increased with an

116 increase in age. To interpret the results, marginal effects for a series of age intervals

- 117 were calculated and illustrated in a figure.
- 118 Spatial Analysis
- All maps for this study were built using ArcGIS Pro version 3.0.3
- 120 (Environmental Systems Research Institute, Inc. (ESRI), Redlands, CA, USA).
- 121 The analysis was carried out at the county level, a well-defined geographical area
- 122 used for administrative and statistical purposes in the United States (Fig 1). For all
- 123 spatial analysis, NAD 1983 UTM Zone 16N was used as projection.
- 124 For the spatial statistical analysis, the spatial scale was represented by the
- 125 counties' centroids, and to each centroid, a value representing the seroprevalence in a
- 126 county (number of positive samples divided by the total samples tested) was linked.
- 127 Euclidean distance bands were used to measure distances from each county centroid
- 128 to the neighboring county centroids.
- 129 **Disease mapping**
- 130 A point map was constructed to illustrate the distribution of the county-level
- 131 seroprevalence of SARS-CoV-2 antibodies in Illinois household cats, using Natural
- 132 Jenks classification to define the intervals (24).
- 133 Spatial interpolation of the seroprevalence of SARS-CoV-2 antibodies in Illinois
- 134 domestic cats was performed using the Empirical Bayesian Kriging method, which
- applied a restricted maximum likelihood estimation and constructed several
- semivariograms to account for the error when estimating the semivariogram (25). The

137 result of the spatial interpolation was illustrated in an isopleth map.

138 Global spatial cluster analysis

- 139 The Incremental Spatial Autocorrelation (Global Moran's I) Tool was used to
- 140 evaluate the global clustering of seroprevalence of SARS-CoV-2 antibodies by
- assessing a series of incrementally increasing distances and examining the strength of
- 142 global spatial clustering at each distance (26).
- 143 The starting distance was at which each location had at least one neighbor. For
- each distance, a Moran's I Index value and a z-score and p-value were calculated to
- test the null hypothesis of spatial randomness. The zone of indifference parameter for
- the conceptualization of spatial relationships was used for the local and global spatial
- 147 cluster analysis (26). The distance band with the highest global clustering (highest
- 148 Moran's I Index) was selected for the local spatial cluster analysis.

149 Local Spatial Cluster Analysis

- 150 The Getis-Ord Gi* statistic (27) was used to identify county-level statistically
- 151 significant hot spots and cold spots. Hot spots signified counties with a high
- 152 seroprevalence of SARS-CoV-2 antibodies surrounded by counties with high
- 153 seroprevalence; whereas cold spots indicated counties with low seroprevalence
- 154 surrounded by counties with low seroprevalence.

155 Temporal, spatial, and space-time scan statistic

- 156 A retrospective, temporal, spatial, and space-time scan statistic was utilized to
- 157 identify locations and periods with higher-than-expected seroprevalence of SARS-

158 CoV-2 antibodies using SaTScan software version 9.6 (28).

159	The smallest spatial scale was represented by the centroid of a county while the
160	time unit was represented by the month and year of SARS-CoV-2 antibody testing.
161	Because the data consisted of two possible outcomes, SARS-CoV-2 antibody positive
162	and negative, a Bernoulli model (29) was used to estimate the relative risk and log-
163	likelihood ratio. A circular scanning window for spatial (30) and a cylinder with a
164	circular spatial base and height relating to time for space-time (31) were used to
165	identify clusters with higher-than-expected SARS-CoV-2 antibodies. The scanning
166	window was set to include 50% of the population and/or 50% of the time at risk. A
167	simulated p-value of ≤ 0.05 after 999 replications using a Monte Carlo simulation
168	identified significant clusters. Relative risks of counties included within the
169	significant space and space-time clusters were calculated and illustrated in maps to
170	avoid the assumption that the relative risk of seroprevalence is identical throughout a
171	significant cluster.
172	RESULTS
173	Seroprevalence and distribution of seropositivity of cats across seasons, genders,
174	ages, and breeds
175	From October 2021 to May 2023, a total of 1715 household cat serums from 63
176	counties in Illinois were tested for SARS-CoV-2 specific antibodies using bELISA.
177	The result showed that 244 (14% of 1715) cats were detected as having specific

178	antibodies against SARS-CoV-2 (Table S1). The results of those 244 positive samples
179	were further confirmed in Lumit [™] Dx SARS-CoV-2 Immunoassay and virus
180	neutralizing test.
181	The distribution of seropositivity of cats across season, gender, age, and breed is
182	presented in Table 1. Kittens (< 1-year-old) were 29.63% positive, followed by Junior
183	(1-2 years old), 22.22% positive, Adults (3-6 years old) 18.12% positive, Seniors (10-
184	19 years old), 15.36% positive, and Geriatric (>15 years old), 11.5% have the lowest
185	rate of test positivity. Winter, 2021 had the lowest positive rate (n=17, 6.85% of 248)
186	among all seasons.
187	We further performed a case-case multivariable logistic regression analysis. The
188	predicted marginal effects of the age and season impact on the probability of SARS-
189	CoV2 antibodies presence in domestic cats are illustrated in Figure 2. The results
190	showed that young cats had a higher probability of SARS-CoV-2 infection (OR=
191	0.996; p=0.001) as the odds of seropositivity decreased when the age of cats increased.
192	In addition, the third quarter of the year (OR=3.15; p<0.001) compared to the first
193	quarter had the highest odds of a cat being seropositive. No significant associations
194	were detected with breeds and sexes.
195	Disease mapping
196	We further analyzed the distribution of SARS-CoV-2 seroprevalence in domestic
197	cats across Illinois counties. The county-level seroprevalence ranged from 0 to 100%
198	(Fig 3A). The highest seroprevalence level was in DeKalb, Grundy, Kendall, and

199	White counties, with a 100% positive ratio. The lowest seroprevalence level was
200	observed in 21 counties, including DeWitt, Woodford, Effingham, Wayne, and others,
201	with a 0% positive ratio. In terms of the total number of tests among counties (Table
202	S1), Champaign had the highest number of tests (n=659), followed by Cook (n=190),
203	McLean (n=100), Sangamon (n=74), and Macon (n=62).
204	Figure 3B illustrates the spatial interpolation of the seroprevalence of SARS-
205	CoV-2 antibodies in Illinois domestic cats using Empirical Bayesian Kriging analysis.
206	Several regions in Illinois showed an increased seroprevalence, including northern
207	and southern Illinois, with values ranging from 36.98 to 44.02.
208	Global and local spatial cluster analysis
209	To determine the extent of clustering of high SARS-CoV2 antibodies in domestic
210	cats across Illinois, global spatial clustering was assessed by using the Incremental
211	Spatial Autocorrelation (Global Moran's I) Tool. As shown in Figure 4, one peak
212	(corresponding to the maximum Z-score) was identified at 80.7 km. The high global
213	clustering range suggests a widespread distribution of SARS-CoV2 antibodies in
214	domestic cats across Illinois counties. This distance band and the "zone of
215	indifference" conceptualization parameter were used for the local spatial cluster
216	analysis to determine the global clustering of SARS-CoV2 antibodies (high and low
217	seroprevalence regions). The Hot Spot (Getis-Ord Gi*) analysis identified 9 counties
218	in northern Illinois with high seroprevalence (hot spots), including LaSalle, Kendall,
219	Grundy, and Kankakee (P-value=0.01), DuPage and Cook (P-value=0.05), DeKalb,

220	Kane, and Will (P-value=0.10) (Fig 5). In addition, in southern Illinois, Williamson
221	County was also identified as a hot spot (P-value=0.10). A large cold spot (counties
222	with low seroprevalence surrounded by counties with low seroprevalence) was
223	identified in central Illinois that included 7 counties (Logan, De Witt, Macon,
224	Christian, Shelby, Moultrie, and Effingham County, P-value=0.10).
225	Temporal, spatial, and space-time scan statistic analysis
226	The results of the temporal, spatial, and space-time scan statistics are presented
227	in Table 2. A single temporal cluster was identified between June and November 2022,
228	where cats showed higher-than-expected seropositivity for SARS-CoV-2 antibodies.
229	Two spatial clusters (p< 0.05) where cats revealed a higher-than-expected -
230	seroprevalence were detected by using the discrete Bernoulli model (Fig 6A, Table 2).
231	The primary cluster (SP Cluster 1) was located in northeastern Illinois and included 3
232	counties (Livingston, Ford, and Grundy) and contained 9 seropositive cases (60% of
233	15). The second spatial cluster (SP Cluster 2) included 7 northern Illinois counties
234	(Jackson, Perry, Williamson, Washington, Jefferson, Saline, and St. Clair), and
235	contained 12 seropositive cases (42.9% of 28). The relative risk within the significant
236	clusters ranged from 0 to 7.05.
237	The space-time analysis using the Bernoulli model identified three significant
238	(p<0.05) clusters of cats with higher-than-expected SARS-CoV-2 antibodies (Fig 6B,
239	Table 2). The primary cluster (ST Cluster 1) occurred between June 2022 and
240	September 2022 in the northeastern part of Illinois ($RR = 4.80$) and contained 8 11

241	counties (Kankakee, Will, Iroquois, Grundy, Livingston, Ford, Kendall, Cook). The
242	second cluster (ST Cluster 2) occurred between July 2022 and October 2022 in the
243	southern part of Illinois ($RR = 2.10$) and contained 5 counties (Washington, Clinton,
244	Perry, Jefferson, St. Clair). The last cluster (ST Cluster 3) occurred between July 2022
245	and October 2022 in the central-eastern part of Illinois ($RR = 7.18$) and contained 5
246	counties (Edgar, Clark, Douglas, Coles, Vermilion, Cumberland, Champaign). The
247	relative risk within the significant space-time clusters ranged from 0 to 7.13.
248	Comparing the seroprevalence of SARS-CoV-2 in cats with the SARS-CoV-2
249	infections in humans at Illinois
250	During the 2021-2023 period, the prevalence of SARS-CoV-2 infections in both
251	humans and cats in Illinois, United States, exhibited notable trends. We assessed the
252	potential correlation of SARS-CoV-2 seroprevalence in cats with that of human cases.
253	As shown in the kinetic curve for time course monitoring of antibody response (Fig 7),
254	the seroprevalence of SARS-CoV-2 antibody-positive cats reached several peaks, in
255	December 2021, March 2022, April 2022, July 2022, September 2022, October 2022,
256	
	January 2023, and March 2023. Compared to the reported SARS-CoV-2 positive
257	January 2023, and March 2023. Compared to the reported SARS-CoV-2 positive human cases (nucleic acid-based test), the first SARS-CoV2 antibody prevalence peak
257 258	
	human cases (nucleic acid-based test), the first SARS-CoV2 antibody prevalence peak

261 period, no similarity was found between the positive rates of human and cat cases.

262 **DISCUSSION**

263	SARS-CoV-2 is known to infect humans and certain animal species. Studies
264	have demonstrated that cats are highly susceptible to SARS-CoV-2 under both
265	experimental and natural infection conditions (32, 33). Given that domestic cats often
266	live close to their human caretakers and have opportunities to interact with other
267	animals, they may contribute to the ongoing evolution of SARS-CoV-2 (34).
268	We performed serological surveillance of SARS-CoV-2 antibody prevalence in
269	Illinois domestic cats during 2021-2023. Initially, we used the bELISA to screen all
270	the serum samples collected during the study period. For the bELISA positive samples,
271	we used two serological assays (Promega Lumit TM Dx SARS-CoV-2 Immunoassay
272	and virus neutralization assay) to confirm the results. Nine samples were showing
273	inconsistent results, which were excluded from the subsequent analysis. The
274	inconsistent results might be due to the different targets between different assays. Our
275	bELISA is targeted for antibodies specific for viral nucleocapsid protein, while Lumit
276	and virus neutralization assays are designed for testing antibodies response against
277	viral spike protein. On the other hand, the sample quality and test sensitivity could
278	affect the results. Two of the cat serum samples were hemolyzed, which may cause
279	high background in bELISA test and generate false positive results. Nevertheless, we
280	also performed the analysis with the inclusion of those 9 samples, the results did not

change our conclusions.

282	To better understand the demographic characteristics of those cats having SARS-
283	CoV-2 specific antibodies, we utilized a case-case multivariable logistic regression
284	analysis to compare the odds of positivity considering seasonality, gender, and age
285	factors. We found that the odds of a cat testing positive for SARS-CoV-2 antibodies
286	decreased as the age increased, with younger cats having the highest while older cats
287	had the lowest seroprevalence, which is opposite to age-related human SARS-CoV2
288	risks. In human cases, there is an age-related disparity in the prevalence and severity
289	of SARS-CoV-2 infection, in which older people have a higher infection risk due to
290	weaker immune systems. Our study showed the opposite tendency in cats. Young cats
291	have an immature adaptive immune response (35), which may cause them more
292	susceptible to infections. Future studies are needed to elucidate the in-depth
293	mechanisms that cause the difference in seroprevalence among the age groups of cats.
294	To characterize the distribution of SARS-CoV-2 antibodies in Illinois cats, we
295	applied a stepwise analysis that combined both spatial and conventional statistical
296	methods with Geographic Information Systems (GIS). As the first step of spatial
297	analysis, we constructed disease maps to visualize the geographic distribution of
298	SARS-CoV-2 infections across Illinois's 63 counties. When evaluating the
299	seroprevalence level, we calculated the proportion of positive samples collected from
300	each county across Illinois. One limitation of our approach was that not all Illinois
301	counties were included because from some counties we did not receive samples. To ¹⁴

302	mitigate this issue, we constructed an isopleth map by spatially interpolating the
303	seroprevalence using the empirical Bayesian Kriging method (36). The results
304	identified areas with high seroprevalence levels of SARS-CoV-2 antibodies in Illinois
305	household cats. However, we found that the distribution of seroprevalence was not
306	even within different counties. In the northern and southern regions of Illinois, the
307	seroprevalence was higher than in other regions. The northern region contains LaSalle,
308	Kendall, Grundy, Kankakee, DuPage, Cook, DeKalb, Kane, and Will counties. This
309	region has the highest human population density in Illinois, which includes the city of
310	Chicago in Cook County, and based on the size of its population, it has the highest
311	estimated number of household cats in Illinois. The southern region in Illinois also
312	displayed a high seroprevalence in both choropleth and isopleth maps. However, this
313	region has a low population density and a low estimated number of cats, and fewer
314	samples were collected from this region (Table S1), which might overestimate the
315	seroprevalence.
316	The Incremental Spatial Autocorrelation (Global Moran's I) Tool was utilized to
317	examine the global clustering of antibody seroprevalence over ten increasing distance
318	bands. This evaluation of global spatial autocorrelation considered both county
319	locations and their seroprevalence. The concept of "zone of indifference" was used for
320	the analysis, which implies that all counties within a specific distance band receive the
321	maximum weighting, and beyond this distance, the level of influence experiences a
322	rapid decline in weighting as the distance increases (37, 38). The highest Moran's I 15

323	Index value, z-score, and p-value were observed at a distance of 80 km, suggesting
324	that SARS-CoV-2 infections were widespread in several areas across Illinois.
325	We used the Hot Spot Analysis (Getis-Ord Gi*) during the second stage of our
326	spatial analysis. This method identifies areas with high seroprevalence (hot spots; a
327	county with a high seroprevalence surrounded by counties with high seroprevalence)
328	and also detects areas with low seroprevalence (cold spots; a county with low
329	seroprevalence surrounded by counties with low rates) (39). As presented in the
330	hot/cold spot map, northern Illinois, including LaSalle, Kendall, Grundy, Kankakee,
331	DuPage, Cook, DeKalb, Kane, and Will counties, and southern Illinois containing
332	Williamson County were recognized as statistically significant hot spots, which is
333	consistent with our previous disease mapping results. Similarly to our previous results,
334	central Illinois was identified as a cold-spot area where cat samples submitted from
335	these counties had a low seroprevalence. As a limitation of our analysis, some regions
336	included counties with low tested sample volumes, and the calculated seroprevalences
337	become unreliable and very high if several positive cases were detected in these
338	regions (40).
339	At the third stage of our spatial analysis, we utilized temporal, spatial, and space-
340	time scan statistics to add extra information on the location and time frame of the
341	distribution of seroprevalence of SARS-CoV-2 positive antibodies in Illinois
342	household cats. First, we employed a purely spatial scan statistic, which presumes that
343	the seroprevalence follows a Bernoulli distribution (i.e., SARS-CoV-2 antibody

344	detected in a cat in a county versus not detected). Two high seroprevalence spatial
345	clusters were identified in the northeast region of Illinois, where 60% of the samples
346	tested positive and southern region of Illinois, where 42.9% of the samples tested
347	positive. These clusters overlapped with the area identified by the Hot Spot method.
348	We also detected three high seroprevalence space-time clusters in the northeast,
349	central-east, and southern regions of Illinois. Space-time cluster 1 (ST 1), occurring
350	between June 2022 and September 2022, and space-time cluster 2 (ST 2), occurring
351	between June 2022 and September 2022 were overlapping with the clusters detected
352	by the spatial scan and Hot Spot analysis, highlighting the importance of these areas.
353	The third space-time cluster (ST 3), which occurred between July 2022 and October
354	2022) was detected in the central-eastern Illinois region. These space-time clusters
355	beside the locations provided a time component, suggesting that there were peaks in
356	seroprevalence that occurred during these periods.
357	Interestingly, there was a reported SARS-CoV-2 human infection peak that
358	occurred in Illinois during December 2021-January 2022. In our study period, we
359	detected the first cat seropositive peak in late December 2021, while the second cat
360	seropositive peak appeared about one month after the human positive peak. We
361	suspected that there might be some possible transmissions between humans and cats
362	during that period. Especially, the second seropositive peak could be related to human
363	SARS-CoV-2 infections because about 14 days after being infected with SARS-CoV-
364	2, the antibody level is detectable by our serological testing method (10, 22), 17

365	suggesting a possible human-to-cat transmission. However, we did not find any
366	similarity between the positive case rates of human infections and cat seropositivity
367	for the rest of the study period (between March 2022 – May 2023). Future studies are
368	warranted to follow up on this finding to assess the protentional transmission risk
369	between humans and cats.
370	Before interpreting our study results, few limitations should be noted. The study
371	population included all the cats treated at veterinary teaching hospitals located in the
372	cities of Chicago and Urbana, and the number of samples received from these
373	locations might be higher. However, Chicago is the largest city in Illinois and has the
374	highest estimated number of cats which might mitigate this effect. In addition, based
375	on serological data the time of seropositivity is dependent on the time of sample
376	collection and without knowing the duration of seropositivity, the interpretation of
377	temporal trends should be made with caution because the time of exposure and the
378	time of seropositivity does not correlate. In conclusion, our analysis of SARS-CoV2
379	antibody seroprevalence in Illinois domestic cats during 2021-2023 identified
380	northeast and southwest Illinois regions with increased seroprevalence of SARS-CoV-
381	2 antibodies among domestic cats, and this increase occurred between June and
382	October 2022. The susceptibility of the cats to SARS-CoV-2 infection appeared to be
383	related to the age and the time of the year. This information is helpful in aid health
384	stakeholders to develop effective prevention and control measures.

385 ACKNOWLEDGMENTS

- 386 We thank Dr. Tony Vanden Bush from Promega for providing the Lumit[™] Dx SARS-
- 387 CoV-2 Immunoassay kits. This project was supported by the National Institute of
- Health [Grant #R01Al166791, to Y. Fang (PI) and D. Diel (MPI)].

389

Figure 1. Map highlighting the study area. Illinois is located in the midwestern

- 392 United States, which contains 103 counties.
- 393 Figure 2. Effects of age and season on the seroprevalence of SARS-CoV-2
- 394 antibody detection in household cats in Illinois, 2021-2023. Predicted marginal
- 395 effects calculated from a multivariable logistic regression model. Seropositivity
- 396 (yes/no) of cat serum samples (n=1715) as the outcome variable, while age and
- 397 season as predictor variables were included in the model.

398 Figure 3. SARS-CoV-2 antibodies in Illinois household cats during 2021-2023. (A)

- 399 Point map illustrating the distribution of seroprevalence by county. (B) Isopleth map
- 400 illustrating the distribution of seroprevalence across Illinois by using the Empirical
- 401 Bayesian kriging spatial interpolation method.
- 402 Figure 4. Incremental spatial autocorrelation analysis for the seroprevalence of
- 403 SARS-CoV-2 antibodies in Illinois domestic cats. Results of the Global Moran's I
- 404 statistic. The default incremental distance was selected as the starting distance that
- 405 signifies the average distance to each county's nearest neighboring centroid. The color
- 406 of each point on the graph corresponds to the statistical significance of the z-score
- 407 values. The peak signal is the distance where the spatial processes influencing
- 408 clustering is most evident. The zone of indifference conceptualization parameter was
- 409 used for the analysis. Statistically significant at $p \equiv 0.05$.
- 410

411	Figure 5. Hot spot analysis of the seroprevalence of SARS-CoV-2 antibodies in
412	Illinois household cats. The Getis-Ord Gi* statistic was applied to identify local
413	clusters. Hot spots (red color) signify counties with high seroprevalence surrounded
414	by high seroprevalence counties, while cold spots (blue color) signify counties with
415	low seroprevalence surrounded by counties with low seroprevalence. A Euclidean
416	distance band of 80.7 km, and the zone of indifference conceptualization parameter,
417	were used for the analysis. Statistically significant at $p \Box \leq \Box 0.05$.
418	Figure 6. Spatial and space-time clustering of seroprevalence of SARS-CoV-2
419	antibodies in Illinois household cats during 2021-2023. (A) Purely spatial clusters
420	of SARS-CoV-2 antibodies in Illinois household cats. The relative risk (RR) of
421	counties within a spatial cluster where cats had higher than expected SARS-CoV-2
422	antibodies is shown. The circle represents the location of the cluster. Within the circle,
423	the color of each dot represents the value range of the RR rate in each county.
424	(B) Space-time clusters of SARS-CoV-2 antibodies in Illinois household cats.
425	Retrospective analysis, scanning for clusters with high seroprevalence, using 50%
426	population at risk and 50 % period scanning window, 999 Montecarlo permutation,
427	and the Bernoulli model. The circle represents the location of the cluster, and the
428	period of the cluster is also represented. Within the cluster, the color of each dot
429	represents the value range of the RR in each county. Statistically significant at
430	$p \Box \leq \Box 0.05.$

431 Figure 7. Prevalence rates of SARS-CoV-2 infections in humans and domestic

- 432 **cats in Illinois during 2021-2022.** The weekly seropositive rate of Illinois domestic
- 433 cats is shown in the orange line, while the weekly viral nucleic acid test positive rate
- 434 of reported human cases is shown in the blue line. Note, the peak of human cases
- 435 during January of 2022, followed by a set of peaks of cat cases starting on February
- 436 2022 and continuing for the rest of the study period.

437 **REFERENCE**

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation
and epidemiology of 2019 novel coronavirus: implications for virus origins and
receptor binding. Lancet. 2020 Feb 22;395(10224):565-74.

441 2. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID442 19. Nat Rev Microbiol. 2021 Mar;19(3):141-54.

3. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry
into cells. Nat Rev Mol Cell Biol. 2022 Jan;23(1):3-20.

445 4. Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory
446 Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus. 2020 Mar
447 26;12(3):e7423.

5. Britton P. Coronaviruses: General Features (Coronaviridae). In: Bamford DH,
Zuckerman M, editors. Encyclopedia of Virology (Fourth Edition). Oxford: Academic
Press; 2019. p. 193-7.

451 6. Wu L, Chen Q, Liu K, Wang J, Han P, Zhang Y, et al. Broad host range of
452 SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell
453 Discovery. 2020 2020/09/29;6(1):68.

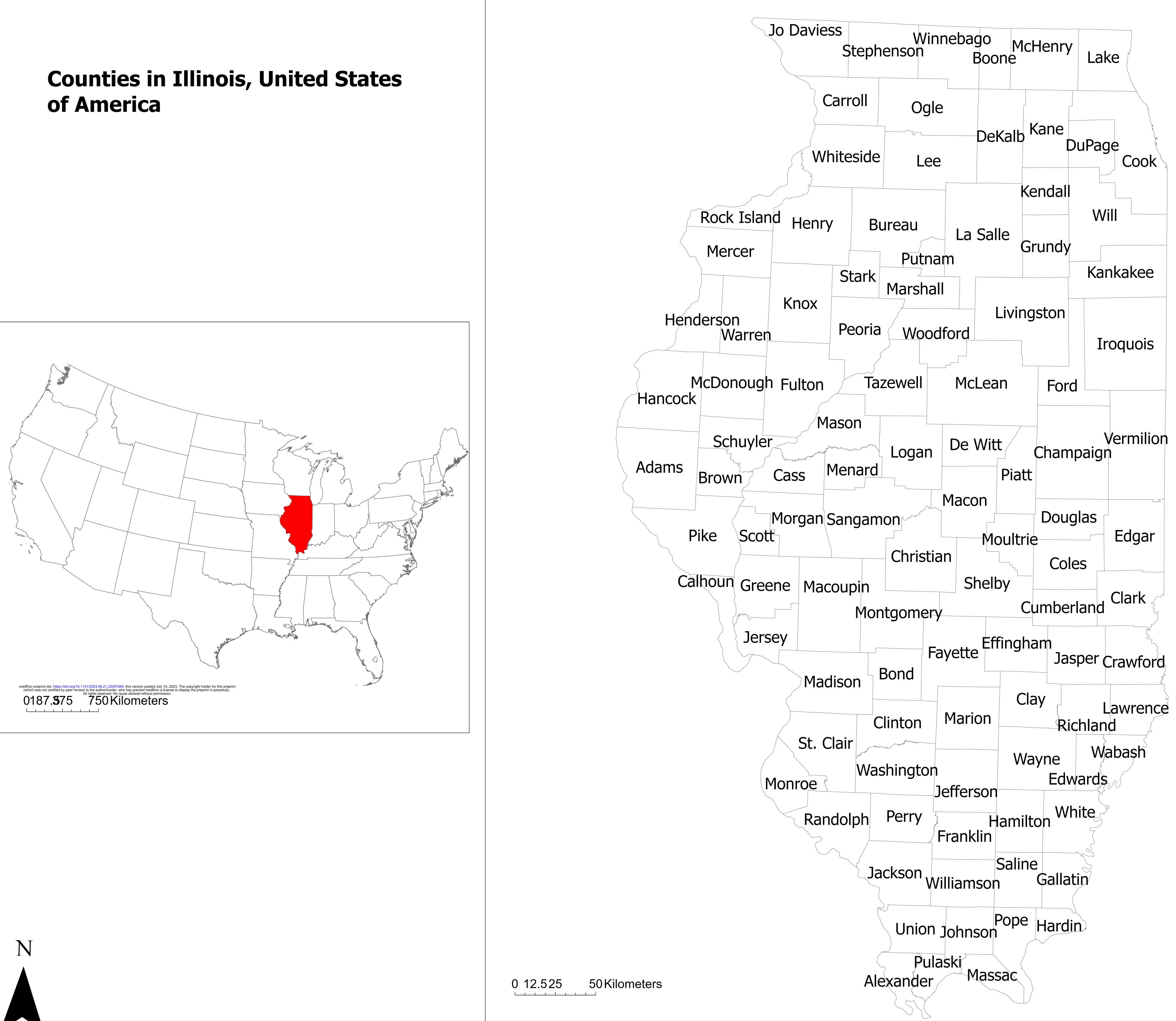
454 7. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia
455 outbreak associated with a new coronavirus of probable bat origin. Nature. 2020
456 Mar;579(7798):270-3.

457 8. Zhu N, Zhang DY, Wang WL, Li XW, Yang B, Song JD, et al. A Novel
458 Coronavirus from Patients with Pneumonia in China, 2019. New Engl J Med. 2020
459 Feb 20;382(8):727-33.

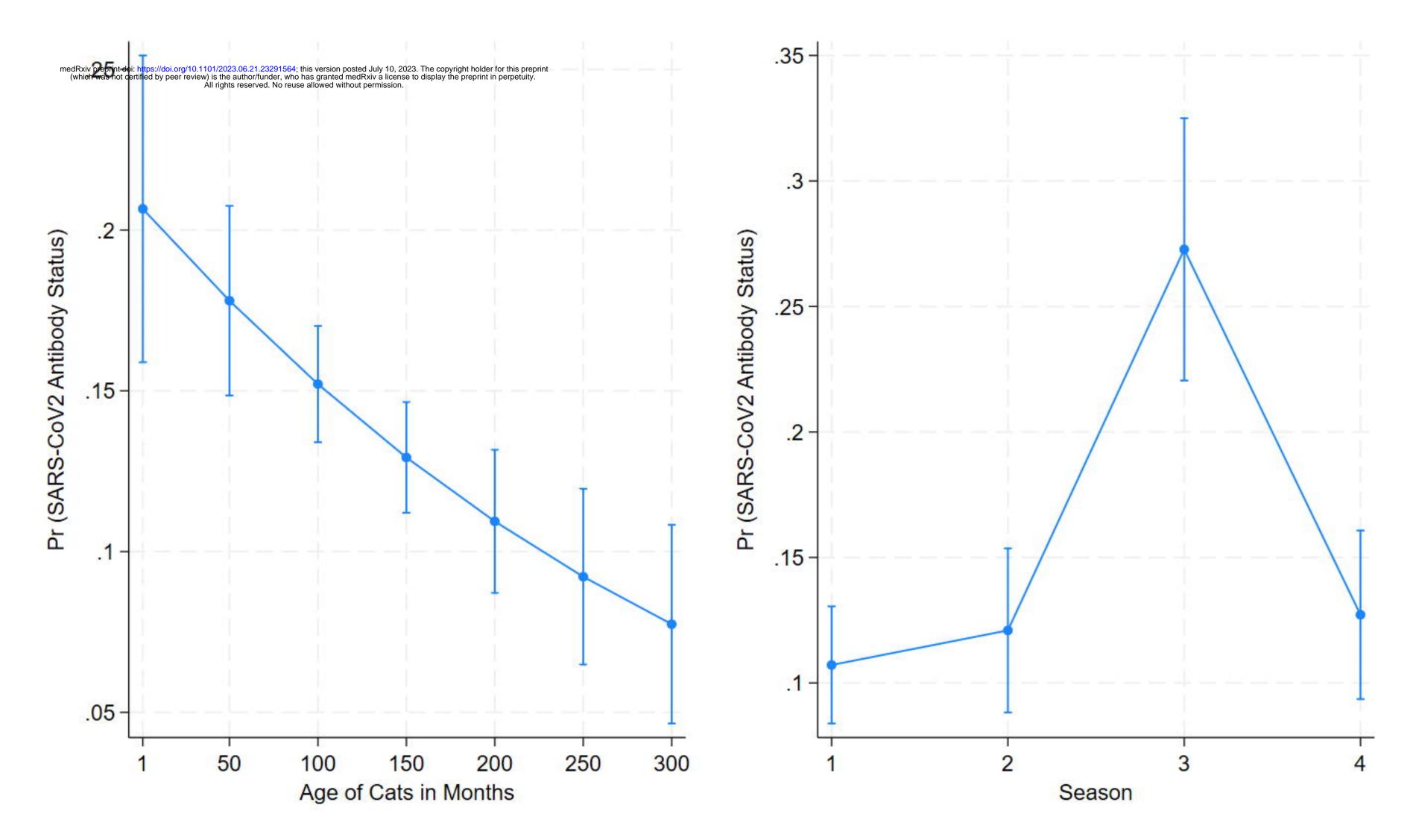
460 9. Soté WO, Franca EF, Hora AS, Comar M. A computational study of the
461 interface interaction between SARS-CoV-2 RBD and ACE2 from human, cat, dog,
462 and ferret. Transbound Emerg Dis. 2022;69(4):2287-95.

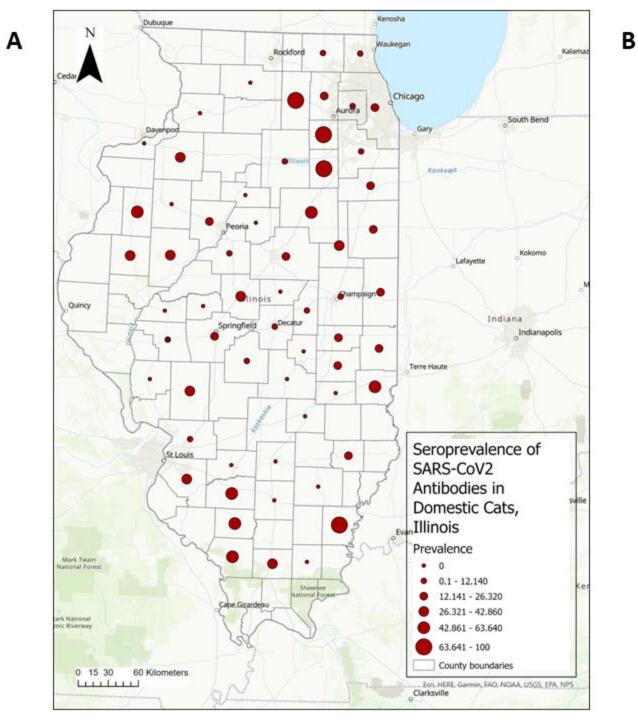
10. Martins M, do Nascimento GM, Nooruzzaman M, Yuan F, Chen C, Caserta
LC, et al. The Omicron Variant BA.1.1 Presents a Lower Pathogenicity than B.1
D614G and Delta Variants in a Feline Model of SARS-CoV-2 Infection. J Virol. 2022
Sep 14;96(17):e0096122.

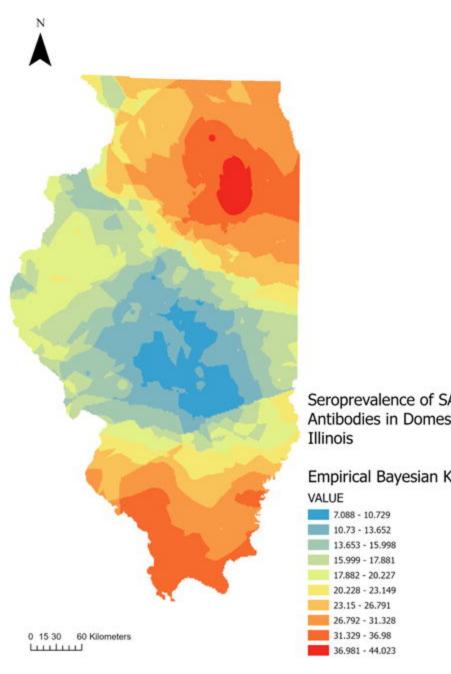
467 11. Sit THC, Brackman CJ, Ip SM, Tam KWS, Law PYT, To EMW, et al.
468 Infection of dogs with SARS-CoV-2. Nature. 2020 Oct;586(7831):776-8.

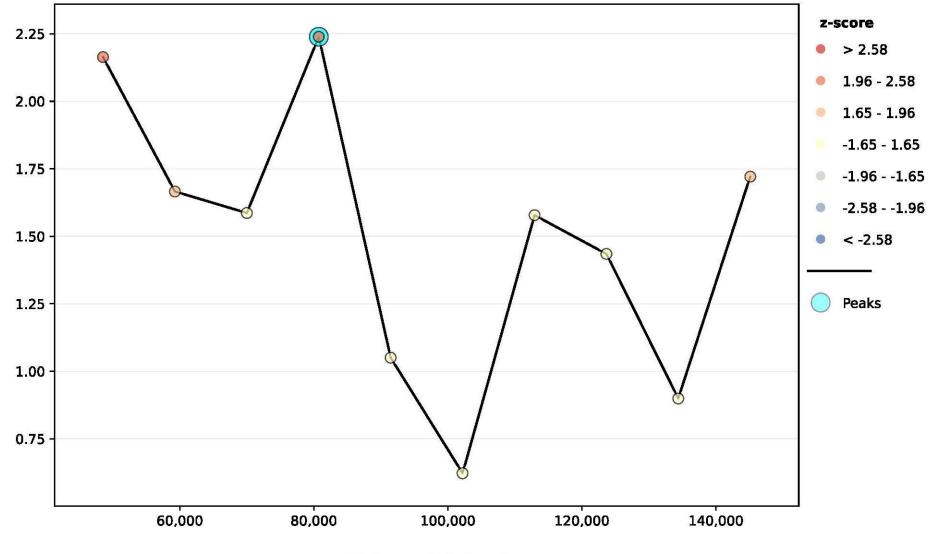

469 12. Hale VL, Dennis PM, McBride DS, Nolting JM, Madden C, Huey D, et al.
470 SARS-CoV-2 infection in free-ranging white-tailed deer. Nature. 2022
471 Feb;602(7897):481-6.

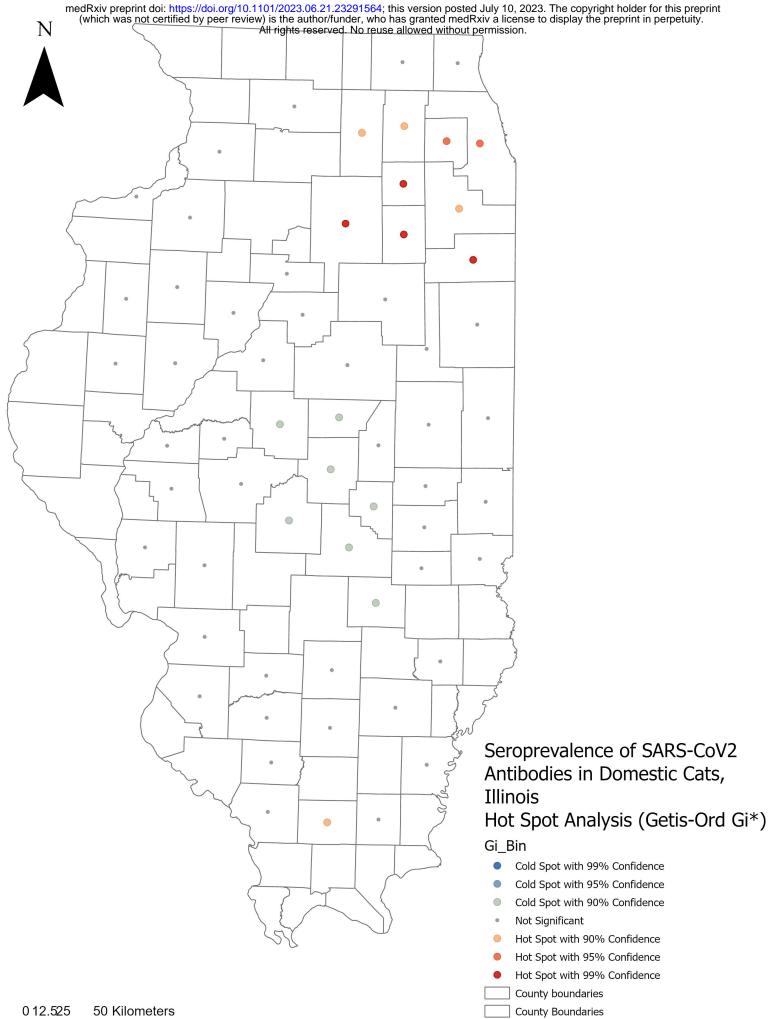
472 13. Sharun K, Dhama K, Pawde AM, Gortázar C, Tiwari R, Bonilla-Aldana DK,
473 et al. SARS-CoV-2 in animals: potential for unknown reservoir hosts and public
474 health implications. Vet Q. 2021 Dec;41(1):181-201.

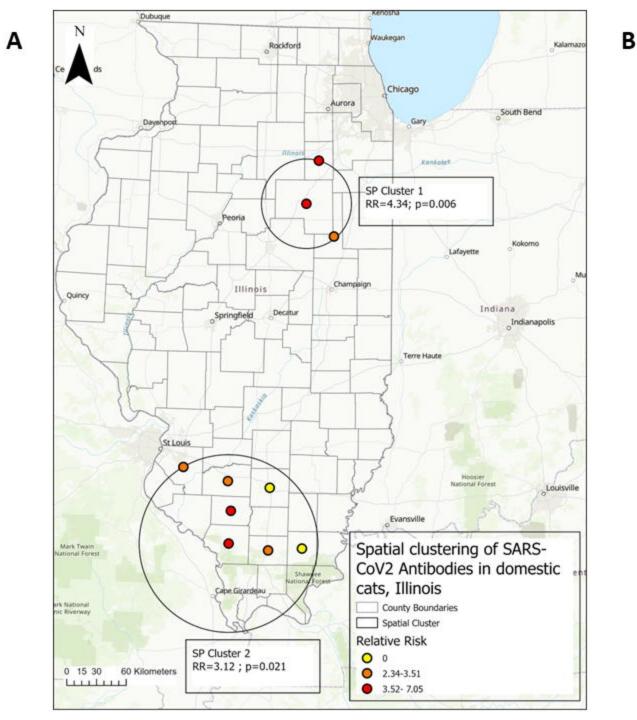

475 14. Halfmann PJ, Iida S, Iwatsuki-Horimoto K, Maemura T, Kiso M, Scheaffer
476 SM, et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and

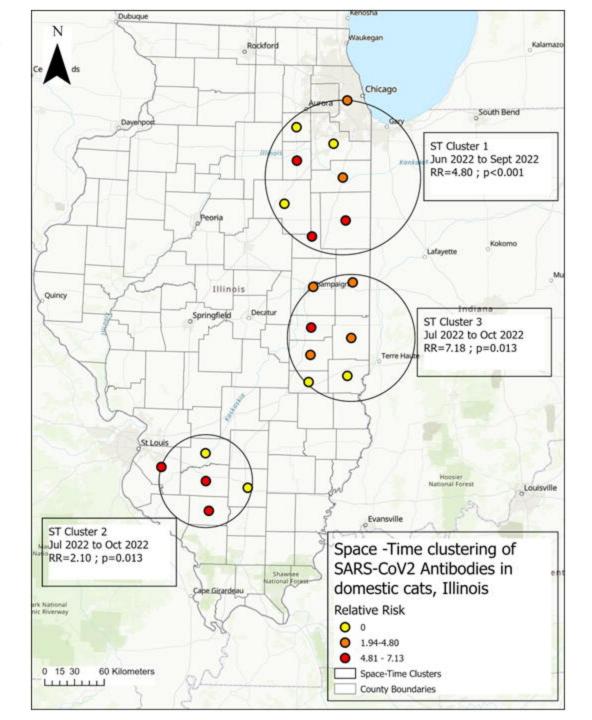

477 hamsters. Nature. 2022 Mar;603(7902):687-92. 478 15. Sila T, Sunghan J, Laochareonsuk W, Surasombatpattana S, Kongkamol C, 479 Ingviya T, et al. Suspected Cat-to-Human Transmission of SARS-CoV-2, Thailand, 480 July-September 2021. Emerg Infect Dis. 2022 Jul;28(7):1485-8. 481 16. Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger 482 E, Molenkamp R, et al. Transmission of SARS-CoV-2 on mink farms between 483 humans and mink and back to humans. Science. 2021 Jan 8;371(6525):172-7. 484 17. Yen HL, Sit THC, Brackman CJ, Chuk SSY, Gu H, Tam KWS, et al. 485 Transmission of SARS-CoV-2 delta variant (AY.127) from pet hamsters to humans, 486 leading to onward human-to-human transmission: a case study. Lancet. 2022 Mar 487 12;399(10329):1070-8. 488 18. Hedman HD, Krawczyk E, Helmy YA, Zhang L, Varga C. Host Diversity and 489 Potential Transmission Pathways of SARS-CoV-2 at the Human-Animal Interface. 490 Pathogens (Basel, Switzerland). 2021;10(2). 491 19. Zhang Q, Zhang H, Gao J, Huang K, Yang Y, Hui X, et al. A serological 492 survey of SARS-CoV-2 in cat in Wuhan. Emerging Microbes & Infections. 493 2020;9(1):2013-9. 494 20. Michelitsch A, Hoffmann D, Wernike K, Beer M. Occurrence of Antibodies 495 against SARS-CoV-2 in the Domestic Cat Population of Germany. Vaccines (Basel). 496 2020;8(4). 497 21. Oliveira A, Pereira MA, Mateus TL, Mesquita JR, Vala H. Seroprevalence of 498 SARS-CoV-2 in Client-Owned Cats from Portugal. Vet Sci. 2022;9(7). 499 22. Yuan F, Chen C, Covaleda LM, Martins M, Reinhart JM, Sullivan DR, et al. 500 Development of monoclonal antibody-based blocking ELISA for detecting SARS-501 CoV-2 exposure in animals. bioRxiv. 2023:2023.03. 11.532204. 502 23. Yuan F, Chen C, Covaleda LM, Martins M, Reinhart JM, Sullivan DR, et al. 503 Development of monoclonal antibody-based blocking ELISA for detecting SARS-504 CoV-2 exposure in animals. mSphere. 2023:. Inpress. 505 24.Jenks GF, Caspall FC. Error on Choroplethic Maps: Definition, Measurement, 506 Reduction. Annals of the Association of American Geographers. 1971 507 1971/06/01;61(2):217-44. 508 25. Krivoruchko K. Empirical bayesian kriging. ArcUser Fall. 2012;6(10):1145. 509 26. Grekousis G. Spatial Analysis Methods and Practice: Describe – Explore – 510 Explain through GIS. Cambridge: Cambridge University Press; 2020. 511 27. Getis A, Ord JK. The Analysis of Spatial Association by Use of Distance 512 Statistics. In: Anselin L, Rey SJ, editors. Perspectives on Spatial Data Analysis. Berlin, 513 Heidelberg: Springer Berlin Heidelberg; 2010. p. 127-45. 514 28. Kulldorff M. SaTScan User Guide; 2018. Reference Source. 2022. 515 29. Kulldorff M, Nagarwalla N. Spatial disease clusters: detection and inference. 516 Stat Med. 1995 Apr 30;14(8):799-810. 517 30. Kulldorff M. A spatial scan statistic. Communications in Statistics-Theory


518 and methods. 1997;26(6):1481-96. 519 31. Kulldorff M, Athas WF, Feurer EJ, Miller BA, Key CR. Evaluating cluster 520 alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am 521 J Public Health. 1998 Sep;88(9):1377-80. 522 32. Gaudreault NN, Trujillo JD, Carossino M, Meekins DA, Morozov I, Madden 523 DW, et al. SARS-CoV-2 infection, disease and transmission in domestic cats. 524 Emerging Microbes & Infections. 2020 2020/01/01;9(1):2322-32. 525 33. Izes AM, Yu J, Norris JM, Govendir M. Current status on treatment options 526 for feline infectious peritonitis and SARS-CoV-2 positive cats. The Veterinary 527 Quarterly. 2020;40(1):322-30. 528 34. El-Tholoth M, Hussein M, Mohammed D, Al-Rasheedi M, Al-Qubaisi H, Al-529 Blooshi A, et al. Serological Investigation on the Presence of Feline Coronavirus 530 (FCoV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in 531 Domestic Cats Living with COVID-19 Positive Owners in the UAE, 2022. Animals. 532 2023;13(3):493. 533 35. VIII - IMMUNOLOGY OF THE CAT. In: Pastoret P-P, Griebel P, Bazin H, 534 Govaerts A, editors. Handbook of Vertebrate Immunology. San Diego: Academic 535 Press; 1998. p. 289-335. 536 36. Yudhanto S, Varga C. Knowledge and Attitudes of Small Animal 537 Veterinarians on Antimicrobial Use Practices Impacting the Selection of 538 Antimicrobial Resistance in Dogs and Cats in Illinois, United States: A Spatial 539 Epidemiological Approach. Antibiotics. 2023;12(3):542. 540 37. Anselin L. Local indicators of spatial association—LISA. Geographical 541 analysis. 1995;27(2):93-115. 542 38. Mitchel A. The ESRI Guide to GIS analysis, Volume 2: Spartial 543 measurements and statistics: ESRI press; 2005. 544 39. Varga C, John P, Cooke M, Majowicz SE. Spatial and space-time clustering 545 and demographic characteristics of human nontyphoidal Salmonella infections with 546 major serotypes in Toronto, Canada. PLOS ONE. 2020;15(7):e0235291. 547 40. Varga C, Pearl DL, McEwen SA, Sargeant JM, Pollari F, Guerin MT. Area-548 level global and local clustering of human Salmonella Enteritidis infection rates in the 549 city of Toronto, Canada, 2007-2009. BMC Infect Dis. 2015;15:359. 550

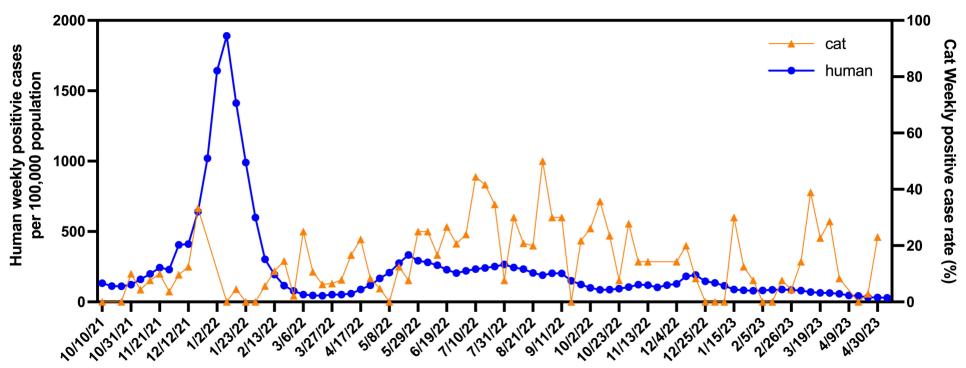



Seroprevalence of SARS-CoV2 Antibodies in Domestic Cats,


Empirical Bayesian Kriging



Distance (Meters)


z-score

Illinois

