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Abstract 17 
Rationale 18 
Arterial and venous cardiovascular conditions, such as coronary artery disease (CAD), 19 
peripheral artery disease (PAD), and venous thromboembolism (VTE), are genetically 20 
correlated. Interrogating distinct and overlapping mechanisms may shed new light on 21 
disease mechanisms. 22 
Objective 23 
In this study, we aimed to: identify and compare (1) epidemiologic and (2) causal, genetic 24 
relationships between metabolites and CAD, PAD, and VTE. 25 
Methods 26 
We used metabolomic data from 95,402 individuals in the UK Biobank, excluding 27 
individuals with prevalent cardiovascular disease. Logistic regression models adjusted for 28 
age, sex, genotyping array, first five principal components of ancestry, and statin use 29 
estimated the epidemiologic associations of 249 metabolites with incident CAD, PAD, or 30 
VTE. Bidirectional two-sample Mendelian randomization (MR) estimated the causal 31 
effects between metabolites and cardiovascular phenotypes using genome-wide 32 
association summary statistics for metabolites (N = 118,466 from UK Biobank), CAD (N 33 
= 184,305 from CARDIoGRAMplusC4D 2015), PAD (N = 243,060 from Million Veterans 34 
Project) and VTE (N = 650,119 from Million Veterans Project). Multivariable MR (MVMR) 35 
was performed in subsequent analyses.  36 
Results 37 
We found that 194, 111, and 69 metabolites were epidemiologically associated (P < 38 
0.001) with CAD, PAD, and VTE, respectively. Metabolomic profiles exhibited variable 39 
similarity between disease pairs: CAD and PAD (N = 100 shared associations, R2 = 40 
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0.499), CAD and VTE (N = 68, R2 = 0.455), and PAD and VTE (N = 54, R2 = 0.752). MR 41 
revealed 28 metabolites that increased risk for both CAD and PAD and 2 metabolites that 42 
increased risk for CAD but decreased risk for VTE. Despite strong epidemiologic overlap, 43 
no metabolites had a shared genetic relationship between PAD and VTE. MVMR revealed 44 
several metabolites with shared causal effects on CAD and PAD related to cholesterol 45 
content within very-low-density lipoprotein particles.  46 
Conclusions 47 
While common arterial and venous conditions are associated with overlapping 48 
metabolomic profiles, MR prioritized the role of remnant cholesterol in arterial diseases 49 
but not venous thrombosis.   50 
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Introduction 51 
Cardiovascular diseases, including coronary artery disease (CAD), peripheral artery 52 
disease (PAD), and venous thromboembolism (VTE), remain the leading causes of 53 
morbidity and mortality worldwide.1 Studies suggest mechanistic overlap between CAD 54 
and PAD with atherosclerosis as a principal driver of both.2,3 In the past decade, genome-55 
wide association studies (GWAS) of CAD, PAD, and VTE have probed the genetic 56 
architectures of and between these three phenotypes.2,4-6 In addition, CAD, PAD, and 57 
VTE often co-occur – upwards of 42% of individuals with CAD also have PAD.7 58 
Understanding shared and distinct pathways may facilitate therapeutic interventions 59 
toward key aspects of disease mechanisms. 60 
 61 
Assessment of the human metabolome is an attractive approach to study mechanistic 62 
etiologies, as metabolomics capture exposures from several sources, including genetic, 63 
dietary, and lifestyle profiles, that all influence an individual’s lifetime risk of various 64 
cardiovascular diseases.8 Identifying upstream metabolites that affect an individual’s risk 65 
of CAD, PAD, or VTE and vice versa (i.e., identifying metabolites that are affected by 66 
having CAD, PAD, or VTE) are critical to better understand mechanistic etiology. Recent 67 
GWAS performed on large-scale metabolomics data9 may help to probe the role of the 68 
metabolome in explaining the genetic overlap between CAD, PAD, and VTE.9 69 
Examination of genetic pleiotropy offers a new opportunity to shed new light on disease 70 
pathogenesis.10  71 
 72 
Mendelian randomization (MR) can estimate causal effects between metabolites and 73 
CAD, PAD, and VTE. MR is a causal inference approach that uses genetic instruments 74 
as instrumental variables to prioritize potentially causal relationships between 75 
exposures and outcomes, with corresponding lowering risks of confounding and reverse 76 
causation.11 MR is particularly well-suited for estimating the causal effects of 77 
metabolites, especially given their strong heritability12 and recent in-depth molecular 78 
profiling of metabolites in the UK Biobank.13,14 Given widespread correlation of 79 
metabolites, we leverage methodologic advances accounting for horizontal pleiotropic 80 
effects and potential reverse causation. 81 
 82 
In this study, we aimed to: (1) identify and compare associations of metabolites with 83 
CAD, PAD, and VTE and (2) identify and compare causal effects of metabolites with 84 
CAD, PAD, and VTE. Specifically, we performed association analyses and bidirectional 85 
two-sample MR analyses in the UK Biobank with 95,402 individuals with in-depth 86 
molecular profiling of metabolites and non-overlapping genetic data for the 87 
cardiovascular outcomes from large-scale GWAS consortia. 88 
 89 
  90 
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Methods 91 
Study cohort 92 
The UK Biobank study cohort has been described previously.14 Briefly, the UK Biobank 93 
is a large population-based prospective study that contains genotype and phenotype data 94 
from 502,639 individuals living in the United Kingdom and recruited between 2006 and 95 
2010.14 Individuals who were closely related, withdrew consent, or had prevalent CAD, 96 
PAD, or VTE at baseline were excluded. CAD, PAD, and VTE were defined by the 97 
International Classification of Diseases (ICD) system, specifically ICD-10 codes 98 
(Supplementary Table 1). In CARDIoGRAMplusC4D 2015, CAD cases were similarly 99 
defined by an inclusive CAD diagnosis (e.g., myocardial infarction, acute coronary 100 
syndrome, chronic stable angina, or coronary stenosis > 50%).15 In the Million Veterans 101 
Program, PAD and VTE were similarly defined by ICD-9, ICD-10, and Current Procedural 102 
Terminology (CPT) codes (Supplementary Table 1).2,6  103 
 104 
A random subset of non-fasting baseline plasma samples from 118,466 individuals and 105 
1,298 repeat visit samples were measured for 249 metabolomic biomarkers using a high-106 
throughput nuclear magnetic resonance (NMR) metabolomic biomarker profiling platform 107 
developed by Nightingale Health (Helsinki, Finland) in the UK Biobank.9 The metabolites 108 
span multiple metabolic pathways, including lipoprotein lipids in 14 subclasses, fatty acids 109 
and fatty acid compositions, as well as various low-molecular weight metabolites, such 110 
as amino acids, ketone bodies, and glycolysis metabolites, all quantified in molar 111 
concentration units.9 A total of 95,402 individuals were included in this study.  112 
 113 
Genetic correlation between cardiovascular phenotypes 114 
After variant filtering (e.g., INFO > 0.9 and minor allele frequency (MAF) > 0.01), linkage 115 
disequilibrium score regression (LDSC) with default parameters were used to calculate 116 
the genetic correlation between CAD and PAD, CAD and VTE, and PAD and VTE using 117 
HapMap3 single nucleotide polymorphisms (SNPs) in the 1000 Genomes Project 118 
European reference panel.16 Summary statistics for CAD were obtained from 119 
CARDIoGRAMplusC4D 2015 that filtered out individuals from the UK Biobank,15 and 120 
summary statistics for PAD and VTE were obtained from the Million Veterans Program.2,6 121 
 122 
Association analysis of metabolites with cardiovascular phenotypes 123 
To estimate epidemiologic associations of 249 metabolites with CAD, PAD, and VTE, we 124 
constructed logistic models regressing metabolite measurements on CAD, PAD, and VTE 125 
coded as a binary indicator for incident event, with covariates including age, sex, 126 
genotyping array, five genetic principal components, and self-reported statin use. A 127 
correction factor of 0.5 multiplied by the minimum non-zero value of each metabolite was 128 
applied prior to log transformation of metabolite values. Transformed metabolite values 129 
were scaled with a mean of 0 and a standard deviation of 1. Effect sizes and standard 130 
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errors were reported, and alpha was defined as 0.05 / 41 = 0.001. Bonferroni correction 131 
for multiple-hypothesis testing is too strict given the high degree of correlation of the 249 132 
metabolites, as previously described.17 Consistent with prior studies to minimize both type 133 
I and type II errors, we adjusted for the number of principal components (N = 41) that 134 
explain 99% of the variance in the data (e.g., 0.05 / 41 = 0.001).17 To estimate the 135 
correlations of associations between CAD, PAD, and VTE, we calculated the Pearson 136 
correlation coefficients of z-scores from logistic regression as a measure of metabolomic 137 
profile overlap.  138 
 139 
Mendelian randomization of metabolites and cardiovascular phenotypes 140 
Mendelian randomization (MR) is a method that uses genetic variants as instrumental 141 
variables to prioritize causal relationships between exposures and outcomes.11 MR relies 142 
on several assumptions: (1) genetic instruments must be robustly associated with the 143 
exposure, (2) genetic instruments must not be associate 144 
d with confounders, and (3) genetic instruments must not influence the outcome except 145 
through the exposure.11 Two-sample MR utilizes GWAS summary statistics in non-146 
overlapping cohorts for exposures and outcomes.18 We used two non-overlapping 147 
cohorts for metabolites and cardiovascular outcomes. Summary statistics for metabolites 148 
were obtained from publicly available GWAS summary statistics from the OpenGWAS 149 
platform (https://gwas.mrcieu.ac.uk/), which contained 249 metabolites from the UK 150 
Biobank measured by Nightingale Health (Supplementary Table 2).19 Summary 151 
statistics were not adjusted for statin use. Summary statistics for CAD were obtained from 152 
CARDIoGRAMplusC4D 2015,15 and summary statistics for PAD and VTE were obtained 153 
from the Million Veteran Program.2,6 154 
 155 
We performed bidirectional, two-sample MR using the TwoSampleMR20,21 R package to 156 
estimate the causal effects between metabolites and CAD, PAD, and VTE. All analyses 157 
were consistent with current recommendations for MR.22 We performed linkage 158 
disequilibrium (LD) clumping with a window > 10000 kb and an R2 > 0.001 Genetic 159 
instruments were defined to be genetic variants that were significant at the genome-wide 160 
significance level after LD clumping (P < 5×10-8). A median of 66 SNPs were used as the 161 
instrumental variables for the metabolites (SD = 19.9, minimum N SNPs = 7, maximum N 162 
SNPs = 112), and instrumental variables were robust, with all F-statistics greater than 50. 163 
We utilized the inverse variance weighted method, which regresses associations between 164 
genetic instruments and outcomes upon associations between genetic instruments and 165 
exposures.23  166 
 167 
In subsequent sensitivity analyses, we utilized the MR Egger, weighted median, simple 168 
mode, and weighted mode methods as well, as such methods may be more robust to 169 
pleiotropy. We also conducted tests for heterogeneity and horizontal pleiotropy. In MR, a 170 
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test for heterogeneity assesses the compatibility of instrumental variable estimates based 171 
on individual genetic variants and is calculated using Cochran’s Q test on the causal 172 
estimates from individual genetic variants.24 We considered P > 0.05 to indicate no 173 
statistical evidence of heterogeneity. A test for horizontal pleiotropy is calculated using 174 
the MR Egger regression method, as the slope coefficient estimates the causal effect that 175 
is consistently asymptotically even if individual genetic variants have pleiotropic effects.24 176 
We considered P > 0.05 to indicate no statistical evidence of horizontal pleiotropy.  177 
 178 
In the first analysis, in which metabolites were exposures and CAD, PAD, and VTE were 179 
outcomes, genetic instruments were clumped and selected based on the above criteria 180 
(e.g., P < 5×10-8 for metabolite association from GWAS). In the second analysis, in which 181 
metabolites were outcomes and CAD, PAD, and VTE were exposures, genetic 182 
instruments were clumped and selected based on the above criteria (e.g., P < 5×10-8 for 183 
CAD, PAD, or VTE association from GWAS). To estimate the correlations of causal 184 
effects between CAD, PAD, and VTE, we calculated the Pearson correlation coefficients 185 
of betas from MR as a measure of metabolomic profile overlap. 186 
 187 
Given the high degree of correlation among metabolites, we also performed multivariable 188 
Mendelian randomization (MVMR), which uses genetic variants for two or more 189 
exposures to simultaneously estimate the causal effect of each exposure on the outcome, 190 
controlling for the effect of other included exposures. MVMR requires the same 191 
assumptions as univariable MR, but the genetic instruments must be associated with the 192 
set of exposures rather than the single exposure, but it is not necessary for each genetic 193 
instrument to be significantly associated with every exposure.25 In other words, 194 
instruments are selected for each exposure and then all exposures for such instruments 195 
are regressed against the outcome together, weighting for the inverse variance of the 196 
outcome. MVMR was performed using the set of metabolites that were identified to have 197 
causal effects in the first analysis, such that the exposures included the set of significant 198 
metabolites and the outcomes included CAD, PAD, and VTE separately, in order to 199 
identify metabolites that had both strong and independent causal effects.  200 
 201 
All analyses were performed using R version 4.1 and all plots were generated using the 202 
R package “ggplot2”. A heatmap was generated using the R package “gplots”.  203 
 204 
Results 205 
We estimated associations of 249 metabolites with CAD, PAD, and VTE in 95,402 206 
individuals in the UK Biobank, which included 3,209 CAD cases, 846 PAD cases, and 207 
1,474 VTE cases (Figure 1). The study cohort of 95,402 comprised of 233,202 (55%) 208 
females with a mean (standard deviation) age of 56.3 (8.0) years, and 57,948 (14%) 209 
individuals prescribed statins (Table 1). The GWAS summary statistics for CAD included 210 
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60,801 cases and 123,504 controls across 48 non-overlapping studies;15 for PAD 211 
included 31,307 cases and 211,753 controls from the Million Veterans Program;2 and for 212 
VTE included 26,066 cases and 624,053 controls from the Million Veterans Program.6 213 
We calculated the genetic correlations across the three sets of summary statistics. CAD 214 
and PAD shared the highest genetic correlation (Rg = 0.6615, SE = 0.044, P = 4.51×10-215 
51), followed by PAD and VTE (Rg = 0.2463, SE = 0.053, P = 3.28×10-6) and CAD and 216 
VTE (Rg = 0.1300, SE = 0.0480, P = 6.80×10-3).  217 
 218 
Epidemiologic associations reveal overlap of metabolites between cardiovascular 219 
phenotypes  220 
We found 194, 111, and 69 metabolites epidemiologically associated with CAD, PAD, 221 
and VTE, respectively (Figure 2, Supplementary Table 3). Phospholipids / total lipids in 222 
large VLDL (odds ratio (OR) = 1.62, 95% CI = [1.39, 1.89], P = 5.04×10-10) and 223 
apolipoprotein B / apolipoprotein A1 (OR = 1.43, 95% CI = [1.37, 1.49], PS = 7.29×10-72) 224 
were among the top metabolites associated with increased CAD risk, while cholesteryl 225 
esters in high-density lipoprotein (HDL) were associated with decreased CAD risk (OR = 226 
0.73, 95% CI = [0.70, 0.75], P = 1.82×10-58). Glycoprotein acetyls were associated with 227 
increased PAD risk (OR = 1.40, 95% CI = [1.31, 1.50], P = 7.57×10-24) and degree of 228 
unsaturation of all fatty acids was associated with decreased PAD risk (OR = 0.72, 95% 229 
CI = [0.68, 0.77], P = 1.47×10-22). Phospholipids / total lipids in medium HDL was 230 
associated with increased VTE risk (OR = 1.21, 95% CI = [1.14, 1.29], P = 2.29×10-9) 231 
while albumin was associated with decreased VTE risk (OR = 0.80, 95% CI = [0.77 0.84], 232 
P = 1.11×10-18).  233 
 234 
Next, we estimated the overlap of metabolomic associations across CAD, PAD, and VTE. 235 
There were 52 metabolites that had significant (P < 0.001) associations with all three 236 
cardiovascular phenotypes, of which 50 metabolites had the same direction of effect and 237 
2 metabolites had the opposite direction of effect of CAD compared to PAD and VTE. 238 
CAD and PAD shared 48 significant metabolites (30 concordant, 18 discordant), CAD 239 
and VTE shared 16 metabolites (16 concordant, 0 discordant), and PAD and VTE shared 240 
2 metabolites (2 concordant, 0 discordant) (Figure 3). Epidemiologic metabolomic 241 
profiles were most similar between PAD and VTE (R2 = 0.75, P = 8.43×10-775), followed 242 
by CAD and PAD (R2 = 0.50, P = 5.71×10-395) and CAD and VTE (R2 = 0.46, P = 2.14×10-243 
345). In other words, while CAD and PAD shared the highest genetic correlation, PAD and 244 
VTE shared the highest similarity of metabolomic associations (Supplementary Figure 245 
1).   246 
 247 
Estimation of causal effects of metabolites on cardiovascular phenotypes reveal 248 
overlap between coronary artery disease and peripheral artery disease 249 
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Then, we used bidirectional MR to identify potential causal relationships between 250 
metabolites and CAD, PAD, and VTE (Figure 4, Supplementary Figure 2). We found 251 
82 metabolites that increased and 5 that decreased risk for CAD, 25 metabolites that 252 
increased and 11 that decreased risk for PAD, and 2 metabolites that decreased risk for 253 
VTE (P < 0.001). Many of the HDL traits were found to have causal effects on PAD while 254 
many of the IDL traits, and larger-sized lipid traits, were found to have causal effects on 255 
CAD. Most VLDL and LDL traits were shared by both CAD and PAD. We also performed 256 
sensitivity analyses using the MR Egger, weighted median, simple mode, and weighted 257 
mode methods (Supplementary Tables 4-9), as well was testing for heterogeneity 258 
(Supplementary Table 10) and horizontal pleiotropy (Supplementary Tables 11) to 259 
assess the robustness of our results and instrumental variables. Most metabolites 260 
showed no statistical evidence (P > 0.05) for horizontal pleiotropy in their causal effects 261 
on CAD (N = 175 metabolites without horizontal pleiotropy), PAD (N = 200), and VTE (N 262 
= 246). 263 
 264 
Conversely, while we found that CAD increased 14 metabolites and decreased 6 265 
metabolites, we found no metabolites affected by PAD or VTE. Interestingly, 5 of the 14 266 
metabolites had bidirectional, increased causality with CAD (e.g., the metabolite 267 
increased risk of CAD and CAD also increased levels of the metabolite) and were all 268 
involved in cholesterol concentrations in large VLDL and extremely large VLDL 269 
(Supplementary Figure 3). In addition, 2 of the 6 metabolites had bidirectional, 270 
decreased causality with CAD (e.g., the metabolite decreased risk of CAD and CAD also 271 
decreased levels of the metabolite) and were all involved in triglyceride concentrations in 272 
large VLDL and very large VLDL (Supplementary Figure 3). For the 7 metabolites with 273 
bidirectional, causal effects with CAD, there were only one overlap in the variants driving 274 
the causal effect of the metabolite on CAD and the variants driving the causal effect of 275 
CAD on the metabolite: rs2519093 and rs7528419. The majority of genetic variants only 276 
had a causal effect on the metabolite or CAD in a single direction.   277 
 278 
Causal metabolomic profiles were most similar between CAD and PAD (R2 = 0.43, P = 279 
4.67×10-156), followed by PAD and VTE (R2 = 0.06, P = 3.55×10-17) and CAD and VTE (R2 280 
= 0.03, P = 9.38×10-11). MR revealed 28 metabolites that increased risk for both CAD and 281 
PAD and 2 metabolites that increased risk for CAD but decreased risk for VTE (i.e., 282 
triglycerides in low-density lipoprotein (LDL), triglycerides in medium LDL). (Figure 5). 283 
There were no metabolites with shared causal relationships between PAD and VTE. Of 284 
the 28 metabolites shared between CAD and PAD, 64.3% (N = 18) were VLDL, 21.4% 285 
(N = 6) were LDL, 7.1% (N = 2) were HDL, 3.6% (N = 1) were IDL, and 3.6% (N = 1) were 286 
apolipoprotein traits. Many of the triglyceride-containing lipid traits that were 287 
epidemiologically associated with CAD and PAD did not maintain causal effects; rather, 288 
the 28 metabolites shared between CAD and PAD included many cholesterol-containing 289 
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lipid traits but no triglyceride-containing lipid traits. Taken together with the epidemiologic 290 
association results, this suggests that while PAD and VTE maintain similar metabolomic 291 
associations, these effects are not robust under a causal framework such that CAD and 292 
PAD retain more similar causal metabolomic profiles (Supplementary Figure 1). 293 
Notably, many of the epidemiologic associations that were not maintained upon 294 
interrogation via MR included non-lipid traits, such as glucose and other amino acids. 295 
 296 
Given the high degree of correlation of metabolites among each other, we used MVMR 297 
to identify metabolites that had causal effects on CAD, PAD, and VTE independent of 298 
other metabolites (Supplementary Tables 9-11). In three models including the 87, 36, 299 
and 2 metabolites with causal effects on CAD, PAD, and VTE as exposures, we identified 300 
7 metabolites with marginal (P < 0.05) independent causal effects on CAD (i.e., 301 
cholesteryl esters in VLDL, total lipids in small VLDL, concentration of medium VLDL 302 
particles, total lipids in lipoprotein particles, total lipids in LDL, triglycerides to total lipids 303 
ratio in large HDL, and total cholesterol minus HDL-C) and 5 on PAD (i.e., cholesteryl 304 
esters in small VLDL, phospholipids in small VLDL, free cholesterol in small VLDL, 305 
cholesterol in small VLDL, and apolipoprotein B / apolipoprotein A1). We did not identify 306 
any metabolites with independent causal effects on VTE. In a separate model excluding 307 
the 7 metabolites that had bidirectional, causal effects with CAD, we identified 8 308 
metabolites with marginal (P < 0.05) independent causal effects on CAD (i.e., total lipids 309 
in LDL, cholesterol in IDL, cholesteryl esters in medium LDL, apolipoprotein B, free 310 
cholesterol in medium LDL, total lipids in lipoprotein particles, concentration of medium 311 
VLDL particles, and total lipids in IDL). There were three metabolites with marginal 312 
independent causal effects in both models including the primary model including all 87 313 
metabolites and the secondary model excluding the 7 metabolites that had bidirectional, 314 
causal effects on CAD (i.e., total lipids in lipoprotein particles, total lipids in LDL, 315 
concentration of medium VLDL particles). 316 
 317 
Discussion 318 
Here, we performed hypothesis-free association analyses and MR analyses to evaluate 319 
the metabolomic profiles of CAD, PAD, and VTE covering 249 metabolites in 95,402 320 
individuals in the UK Biobank. This allowed us to compare metabolomic profiles between 321 
these three cardiovascular phenotypes to provide insight into potential similarities and 322 
differences in their metabolomic etiologies.  323 
 324 
First, we found overlap in associated metabolomic profiles of CAD, PAD, and VTE via 325 
association analyses. We identified 194, 111, and 69 metabolites that were associated 326 
with CAD, PAD, and VTE, respectively, that were also consistent with well-established 327 
biology, such as the association between apolipoprotein B and apolipoprotein A1 with 328 
CAD. We compared the associated metabolites across CAD, PAD, and VTE and found 329 
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that CAD and PAD shared 48 metabolites, CAD and VTE shared 16 metabolites, and 330 
PAD and VTE shared 2 metabolites - there were 52 metabolites shared by all three 331 
cardiovascular phenotypes. There was a high degree of similarity in metabolomic 332 
associations between PAD and VTE compared to CAD and VTE. Identification of 333 
epidemiologic associations provided a background comparison for subsequent estimation 334 
of causal effects.  335 
 336 
Second, we found that overlap in the causal metabolic profiles of CAD and PAD, but not 337 
VTE, via MR analyses. This is consistent with the high co-occurrence of CAD and PAD, 338 
as well as the genetic correlation, reported by previous studies. 2,4-7 We identified several 339 
upstream metabolites that affected an individual’s risk of CAD (N = 87), PAD (N = 36), 340 
and VTE (N = 2). Specifically, 28 metabolites increased the risk for both CAD and PAD 341 
and 2 metabolites had opposite causal effects in CAD and VTE. Of the 28 metabolites 342 
many were VLDL traits, and indeed, VLDL pathways have been implicated in both CAD26 343 
and PAD.27 VLDL is a precursor to LDL and is considered to be a marker of atherogenic 344 
lipoprotein remnants.28 Given that both CAD and PAD are characterized by the buildup 345 
of plaque in coronary or peripheral arteries, it is possible that VLDL, specifically the 346 
smaller VLDL particles that are closer in metabolomic identity to LDL, contributes to the 347 
development of atherosclerotic lesions in both arterial locations. The convergence of 348 
VLDL cholesterol concentrations between CAD and PAD metabolomic profiles 349 
strengthens this shared disease mechanism. This result supports the prioritization of 350 
atherogenic lipoprotein remnants as a high-yield therapeutic target for both CAD and PAD 351 
due to overlaps in lipid-related etiology. Furthermore, no triglyceride-containing lipid traits 352 
were shared between CAD and PAD, while many cholesterol-containing lipid traits were 353 
shared. Given that previous studies have suggested that triglycerides are not atherogenic, 354 
the overrepresentation of cholesterol-containing lipid traits further supports the role of 355 
lipid-related etiology underlying the atherosclerotic mechanisms of both CAD and PAD, 356 
specifically the cholesterol content of VLDL particles. 29,30 357 
 358 
Thus, while the association analyses showed a high degree of metabolomic associations 359 
between PAD and VTE, causal effects of metabolites were shared between CAD and 360 
PAD to a greater degree than CAD and VTE. Lipid traits may not be as strongly involved 361 
in thrombus formation as it is in plaque formation, as VTE had few lipid traits with causal 362 
effects with CAD or PAD. Previous studies have highlighted carnitine species, glucose, 363 
phenylalanine, among other metabolites, but not lipid-related metabolites, as possibly 364 
related to VTE.31 We similarly found that several epidemiologic associations identified via 365 
association analyses, such as glucose and other amino acids, did not maintain robust 366 
causal effects upon interrogation via MR. 367 
 368 
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Third, we found that CAD may amplify the effects of some metabolites, particularly 369 
cholesterol and triglycerides within VLDL. Using bidirectional MR, we identified 20 370 
downstream metabolites that had levels affected by CAD, but not PAD or VTE. Most of 371 
the 20 metabolites were involved in VLDL and LDL particles, and those that had positive 372 
bidirectional effects with CAD included cholesterol concentrations and those that had 373 
negative bidirectional effects with CAD included triglyceride concentrations. Regarding 374 
VTE, the null effects of metabolites on VTE and vice versa in a bidirectional MR analysis 375 
was previously reported for LDL, HDL, and TGs.32 Regarding CAD, this bidirectional effect 376 
may suggest that atherosclerosis itself may influence lipid metabolism. Tomas et al. found 377 
distinct metabolomic profiles in high-risk and stable atherosclerotic plaques consistent 378 
with different transcription levels of metabolic enzymes, suggesting that atherosclerosis 379 
itself may affect metabolite levels.33 Further functional studies are needed to evaluate this 380 
bidirectional effect.  381 
 382 
The limitations of this study should be considered. First, the power and precision of MR 383 
is limited to the strength and availability of instrumental variables, such as for VTE. As 384 
more powerful GWAS are performed that produce more, high-quality instrumental 385 
variables, the MR results will necessarily become stronger and more robust. 386 
Nevertheless, the power and precision of MR is driven by the heritability of metabolites, 387 
due to its dependence on genetic instruments, and some truly causal metabolites may 388 
have low power. Second, because the MR analyses use genetic instruments as 389 
instrumental variables, they capture estimates based on lifelong genetic exposures 390 
without consideration for acute or temporary effects. For example, MR does not account 391 
for the effects of initiating statin therapy in older ages. Third, MR infers causality based 392 
on observational data, therefore provides causal estimates without definitively 393 
establishing causality. Fourth, the UK Biobank is predominantly composed of individuals 394 
from European ancestry, so the generalizability of our findings to other ancestry groups 395 
may be limited.  396 
 397 
Taken together, we found that metabolomic profiles identified via MR are shared across 398 
CAD and PAD, but not VTE, suggesting similarities in plaque formation over thrombus 399 
formation with respect to blood-based metabolomics. In addition, this suggests that the 400 
similarities in plaque formation (e.g., CAD and PAD) outweigh similarities in location (e.g., 401 
coronary arteries for CAD, and peripheral beds for PAD and VTE). Atherosclerotic 402 
mechanisms, such as VLDL pathways, may be implicated in plaque formation, but not 403 
thrombus formation.   404 
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Figures 
 
Figure 1. Study schematic. (A) Epidemiological association analysis was performed 
using individual-level data from the UK Biobank, regressing incident coronary artery 
disease (CAD)/peripheral artery disease (PAD)/venous thromboembolism (VTE) events 
on metabolite levels. (B) Bidirectional Mendelian randomization analysis was performed 
using metabolite summary statistics from the UK Biobank as exposures and 
CAD/PAD/VTE summary statistics from either CARDIoGRAMplusC4D 2015 or Million 
Veterans Program (MVP) as outcomes, and (C) vice versa. (D) Taking only the 
metabolite with significant causal effects from (B), multivariable Mendelian 
randomization analysis was performed using metabolite summary statistics from the UK 
Biobank as exposures and CAD/PAD/VTE summary statistics from either 
CARDIoGRAMplusC4D 2015 or MVP as outcomes. 
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Figure 2. Epidemiological associations between metabolites and incident cardiovascular 
outcomes. Associations were estimated using logistic regression on 95,402 individuals in 
the UK Biobank and 7 classes of metabolites: VLDL = very low-density lipoprotein, FA = 
fatty acid, HDL = high-density lipoprotein, IDL = intermediate-density lipoprotein, LDL = 
low-density lipoprotein, M = miscellaneous, NL = non-lipid metabolite, and OL = other lipid 
metabolite. Bars oriented upwards indicate a positive association while those oriented 
inwards indicate a negative association. Error bars represent 95% confidence intervals. 
Transparent bars represent associations that were not significant based on a multiple 
testing correction of P < 0.05 / 41. Coronary artery disease (CAD) was associated with 
194 metabolites. Peripheral artery disease (PAD) was associated with 111 metabolites. 
Venous thromboembolism (VTE) was associated with 69 metabolites. 
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Figure 3. Venn diagram of metabolites with shared significant associations between 
coronary artery disease (CAD), peripheral artery disease (PAD), and venous 
thromboembolism (VTE) estimated using logistic regression. Associations were 
estimated using logistic regression on 95,402 individuals in the UK Biobank. Metabolites 
that were associated with more than one cardiovascular phenotype but demonstrated an 
opposite direction of effect were indicated with white asterisks.  
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Figure 4. Forest plots of estimated causal effects of genetically-determined metabolites 
on cardiovascular outcomes estimated using bidirectional Mendelian randomization. 
Bidirectional, two-sample inverse variance weighted Mendelian randomization using 
summary statistics from the UK Biobank and CARDIoGRAMplusC4D 2015 or Million 
Veterans Program (MVP) was performed to estimate causal effects of metabolites on 
coronary artery disease (CAD), peripheral artery disease (PAD), and venous 
thromboembolism (VTE). Bars are effect estimates from Mendelian randomization. Error 
bars represent 95% confidence intervals. Transparent bars represent associations that 
were not significant based on a multiple testing correction of P < 0.05 / 41. There were 
87, 36, and 2 metabolites with a causal effect on CAD, PAD, and VTE, respectively.  
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Figure 5. Venn diagram of metabolites with shared causal effects between coronary 
artery disease (CAD), peripheral artery disease (PAD), and venous thromboembolism 
(VTE) estimated using bidirectional Mendelian randomization. Bidirectional, two-sample 
inverse variance weighted Mendelian randomization using summary statistics from the 
UK Biobank and CARDIoGRAMplusC4D 2015 or Million Veterans Program (MVP) was 
performed to estimate causal effects of metabolites on CAD, PAD, and VTE. Metabolites 
that had causal effects on more than one cardiovascular phenotype but demonstrated an 
opposite direction of effect were indicated with white asterisks.  
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Tables 
 
Table 1. Baseline characteristics of analyzed UK Biobank participants. Individuals with 
prevalent CAD, PAD, or VTE were excluded, leaving 3,209, 846, 1,474 incident coronary 
artery disease (CAD), peripheral artery disease (PAD), and venous thromboembolism 
(VTE) cases. The baseline characteristics are reported below.   

N 95,402 

Age (SD) 56.3 (8.0) 

N Female (%) 52,065 (54.6%) 

N European (%) 89,847 (94.2%) 

N Hypertension (%) 26,507 (27.8%) 

N Diabetes (%) 1,974 (2.1%) 

N Current Smoker (%) 9,754 (10.2%) 

N Statin Users 13,204 (13.8%) 

Total cholesterol, mg/dL (SD) 221.5 (43.4) 

Low-density lipoprotein cholesterol, mg/dL (SD) 138.7 (33.2) 

High-density lipoprotein cholesterol, mg/dL (SD) 56.3 (14.7) 

Triglycerides, mg/dL (SD) 153.2 (89.1) 

N Incident CAD (%) 3,209 (3.36%) 

N Incident PAD (%) 846 (0.887%) 

N Incident VTE (%) 1,474 (1.55%) 
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Supplement  
 
Supplementary Figure 1. Heatmap summarizing correlation of (A) epidemiologic 
associations and (B) causal effects of metabolites on cardiovascular phenotypes. (A) 
Epidemiologic associations were estimated using logistic regression on 95,402 
individuals in the UK Biobank. Epidemiologic metabolomic profiles were most similar 
between PAD and VTE (R2 = 0.75, P = 8.43×10-775), followed by CAD and PAD (R2 = 0.50, 
P = 5.71×10-395) and CAD and VTE (R2 = 0.46, P = 2.14×10-345). (B) Causal effects were 
estimated using Mendelian randomization using summary statistics from the UK Biobank 
and CARDIoGRAMplusC4D 2015 or Million Veterans Program (MVP). Causal 
metabolomic profiles were most similar between CAD and PAD (R2 = 0.43, P = 4.67×10-

156), followed by PAD and VTE (R2 = 0.06, P = 3.55×10-17) and CAD and VTE (R2 = 0.03, 
P = 9.38×10-11). 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.21.23291103doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.21.23291103
http://creativecommons.org/licenses/by-nc/4.0/


 

22 
 

 
 
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.21.23291103doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.21.23291103
http://creativecommons.org/licenses/by-nc/4.0/


 

23 
 

Supplementary Figure 2. Forest plots of estimated causal effects of cardiovascular 
outcomes on metabolites estimated using bidirectional Mendelian randomization. 
Bidirectional, two-sample inverse variance weighted Mendelian randomization using 
summary statistics from the UK Biobank and CARDIoGRAMplusC4D 2015 or Million 
Veterans Program (MVP) was performed to estimate causal effects of coronary artery 
disease (CAD), peripheral artery disease (PAD), and venous thromboembolism (VTE) on 
metabolites. Bars are effect estimates from Mendelian randomization. Error bars 
represent 95% confidence intervals. Transparent bars represent associations that were 
not significant based on a multiple testing correction of P < 0.05 / 41. Only 20 metabolites 
were causally affected by a cardiovascular outcome, CAD.  
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Supplementary Figure 3. Forest plots of estimated causal effects of metabolites on 
coronary artery disease and vice versa estimated using bidirectional Mendelian 
randomization. Bidirectional, two-sample inverse variance weighted Mendelian 
randomization using summary statistics from the UK Biobank and 
CARDIoGRAMplusC4D 2015 was performed to estimate causal effects of metabolites 
on coronary artery disease (CAD) and vice versa. Bars are effect estimates from 
Mendelian randomization. Error bars represent 95% confidence intervals. Of 7 
metabolites with bidirectional causal effects, 2 metabolites decreased risk of CAD and 
also had levels affected by CAD downstream (e.g., having CAD decreased levels of the 
metabolite) and 5 metabolites increased risk of CAD and also had levels affected by 
CAD downstream (e.g., having CAD increased levels of the metabolite.  
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Supplementary Table 1. Phenotype definitions for coronary artery disease (CAD) in 
CARDIoGRAMplusC4D 2015, peripheral artery disease (PAD) in Million Veterans 
Program (MVP), and venous thromboembolism (VTE) in MVP.  
 
Supplementary Table 2. Summary of instrumental variables for metabolites in the UK 
Biobank. 
 
Supplementary Table 3 Table of association analysis estimates between metabolites 
and coronary artery disease (CAD), peripheral artery disease (PAD), and venous 
thromboembolism (VTE). Associations were estimated using logistic regression on 
95,402 individuals in the UK Biobank.  
 
Supplementary Table 4. Table of bidirectional, two-sample Mendelian randomization 
using the MR Egger, weighted median, inverse variance weighted, simple mode, and 
weighted mode method estimates using metabolite summary statistics from the UK 
Biobank as exposures and coronary artery disease (CAD) summary statistics from 
CARDIoGRAMplusC4D 2015 as the outcome.  
 
Supplementary Table 5. Table of bidirectional, two-sample Mendelian randomization 
using the MR Egger, weighted median, inverse variance weighted, simple mode, and 
weighted mode method estimates using metabolite summary statistics from the UK 
Biobank as outcomes and coronary artery disease (CAD) summary statistics from 
CARDIoGRAMplusC4D 2015 as the exposure.  
 
Supplementary Table 6. Table of bidirectional, two-sample Mendelian randomization 
using the MR Egger, weighted median, inverse variance weighted, simple mode, and 
weighted mode method estimates using metabolite summary statistics from the UK 
Biobank as exposures and peripheral artery disease (PAD) summary statistics from 
Million Veterans Program (MVP) as the outcome.  
 
Supplementary Table 7. Table of bidirectional, two-sample Mendelian randomization 
using the MR Egger, weighted median, inverse variance weighted, simple mode, and 
weighted mode method estimates using metabolite summary statistics from the UK 
Biobank as outcomes and peripheral artery disease (PAD) summary statistics from Million 
Veterans Program (MVP) as the exposure.  
 
Supplementary Table 8. Table of bidirectional, two-sample Mendelian randomization 
using the MR Egger, weighted median, inverse variance weighted, simple mode, and 
weighted mode method estimates using metabolite summary statistics from the UK 
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Biobank as exposures and venous thromboembolism (VTE) summary statistics from 
Million Veterans Program (MVP) as the outcome.  
 
Supplementary Table 9. Table of bidirectional, two-sample Mendelian randomization 
using the MR Egger, weighted median, inverse variance weighted, simple mode, and 
weighted mode method estimates using metabolite summary statistics from the UK 
Biobank as outcomes and venous thromboembolism (VTE) summary statistics from 
Million Veterans Program (MVP) as the exposure.  
 
Supplementary Table 10. Table of sensitivity analysis results assessing heterogeneity 
for two-sample Mendelian randomization using metabolites summary statistics from the 
UK Biobank as exposures and coronary artery disease (CAD), peripheral artery disease 
(PAD), and venous thromboembolism (VTE) summary statistics from 
CARDIoGRAMplusC4D 2015 and Million Veterans Program (MVP) as outcomes.  
 
Supplementary Table 11. Table of sensitivity analysis results assessing horizontal 
pleiotropy for two-sample Mendelian randomization using metabolites summary statistics 
from the UK Biobank as exposures and coronary artery disease (CAD), peripheral artery 
disease (PAD), and venous thromboembolism (VTE) summary statistics from 
CARDIoGRAMplusC4D 2015 and Million Veterans Program (MVP) as outcomes.  
 
Supplementary Table 12. Table of multivariable Mendelian randomization using 87 sets 
of metabolite summary statistics from the UK Biobank as exposures and coronary artery 
disease (CAD) summary statistics from CARDIoGRAMplusC4D 2015 as the outcome. 
Metabolite sets were determined by selecting the metabolites with significant causal 
effects on CAD in univariable Mendelian randomization such that genetic instruments 
included pool of all genetic variants associated with the 87 metabolites. 
 
Supplementary Table 13. Table of multivariable Mendelian randomization using 36 sets 
of metabolite summary statistics from the UK Biobank as exposures and peripheral artery 
disease (PAD) summary statistics from Million Veterans Program (MVP) as the outcome. 
Metabolite sets were determined by selecting the metabolites with significant causal 
effects on PAD in univariable Mendelian randomization such that genetic instruments 
included pool of all genetic variants associated with the 36 metabolites. 
 
Supplementary Table 14. Table of multivariable Mendelian randomization using 2 sets 
of metabolite summary statistics from the UK Biobank as exposures and venous 
thromboembolism (VTE) summary statistics from Million Veterans Program (MVP) as the 
outcome. Metabolite sets were determined by selecting the metabolites with significant 
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causal effects on VTE in univariable Mendelian randomization such that genetic 
instruments included pool of all genetic variants associated with the 2 metabolites. 
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