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25 Abstract

26 Studies on artificial intelligence (AI) in screening for diabetic retinopathy (DR) have shown promising 

27 results in addressing the mismatch between the capacity to implement DR screening and the increasing 

28 DR incidence; however, most of these studies were done retrospectively.  This review sought to evaluate 

29 the diagnostic test accuracy (DTA) of AI in screening for referable diabetic retinopathy (RDR) in real-

30 world settings. We searched CENTRAL, PubMed, CINAHL, Scopus, and Web of Science on 9 

31 February 2023. We included prospective DTA studies assessing AI against trained human graders 

32 (HGs) in screening for RDR in patients living with diabetes. synthesis Two reviewers independently 

33 extracted data and assessed methodological quality against QUADAS-2 criteria. We used the 

34 hierarchical summary receiver operating characteristics (HSROC) model to pool estimates of sensitivity 

35 and specificity and, forest plots and SROC plots to visually examine heterogeneity in accuracy 

36 estimates. Finally, we conducted sensitivity analyses to explore the effects of studies deemed to possibly 

37 affect the quality of the studies. We included 15 studies (17 datasets:  10 patient-level analysis 

38 (N=45,785), and 7 eye-level analysis (N=15,390). Meta-analyses revealed a pooled sensitivity of 

39 95.33%(95% CI: 90.60-100%) and specificity of 92.01%(95% CI: 87.61-96.42%) for patient-level 

40 analysis; for the eye-level analysis, pooled sensitivity was 91.24% (95% CI: 79.15-100%) and 

41 specificity, 93.90% (95% CI: 90.63-97.16%). Subgroup analyses did not provide variations in the 

42 diagnostic accuracy of country classification and DR classification criteria; however, a moderate 

43 increase was observed in diagnostic accuracy at the primary-level and, a minimal decrease in the 

44 tertiary-level healthcare settings. Sensitivity analyses did not show any variations in studies that 

45 included diabetic macular edema in the RDR definition, nor in studies with ≥3 HGs.  This review 

46 provides evidence, for the first time from prospective studies, for the effectiveness of AI in screening 

47 for RDR, in real-world settings.

48

49
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50 Introduction

51 Diabetic retinopathy (DR) is the most common and specific complication of diabetes mellitus in the 

52 working age group [1]. In 2020, the number of adults with DR was estimated to be 103.12 million, 

53 which is expected to be 129.84 million by 2030 and 160.50 million by 2045 [1]. Along with an 

54 increasing incidence of DR, the number of people with vision impairment and blindness also increases. 

55 Without early intervention, the incidence of blindness due to DR will continue to rise as the number of 

56 people getting diabetes increases. Thus, DR has become a global public health concern, compelling 

57 researchers and health practitioners to continuously develop strategies to prevent and treat DR.

58 Diabetic retinopathy can be asymptomatic for years, even at advanced stages [2]. Thus, early-stage 

59 detection of DR is crucial to provide timely treatment and management. For that reason, DR screening 

60 programmes are being implemented in public health settings through population-based or opportunistic 

61 screening.  Diabetic retinopathy screening aims to distinguish between patients who need a referral, 

62 termed referable DR (RDR), for ophthalmological intervention from those who can continue annual 

63 routine eye care services [3]. Referable DR can be classified as moderate nonproliferative DR (NPDR) 

64 or worse and/or diabetic macular edema (DME). Those with RDR must be referred within three months 

65 to one year, depending on the resource settings [4]. 

66 Currently, local and international programmes combatting DR are facing a significant crisis due to the 

67 increasing prevalence of diabetes. This influx has outpaced the development of healthcare services and 

68 screening programmes for preventing DR [5]. According to a systematic review by Piyasena et al. [6], 

69 aside from the high cost of services and lack of infrastructure for retinal imaging and training 

70 programmes, one of the major barriers to DR screening is the lack of skilled human resources, especially 

71 in the lower- and middle-income countries.  

72 Artificial intelligence has shown to be a promising solution to these challenges by functioning in an 

73 autonomous mode. Through deep learning algorithms, AI can be used to detect the presence and severity 

74 of DR in real-time. However, it is crucial that these tools should have high diagnostic accuracy and 

75 good performance before being implemented in various healthcare settings. The UK National Institute 

76 for Clinical Excellence (NICE) Guidelines stated that DR screening programmes should use screening 
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77 tools with a sensitivity of ≥80%, specificity of ≥95%, and a technical failure rate of ≤5% [7]. 

78 Meanwhile, the St Vicent Declaration of 2005 suggested that systematic DR screening programmes 

79 should aim for a sensitivity of ≥80% and a specificity of  ≥90% with an acceptable coverage of ≥ 80% 

80 [8]. 

81 In recent years, retrospective validation studies have shown AI to have high diagnostic accuracy in 

82 detecting DR; that is, AI is equally good or even better than human graders (HGs). Studies done in real-

83 world settings using prospective data collection have also demonstrated robust performance [9]; 

84 however, these studies are fewer than those done in a retrospective manner, and the true utility of AI 

85 systems in DR screening will only be better understood through prospective studies, as performance is 

86 likely to be affected when dealing with real-world data that is different from the data used for algorithm 

87 training [10, 11]. Moreover, prospective studies, with pre-established protocols, allow them to be more 

88 robust and generalisable, and exhibit the true impact on system usability in real-world settings.

89 Therefore, we conducted a systematic review and meta-analysis of studies with prospective data 

90 collection in assessing the diagnostic accuracy of AI compared with trained HGs in screening for RDR 

91 in real-world settings. The findings of this review may offer evidence-based recommendations for 

92 integrating AI solutions to screen for RDR, especially in resource-challenged environments.

93

94 Methods

95 Reporting, protocol, and registration

96 We drafted this review in accordance with the Preferred Reporting Items for Systematic Review and 

97 Meta-analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) guidelines [12]. The study 

98 protocol was registered with the International Prospective Register of Systematic Reviews 

99 (PROSPERO) under CRD42023392297. An ethics waiver was granted by the University of Cape Town 

100 Human Research Ethics Committee.
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101 Databases and search strategies

102 We searched the following electronic databases: Cochrane Central Register of Controlled Trials 

103 (CENTRAL), Medical Literature Analysis and Retrieval System Online (MEDLINE) via PubMed, 

104 Cumulative Index to Nursing and Allied Health Literature (CINAHL), Scopus, and Web of Science (S1 

105 Table). We also hand-searched the reference lists of relevant primary studies, systematic reviews, and 

106 the following journals: British Journal of Ophthalmology, American Journal of Ophthalmology, 

107 Ophthalmology and Retina, JAMA Ophthalmology, and Investigative Ophthalmology and Visual 

108 Science.

109

110 Eligibility criteria

111 Type of studies 

112 We included randomised control trials (RCT) and observational analytical studies evaluating the DTA 

113 of AI in DR screening. We excluded studies based on retrospective validation of existing images (i.e., 

114 medical records, available data sets). We excluded review articles, editorials, case series, case reports, 

115 and qualitative studies.

116 Type of participants

117 We included participants with clinically diagnosed type 1 or type 2 diabetes with unknown DR status, 

118 regardless of age, sex, race/ethnicity, and geographical location. We excluded studies that enrolled 

119 participants with unconfirmed diabetes to avoid misclassifying participants, which may result in biased 

120 estimates of the association between diabetes and diabetic retinopathy.

121 Setting

122 We only included studies conducted in real-world settings, thus excluding those done for theoretical 

123 algorithm training and validation alone. 
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124 Index test

125 We included interventions using AI for prospective screening of fundus images that could detect RDR 

126 or its equivalent. 

127 Reference standard

128 The reference standard was manual grading for DR by trained HGs who analysed the same fundus 

129 images read by the AI. We excluded reference standards that did not use the same DR classification 

130 criteria used by the AI during its software training to grade DR. 

131 Target condition

132 We included studies that screened for RDR as defined by the authors of the primary studies. We 

133 included studies with RDR equivalence, i.e. more than mild DR, clinically significant DR, etc. We did 

134 not include patients or eyes with no RDR, and ungradable or inconclusive fundus images in the pooling 

135 of diagnostic accuracy outcomes. Including ungradable or inconclusive images may result in inaccuracy 

136 in assessing the AI system’s performance, making it challenging to draw meaningful conclusions. 

137 Outcomes

138 We included studies reporting on, or containing the data necessary to extract information on the 

139 proportions of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). 

140 Efforts were made to contact corresponding authors to retrieve data which were unclear or unavailable 

141 in the paper or supplementary materials. 

142 Report characteristics

143 We had no restrictions on the publication year and language. Study protocols were excluded.

144

145

146

147
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148 Study selection

149 We used Rayyan software to manage the retrieved studies. Review authors (HU, CF) independently 

150 screened the titles and abstracts and classified them as (a) included, (b) maybe, and (c) excluded. Full-

151 text articles of those ‘included’ and ‘maybe’ were obtained and independently assessed by the same 

152 authors against the eligibility criteria. Studies were then classified as (a) included, (b) excluded, and (c) 

153 awaiting authors’ responses. Any disagreements were resolved between the two reviewers or by 

154 consulting a third review author (AH). We emailed the corresponding authors of studies included as 

155 ‘awaiting authors’ responses’ at least three times with intervals of at least two weeks. If there were no 

156 responses from the authors, studies were classified under ‘no author’s response’.

157 Data extraction and management

158 We developed a data extraction form and divided it into two parts: (a) Study characteristics (relating to 

159 study designs, AI, and reference standards) and (b) Study outcomes: TP, FP, FN, TN. Two review 

160 authors extracted the study characteristics and study outcomes.

161 Risk of bias and acceptability

162 The risk of bias and applicability on the (a) patient selection, (b) index test, (c) reference standard, and 

163 (d) flow and timing of the included studies were independently assessed by two review authors (HU, 

164 CF) using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 tool [13]. We tailored, 

165 piloted, and refined our QUADAS-2 tool based on our review. Any disagreements were resolved 

166 between the two authors or by consulting a third review author (ME).

167 Data synthesis and analysis

168 Quantitative data analysis and synthesis

169 We calculated each included study’s sensitivity and specificity. We initially planned to analyse data 

170 only at the patient level; however, some studies reported only diagnostic accuracy on eye level (or image 

171 level), and some patient-level data cannot be extracted. Therefore, we considered looking into both of 

172 these levels for analysis. Heterogeneity was explored using visual inspection of forest plots and 
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173 hierarchical summary receiver operating characteristics (HSROC) plots. All analyses performed and 

174 plots generated were done using Review Manager (RevMan) 5.4 and SAS® Studio.

175 Subgroup analysis

176 We performed subgroup analyses on the following covariates identified a priori: level of economic 

177 development (World Bank country classification), level of the healthcare setting, and DR classification 

178 criteria. We did not include the modes of AI as previously planned since all AI modes of the included 

179 studies were automated.

180 Sensitivity analysis

181 We initially planned to explore the effect of excluding studies with a high risk of bias. However, after 

182 excluding studies with a high risk of bias, all studies were left with an unclear risk. Nevertheless, we 

183 performed sensitivity analyses to investigate the exclusion of studies that did not include DME in the 

184 RDR definition; although we have stated that the definition of RDR will be according to how the authors 

185 of the primary studies defined it, many references still included DME as part of RDR definition, and 

186 the International Council of Ophthalmology (ICO) guidelines states that patients with DME should be 

187 referred. We also investigated the exclusion of studies with ≤2 HGs as the ground truth for reference 

188 standard because this might incur bias if intergrader disagreements arise without having a third HG to 

189 arbitrate. According to Cardoso et al., ground truth means “data and/or method related to more 

190 consensus or reliable values/aspects that can be used as references” [14]. In our review, it refers to the 

191 final grading or assessment of fundus images by all HGs, which serves as the reference standard or the 

192 most reliable evaluation of the presence and severity of DR.

193

194 Results

195 Results of the Search

196 We were able to identify a total of 3899 articles through searching of various databases. After 

197 deduplication, 2742 studies were screened by title/abstract, of which 2654 were excluded. The 

198 remaining 88 studies were screened for full-text assessment against the review’s eligibility criteria. Of 
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199 these, 70 studies were excluded, three were classified under ‘no author’s response’, and finally, 15 were 

200 included for the quantitative synthesis (Fig 1).

201 Fig 1. PRISMA flow diagram of the study search and selection.

202

203 Included studies

204 Please see Tables 1a and 1b for the characteristics of included studies.  Fifteen studies comprising 17 

205 datasets were deemed eligible for this review, of which ten measured diagnostic accuracies at the patient 

206 level (45 785 patients) and seven at the eye level (15 390 eyes). We deemed all studies to be cross-

207 sectional with prospective data collection; however, in our table of included studies, we presented the 

208 study designs according to how they were reported. Seven studies were done in China, five in India, 

209 and three in Australia. Seven studies were done at tertiary-level healthcare settings, six were done at 

210 the primary level, while the remaining two were done at both levels; no studies were done at the 

211 secondary level. For the target condition (RDR), six studies defined it as moderate NPDR or worse 

212 and/or DME, and nine did not include DME as part of the definition. Thirteen studies used ICDR or its 

213 equivalence as DR classification criteria, and two used the NHS DES criteria. For the reference 

214 standard, 12 studies have ≥3 HGs as the ground truth, and three studies have at most two HGs. Four 

215 studies developed their own AI models, and 11 used commercially available models. All studies used 

216 Inception with varying versions as their architecture. All AI software in the studies were fine-tuned with 

217 training data sets containing 25 297 to 207 228 fundus images. All studies used nonmydriatic cameras 

218 to capture fundus images, of which three still performed mydriasis on their patients using tropicamide 

219 eye drops, and one did mydriasis on a conditional protocol. Eight studies captured only one fundus field 

220 per eye (mostly macula-centred), and seven studies captured more than one fundus field. All studies 

221 used a fundus camera with a narrow field of vision (45⁰-50⁰).
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Table 1a. Key characteristics of the study design, population, target condition, and reference standard of included studies.
Study Settings Patient Characteristics Target Condition Reference Standard/ Ground Truth (№)

Study
Study Design a Country

(WBC) Setting (№) Healthcare 
Setting

Age, mean 
(SD), years

Type of 
Diabetes

Sample Size b
(Patients/Eyes)

Definition of RDR/ 
Equivalence 

Criteria 
Used

If without 
disagreement If with disagreement

Dong 2022 
[15]

Cross-sectional China
(U-MIC)

Community healthcare 
centres (3)

Primary 52.09 
(±11.51)

T1D, 
T2D

Eyes: 848 Moderate NPDR or 
worse (DME not 
included)

ICDR Gradings made by the 
ophthalmologists (2)  

Gradings made by a 
senior retinal specialist 
(1) 

Gulshan 
2019 [16]

Prospective 
observational 

India
(L-MIC)

Eye care centre (Aravind 
Eye Hospital only) 

Tertiary 56.60 
(±9.00)

T1D, 
T2D

Eyes: 1905 c Moderate NPDR or 
worse (DME not 
included)

ICDR Gradings made by 
retinal specialists (3)

any disagreements 
discussed until a full 
consensus was achieved

Hao 2022 
[17]

Prospective clinical 
trial

China
(U-MIC)

Local community hospital Primary 63.03 
(±8.72)

T1D, 
T2D

Eyes: 6854 Moderate NPDR or 
worse (DME not 
included)

ICDR Gradings made by the 
ophthalmologists (2) 

Gradings made by a 
senior ophthalmologist 
(1) 

He 2020 [18] Cross-sectional d China
(U-MIC)

Community hospital clinic Primary 68.46 
(±7.20)

T1D, 
T2D

Patients: 889 Moderate NPDR or 
worse and/or DME

ICDR Gradings made by the 
retina specialists (2) 

Gradings made by a third 
retinal specialist (1)

Jain 2021 
[19]

Cross-sectional India
(L-MIC)

Municipal dispensaries (47) Primary 54.90 
(±10.43)

T1D, 
T2D

Patients: 1370
Eyes: 2626

Moderate NPDR or 
worse (DME not 
included)

ICDR Gradings made by the 
retina specialists (2) 

Gradings made by a third 
retinal specialist (1)

Kanagas-
ingam 2018 
[20]

Cross-sectional d Australia
(HIC)

Primary care clinic Primary 55.00 
(±17.00)

T1D, 
T2D

Patients: 193 Moderate NPDR or 
worse (DME not 
included)

ICDR Grading made by an ophthalmologist (1) alone

Keel 2018 
[21]

Prospective 
observational 

Australia
(HIC)

Urban endocrinology 
outpatient clinics (2)

Tertiary 44.26 
(±16.56)

T1D, 
T2D

Patients: 93 Moderate NPDR or 
worse and/or DME

NHS 
DES

Grading made by the centralised retinal grading 
centre

Li 2021 [22] Prospective 
observational 

China
(U-MIC)

General hospital Tertiary 50.00 
(±12.00)

T1D, 
T2D

Eyes: 1674 c Moderate NPDR or 
worse (DME not 
included)

ICDR Grading made by a retina specialist (1) alone

Natarajan 
2019 [23]

Prospective, 
cross-sectional

India
(L-MIC)

Municipal dispensaries Primary 53.10 
(±10.30)

T1D, 
T2D

Patients: 214
Eyes: 394

Moderate NPDR 
and worse, with or 
without DME

ICDR Grading made by the 
ophthalmology 
resident (1) and retina 
specialist (1)

Gradings made by the 
same retina specialist 

Rajalakshmi 
2018 [24]

Cross-sectional d India
(L-MIC)

Diabetes centre Tertiary NR T2D Patients: 296 Moderate NPDR or 
worse and/or DME

ICDR Gradings made by the 
retina specialists (2) 

Gradings made by a third 
retinal specialist (1) 

Scheetz 
2021 [25]

Prospective 
observational 

Australia
(HIC)

Endocrinology outpatient 
clinics (2) and Aboriginal 
medical services clinics (3)

Primary and 
Tertiary

54.25
(±20.16) e 

T1D, 
T2D

Patients: 203 Moderate NPDR or 
worse and/or DME

NHS 
DES

Gradings made by 
NHS-certified graders 
(2) 

Gradings made by retinal 
specialists (2) 

Sosale 2020 
[26]

Prospective, 
cross-sectional 

India
(L-MIC)

Diabetes centre Tertiary NR T1D, 
T2D

Patients: 900 Moderate NPDR or 
worse and/or DME

ICDR The majority diagnosis of the retina specialists (5) 

Yang 2022 
[27]

Observational, 
prospective, 
multicentre, gold 
standard-controlled

China
(U-MIC)

Hospital and ophthalmic 
centres (3)

Tertiary 60.44
(±10.19) e

T1D, 
T2D

Patients: 962 Stage II or worse 
DR (DME not 
included)

COS f Gradings made by 
ZIRC graders (2)  

Gradings made by a third 
senior ZIRC grader (1) 

Zhang 2020 
[28]

Prospective 
observational 

China
(U-MIC)

Diabetes centres (155) Primary and 
Tertiary

54.29 
(±11.60)

T1D, 
T2D

Patients: 40 665 Moderate NPDR or 
worse (DME not 
included)

ICDR Gradings made by the 
ophthalmologists (2) 

Gradings made by a 
senior ophthalmologist 
(1)

Zhang 2022 
[29]

Prospective, 
multicentre, self-
controlled clinical 
trial

China
(U-MIC)

Hospitals (3) Tertiary 56.52 
(±11.13)

T1D, 
T2D

Eyes: 1089 Moderate NPD or 
worse (DME not 
included)

ICDR Gradings made by the 
ophthalmologists (3) 

Gradings made by the 
principal investigator 
ophthalmologist (1) 

a Study design according to study authors; b Sample included in the diagnostic accuracy analysis excluding ungradable images; c Samples were reported in image level, but the study captured one image per eye, so considered as eye-level;     
d Study design not reported, thus deemed by review authors as cross-sectional based on the journals; e Mean was estimated from median using recommendations by Hong Kong Baptist University, Department of Mathematics [30]; 
f Criteria was matched to the equivalent definition of RDR based on the ICDR classification. 
COS, Chinese Ophthalmic Society; CSME, clinically significant macular edema; DME, diabetic macular edema; DR, diabetic retinopathy; ETDRS, Early Treatment Diabetic Retinopathy Study; HIC, high-income country; ICDR, 
International Clinical Diabetic Retinopathy; L-MIC, lower middle-income country; NHS DES, National Health Service Diabetic Eye Screening; NPDR, nonproliferative diabetic retinopathy; NR, not reported; RDR, referable diabetic 
retinopathy; SD, standard deviation; T1D, Type 1 diabetes; T2D, Type 2 diabetes; U-MIC, upper middle-income country; WBC, World Bank classification; ZIRC, Zhongshan Image Reading Centre.
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Table 1b. Key characteristics of the index tests of included studies.
Artificial Intelligence Development Fundus Camera Used

Study
AI Model Architecture Neural 

Network
Pre-

trained
Fine-
tuned

Training Dataset 
(№ of fundus images)

Mydriatic or Nonmydriatic 
Camera № of Fundus Fields Field of 

Vision
Dong 2022 
[15]

CARE, Shanghai EagleVision Medical 
Technology Co., Ltd (Airdoc)

Inception-
ResNet-v2

CNN Yes Yes Clinical settings datasets 
(207 228)

Nonmydriatic 1 field (macula-centred) 50⁰

Gulshan 2019 
[16]

Own AI model Inception-v3 CNN Yes Yes EyePACS and hospital datasets 
(128 175)

Nonmydriatic 1 field (macula-centred) 45⁰ 

Hao 2022 [17] EyeWisdom (Visionary Intelligence 
Ltd., Beijing, China)

Inception-v3 CNN Yes Yes EyePACS and hospital datasets 
(25 297)

Nonmydriatic 2 fields (macula- and optic disc-
centred)

45⁰ 

He 2020 [18] Airdoc, Beijing, China Inception-v4 CNN Yes Yes Unspecified dataset
(number of fundus images NR)

Nonmydriatic 2 fields (macula- and optic disc-
centred)

45⁰

Jain 2021 [19] Medios AI (Remidio) Inception-v3 and 
MobileNet

CNN Yes Yes EyePACS, hospital and 
screening camps datasets 
(52 894)

Nonmydriatic, but patients 
underwent mydriasis (1% 
tropicamide)

3 fields (posterior pole including 
macula & disc, nasal, and 
temporal)

45⁰

Kanagas-
ingam 2018 
[20]

Own AI model Inception-v3 
(customised)

CNN Yes Yes DiaRetDB1, EyePACS, and 
Tele-eye care DR database 
(30 000)

Nonmydriatic 1 field (macula-centred) 45⁰

Keel 2018 
[21]

Own AI model Inception-v3 CNN NR Yes LabelMe dataset (58 790) Nonmydriatic 1 field (central nasal) 45⁰

Li 2021 [22] VoxelCloud, China Inception-
ResNet-v2

CNN Yes Yes EyePACS and hospital datasets 
(141 184)

Nonmydriatic 1 field (macula-centred) 45⁰

Natarajan 
2019 [23]

Medios AI (Remidio) Inception-v3 and 
MobileNet

CNN Yes Yes EyePACS, hospital and 
screening camps datasets 
(52 894)

Nonmydriatic, but patients 
underwent mydriasis (1% 
tropicamide)

3 fields (posterior pole including 
macula & disc, nasal, and 
temporal)

45⁰

Rajalakshmi 
2018 [24]

EyeArt v2.1 NR DNN Yes Yes EyePACS (number of fundus 
images NR)

Nonmydriatic, but patients 
underwent mydriasis 
(tropicamide)

4 fields (macula-centred, optic 
disc-centred, superior-temporal, 
and inferior-temporal quadrants 
of the retina)

45⁰

Scheetz 2021 
[25]

Own AI model Inception-v3 CNN NR Yes LabelMe dataset (71 043) Nonmydriatic 1 field (macula-centred) 45⁰

Sosale 2020 
[26]

Medios AI (Remidio) Inception-v3 and 
MobileNet 

CNN Yes Yes EyePACS, hospital and 
screening camps datasets
(52 894)

Nonmydriatic 2 fields (macula- and optic disc-
centred)

45⁰

Yang 2022 
[27]

AIDRScreening v1.0 (Shenzhen 
SiBright CO. Ltd., China)

NR CNN NR Yes Eye institute, endocrinology 
department, and eye 
examination centre datasets 
(73 849)

Both; if pupil diameter was >4 
mm, fundus photography was 
performed without mydriasis; 
otherwise, mydriasis was 
required

2 fields (macula- and optic disc-
centred)

45⁰

Zhang 2020 
[28]

VoxelCloud Retina, China Inception-
ResNet-v2

CNN Yes Yes EyePACS and hospital datasets 
(144 810)

Nonmydriatic 1 field (macula-centred) 45⁰

Zhang 2022 
[29]

EyeWisdom v1 (Visionary Intelligence 
Ltd., Beijing, China)

Inception-v3 and 
ResNet-34

CNN Yes Yes Hospital and ILSVRC subset 
of ImageNet datasets (40 693)

Nonmydriatic 1 field (posterior pole containing 
macula and optic disc)

45⁰

CARE, Comprehensive AI Retinal Expert; CNN, convolutional neural network; DNN, deep neural network; ILSVRC, ImageNet Large Scale Visual Recognition Challenge; NR, not reported
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223 Excluded studies

224 From the 88 full-text articles assessed for eligibility, we excluded 70 studies and classified three 

225 studies under ‘no author’s response’.

226 Methodological quality of included studies 

227 A summary of methodological quality assessment is presented in Figs 2 and 3.  

228 Fig 2. Risk of bias and applicability concerns summary: Review authors' judgments about each 

229 domain for each included study using the QUADAS-2 tool.

230 Fig 3. Risk of bias and applicability concerns graph: Review authors' judgments about each 

231 domain presented as percentages across included studies using the QUADAS-2 tool.

232

233 Patient selection

234 In the patient selection domain, 12 of the 15 studies were deemed to have an unclear risk of bias in the 

235 sampling method. Most of the studies did not specify how patients were enrolled except for three studies 

236 (1 consecutive, 1 random, and 1 convenience sampling method). Two studies were not able to avoid 

237 inappropriate exclusions since one study excluded patients with macular edema, and the other study 

238 excluded those who were treated with ocular injections for DME or proliferative disease; of which these 

239 conditions are part of the definition of RDR, deeming these studies with a high risk of bias and high 

240 concern on applicability. For applicability on patient selection, 13 out of 15 studies have a low concern 

241 on applicability.

242

243 Index test

244 In the domain of index tests, we added two signalling questions deemed necessary for index tests using 

245 AI, one of which is the quality of images fed into the AI system. This is vital since images with 

246 insufficient quality (i.e., overexposed, out-of-focus, etc.) may be deemed ungradable or be 

247 misclassified. Another signalling question added was on the conflict of interest. With the advent of AI 
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248 in healthcare, several AI software packages are currently being developed; thus, if study authors were 

249 affiliated with or funded by the software company in any way, studies may incur a high risk of bias.

250 In this domain, the main quality issue was the signalling question of whether a diagnostic threshold was 

251 prespecified or not. Only three studies reported on prespecified thresholds, with the remaining 12 

252 studies thus considered to have an unclear risk of bias. Six studies have conflicts of interest, thus 

253 deeming them high risk. All studies have low applicability concerns for the index test.    

254   

255 Reference standard

256 In the reference standard domain, three out of 15 studies were evaluated as having a high risk of bias 

257 because there were only two HGs to grade the fundus images. This may incur bias since grading images 

258 can be very subjective, and there is no one to arbitrate when a disagreement arises. Five studies have an 

259 unclear risk of bias because they did not explicitly state whether the HGs were blinded to the results of 

260 the AI grading results. All studies have low applicability concerns.

261

262 Flow and timing

263 In the domain of flow and timing, one study was considered to be of a high risk of bias because it was 

264 not able to explain the discrepancies in patients enrolled and analysed clearly. This domain is not 

265 assessed regarding applicability concerns, as stated in the QUADAS-2 tool.

266

267 Findings

268 We evaluated the accuracy of AI in screening for RDR in real-world settings according to patient-level 

269 and eye-level analysis compared with HGs. The patient-level analysis was considered the main meta-

270 analysis since it is the number of patients with RDR who will be referred to ophthalmologists for further 

271 assessment. Out of the 15 studies reviewed, eight presented diagnostic accuracy based solely on patient-
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272 level information, five showed diagnostic accuracy based solely on eye-level information, and two 

273 showed diagnostic accuracy based on both patient-level and eye-level information. 

274 The HSROC model by Rutter and Gatsonis was used for the meta-analysis as this model accounts for 

275 the variations in the test thresholds among the AI models [31]. We performed subgroup analysis and 

276 investigated for heterogeneity using the World Bank country classification, level of the healthcare 

277 setting, and DR classification criteria. 

278 We performed sensitivity analyses to explore the effect of excluding (1) studies that did not include 

279 DME in the RDR definition and (2) studies with a total number of ≤2 HGs as the ground truth. Table 

280 2 shows the detailed overall patient-level and eye-level meta-analysis.

281

Table 2. Overall patient-level and eye-level meta-analysis of the accuracy of AI in detecting 
RDR compared with trained HGs.
Overall 
Meta-analysis

№ of 
Studies

№ of 
Samples Sensitivity (95% CI) Specificity (95% CI)

Patient-level 10 45 785 patients 95.33% (90.60-100) 92.01% (87.61-96.42)
Eye-level 7 15 390 eyes 91.24% (79.15-100) 93.90% (90.63-97.16)
Data calculated using SAS® Studio.
CI, Confidence Interval; HG, human grader.

282

283 Patient-level analysis

284 Ten evaluations of AI for RDR screening were performed with data from ten studies and a total of 45 

285 785 patients. The forest plot (Fig 4) shows minimal variation in the accuracy estimates. The HSROC 

286 plot (Fig 5) reveals good test accuracy since most study points lie in the upper left corner of the plot. 

287 Meta-analytical sensitivity and specificity of data at mixed thresholds were 95.33% (95% CI 90.60-

288 100) and 92.01% (95% CI 87.61-96.42), respectively.

289

290 Fig 4. Coupled forest plot of included studies for patient-level analysis.

291 Fig 5. HSROC plot of sensitivity vs specificity of AI for detecting RDR on patient-level analysis. 

292
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293 Eye-level analysis

294 A total of seven evaluations of AI for RDR screening were performed with data from seven studies and 

295 a total of 15 390 eyes. We only included the Aravind data from the Gulshan 2019 study because data 

296 from Sankara differed from our eligibility criteria. 

297 The forest plot (Fig 6) shows moderate variation in the estimates of sensitivity and minimal variation 

298 in specificity. The HSROC plot (Fig 7) reveals good test accuracy since most study points lie in the 

299 upper left corner of the plot. Meta-analytical sensitivity and specificity of data at mixed thresholds were 

300 91.24% (95% CI 79.15-100) and 93.90% (95% CI 90.63-97.16), respectively.

301

302 Fig 6. Coupled forest plot of included studies for eye-level analysis.

303 Fig 7. HSROC plot of sensitivity vs specificity of AI for detecting RDR on eye-level analysis. 

304

305 Exploring heterogeneity 

306 We performed subgroup analyses to explore potential sources of heterogeneity only on the main 

307 analysis (patient level), consisting of ten studies, since the data for the subgroups were more complete. 

308 A detailed result of subgroup analyses investigating potential sources of study-level heterogeneity is 

309 shown in Table 3.

310

311

312

313

314

315

316
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Table 3. Subgroup analyses for the accuracy of AI in detecting RDR compared with trained 
HGs on patient-level analysis.

Analysis № of 
Studies

№ of 
Participants

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Overall Meta-analysis

Patient-level 10 45 785 95.33% (90.60-100) 92.01% (87.61-96.42)
Subgroup Analyses

LMIC 7 45 296 95.38% (90.38-100) 92.21% (87.19-97.23)World Bank 
Country
Classification HIC 3 489 95.61% (89.44-100) 90.82% (87.76-93.87)

Primary 4 2666 99.35% (96.85-100) 93.72% (88.83-98.61)Level of Health- 
care Setting a Tertiary 4 2251 94.71% (89.00-100) 90.88% (83.22-98.53)

ICDR 8 45 489 95.44% (90.70-100) 92.21% (87.80-96.62)DR Classification 
Criteria NHS DES 2 296 95.49% (89.19-100) 89.85% (84.93-94.77)
a No studies reported on secondary healthcare settings, thus not included in this table.
Data calculated using SAS® Studio.
CI, Confidence Interval; HG, human grader; HIC, high-income country; ICDR, International Clinical 
Diabetic Retinopathy; LMIC, lower- and middle-income country; NHS DES, National Health Service 
Diabetic Eye Screening; RDR, referable diabetic retinopathy.

317

318 Level of economic development 

319 We classified the level of economic development of the countries included in our study using 

320 classification by the World Bank Group [32]. Of the ten studies included, three were conducted in HICs, 

321 and seven were conducted in LMICs. Australia was classified as a high-income country (HIC), and 

322 China and India, as lower- and middle-income country (LMIC). The sensitivity and specificity of AI in 

323 the real-world screening for RDR in LMICs were 95.38% and 92.21%, respectively, and in HIC, they 

324 were 95.61% and 90.82%, respectively (Fig 8).

325

326 Fig 8. Coupled forest plots showing the subgroups in the level of economic development 

327 according to the World Bank country classification. 

328 HIC, high-income country; LMIC, lower- and middle-income country

329

330
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331 Level of healthcare setting

332 Four studies were done solely in tertiary-level healthcare settings, four in primary-level healthcare 

333 settings, and two at both levels (which were not included in this analysis). The sensitivity and specificity 

334 of AI in the real-world screening for RDR in primary-level healthcare settings were slightly higher than 

335 in tertiary-level (99.35% vs 94.71%, and 93.72% vs 90.88%, respectively) (Fig 9).

336

337 Fig 9. Coupled forest plots showing the subgroups in the level of healthcare settings. 

338

339 DR classification criteria 

340 Eight studies used ICDR or its equivalence as DR classification criteria, and only two used the NHS 

341 DES criteria. It is important to note that doing a subgroup in this covariate does not intend to compare 

342 the two criteria but rather to see the robustness of AI in screening for RDR, even using different criteria. 

343 The sensitivity and specificity of AI in the real-world screening for RDR using ICDR were 95.45% and 

344 92.21%, respectively, and using NHS DES, they were 95.49% and 89.85%, respectively, which did not 

345 show any significant variation (Fig 10).  

346

347 Fig 10. Coupled forest plots showing the subgroups in the DR classification criteria. 

348 ICDR, International Clinical Diabetic Retinopathy; NHS DES, National Health Service Diabetic Eye 

349 Screening.

350

351 Sensitivity analysis

352 We performed sensitivity analyses on two conditions stated below. A detailed result of sensitivity 

353 analyses is shown in Table 4. 

354

355
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356

Table 4. Sensitivity analyses for the accuracy of AI in detecting RDR compared with trained HGs 
on patient-level analysis.

Analysis № of 
Studies

№ of 
Participants

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Overall Meta-analysis

Patient-level 10 45 785 95.33% (90.60-100) 92.01% (87.61-96.42)
Sensitivity Analyses
Only studies with DME included in 
the RDR definition 6 2595 95.51% (92.58-98.44) 91.35% (84.92-97.78)

Only studies with a total of ≥3 HGs 8 45 378 94.69% (90.11-99.28) 92.37% (87.93-96.81)
Data calculated using SAS® Studio.
CI, confidence interval; DME, diabetic macular edema; HG, human grader; RDR, referable diabetic retinopathy.

357

358 Inclusion of DME on the RDR definition 

359 After excluding four studies that did not include DME as part of the RDR definition, pooled sensitivity 

360 and specificity did not show any significant variation compared to the overall main meta-analysis 

361 (95.51% vs 95.33% and 91.35% vs 92.01%, respectively) (Fig 11).

362

363 Fig 11. Coupled forest plot of studies that include DME on the RDR definition.

364 DME, diabetic macular edema; RDR, referable diabetic retinopathy.

365

366 Total number of human graders 

367 After excluding two studies that have a total of ≤2 HGs as the ground truth, pooled sensitivity and 

368 specificity also did not show any significant variation compared to the overall main meta-analysis 

369 (94.69% vs 95.33% and 92.37% vs 92.01%, respectively) (Fig 12).

370

371 Fig 12. Coupled forest plot of studies with ≥3 human graders as the ground truth on reference 

372 standard.

373
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374 Investigation of publication bias

375 We did not investigate publication bias since, according to Salameh, et al. [12], the statistical 

376 investigation of publication and reporting bias is not routinely recommended in systematic reviews 

377 involving DTA.

378

379 Discussion

380 Summary of main findings

381 Artificial intelligence screening incorporating a range of software applications has been evaluated for 

382 detecting referable DR in real-world settings. Studies in this review came from various economic 

383 settings and level of health care, all using recognised DR classification criteria. This review provides 

384 evidence, for the first time from prospective studies, for the effectiveness of AI in screening for RDR, 

385 in real-world settings.

386 This review aimed to assess the accuracy of AI solutions in detecting RDR in different resource settings. 

387 We found no variation in the diagnostic accuracy of AI, whether deployed in the LMICs or HICs, 

388 meaning AI in screening for RDR can be used universally. Regarding different DR classifications used, 

389 we found no variation between ICDR and NHS DES because both the AI models and HGs used the 

390 same criteria when grading RDR. Thus, stakeholders need to note that when integrating an AI model 

391 into a DR screening programme, the DR criteria used to train the AI model should be the same as the 

392 DR criteria used by the trained HGs in that setting or country to prevent misclassifications. 

393 However, on the level of the healthcare setting, studies done in the primary-level healthcare settings 

394 have higher diagnostic accuracy compared to those done in tertiary-level healthcare settings. One of the 

395 reasons may be having more patients with advanced disease or other comorbidities in tertiary care 

396 settings where screening for RDR can be more challenging. 

397 We applied the summary estimates to a hypothetical cohort of 1000 patients to our main analysis using 

398 the Grading of Recommendations, Assessment, Development and Evaluation (GRADE)pro guideline 

399 development tool [33] (Table 5). Our findings suggest that if AI is used for the detection of RDR in 
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400 real-world settings, 95% of patients with RDR will be correctly screened positive for the condition, and 

401 92% of patients with no RDR will be correctly screened negative for the condition.  We were interested 

402 in knowing the number of patients who will be correctly and unnecessarily referred to tertiary healthcare 

403 for a further eye examination. For our prevalence rate, we used a prevalence estimate of 6.5%, which is 

404 from a recent multi-ethnic study involving datasets from Singapore, the USA, China and Australia [34] 

405 and a prevalence estimate of 2%, which is the national prevalence estimate of RDR in India [35]. Using 

406 an RDR prevalence of 6.5%, AI will correctly detect RDR in 62 patients living with diabetes, miss 

407 detecting three RDR cases while unnecessarily refer 75 patients living with diabetes without RDR, for 

408 further examination.  

409

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.06.20.23291687doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.20.23291687
http://creativecommons.org/licenses/by/4.0/


21

410
Table 5. Summary of findings of the review evaluated using the GRADEpro GDT.
Review question: What is the diagnostic test accuracy of AI in screening for RDR compared with 
trained HGs among patients with diabetes in real-world settings?
Population: People living with clinically diagnosed type 1 and type 2 diabetes
Setting: Real-world settings
Index test: Artificial intelligence
Reference standard: Trained HGs
Study design: Cross-sectional studies with prospective data collection
Total № of studies: 15 studies; Patient-level (Main) analysis: 10 studies (45 785 patients);
                                                    Eye-level analysis: 7 studies (15 390 eyes)

№ of results per 1000 Samples 
Tested (95% CI)Effect

(95% CI) Test Result Prevalence 
2% a

Prevalence 
6.5% b

№ of Samples 
(Studies)

Certainty of the 
Evidence 
(GRADE)

Patient-level analysis
True Positive 19 (18-20) 62 (59-65)Pooled sensitivity 

95% (91-100%) False Negative 1 (0-2) 3 (0-6)
10 985 patients 
(10 studies)

⊕⊕⊕◯

MODERATE c

True Negative 902 (859-945) 860 (819-902)Pooled specificity
92% (88-96%) False Positive 78 (35-121) 75 (33-116)

34 890 patients 
(10 studies)

⊕⊕⊕◯

MODERATE c

Eye-level analysis
True Positive 18 (16-20) 59 (51-65)Pooled sensitivity 

91% (79-100%) False Negative 2 (0-4) 6 (0-14)
2913 eyes 
(7 studies)

⊕◯◯◯

VERY LOW d, e, f

True Negative 920 (888-952) 878 (847-908)Pooled specificity
94% (91-97%) False Positive 60 (28-92) 57 (27-88)

12 477 eyes
(7 studies)

⊕⊕⊕◯

MODERATE d

Prevalence data calculated using GRADEpro GDT.
a National prevalence estimate of RDR in India [35]
b Prevalence estimate of RDR in a multi-ethnic study involving datasets from Singapore, the USA, Hong Kong, China 
and Australia [34]
c Risk of bias (-1): QUADAS-2 tool was used to assess for the risk of bias in the 10 studies. In the domain of Patient 
Selection, the risk of bias was high in 1 study and was unclear in 8; In the domain of Index Test, it was high in 4 studies 
and unclear in 6; In the domain of Reference Standard, it was high in 2 studies and unclear in 4; and in the domain of 
Flow and Timing, it was high in 1 study.
d Risk of bias (-1): Risk of bias was assessed in the 7 studies of this level of analysis. In the domain of Patient Selection, 
the risk of bias was high in 2 studies and was unclear in 5; In the domain of Index Test, it was high in 2 studies and 
unclear in 4; In the domain of Reference Standard, it was high in 2 studies and unclear in 1; and in the domain of Flow 
and Timing, it was high in 1 study.
e Inconsistency(-1): Statistical heterogeneity based on the forest plot showed moderate variation in the sensitivity.
f Imprecision (-1): The CI of the pooled sensitivity is wide, indicating that there is an uncertainty in the estimate and 
that the true value could potentially be lower.
Grade Definition [33]
High: Further research is very unlikely to change our confidence in the estimate of effect; Moderate: Further research is 
likely to have an important impact on our confidence in the estimate of effect and may change the estimate; 
Low: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely 
to change the estimate; Very low: Any estimate of effect is very uncertain.

AI, artificial intelligence; CI, Confidence Interval; DME, diabetic macular edema; DR, diabetic retinopathy; GDT, 
guideline development tool; GRADE, Grading of Recommendations, Assessment, Development and Evaluation; HG, 
human grader; RDR, referable diabetic retinopathy

411    

412
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413 We also explored the effect of excluding studies that did not include DME in the RDR definition and 

414 found that the diagnostic accuracy of AI has no significant variation; this does not mean that inclusion 

415 or exclusion of DME is nonsignificant in screening for RDR, rather, this is because trained HGs adhered 

416 to the grading protocol of the study with regards to RDR definition. Furthermore, the effect of excluding 

417 studies with ≤2 trained HGs (ophthalmologists and trained and certified HGs from retina reading 

418 centres) did not affect the diagnostic accuracy of the data. This review, thus, highlights the importance 

419 of trained HGs acting as a reference standard for grading the fundus images.

420

421 Strengths and limitations of this review

422 Strengths

423 This is the first systematic review and meta-analysis assessing the diagnostic accuracy of AI in 

424 screening for RDR in real-world settings that included studies using prospective data collection. We 

425 did not restrict our literature search in terms of language and publication year to minimise the chance 

426 of missing studies. We were able to present the accuracy estimates in patient-level and eye-level 

427 analysis, rather than just combining these data to prevent unit-of-analysis issues and avoid bias in 

428 precision. We were able to tailor and pilot our QUADAS-2 tool to our study, adding more signalling 

429 questions to fit AI studies since QUADAS-AI by Sounderajah et al. [36] was not yet published during 

430 the time of our review. Data extraction and assessment of the risk of bias were performed by two review 

431 authors, thus, reducing the risk of bias. We avoided all case-control studies since studies involving a 

432 control group without RDR and patients with RDR may exaggerate the diagnosis accuracy [13]. We 

433 included studies using different DR criteria (rather than just restricting to certain criteria), where results 

434 showed no significant variation in the accuracy estimates.

435

436

437

438
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439 Limitations

440 Eligibility

441 Our definition of RDR in this review is according to how the authors of the primary studies defined 

442 them, with or without DME. In the clinical setting, cases of DME should be referred for further 

443 examination when detected. However, to accurately detect DME, optical coherence tomography (OCT), 

444 which gives detailed 3D images of the eye, is the gold standard; thus, this makes fundus images less 

445 advantageous as it only provides 2D images. Therefore, it is important that further studies be done for 

446 AI models to be trained and developed to read OCT together with fundus images for higher accuracy 

447 and better applicability.

448

449 Quality of included studies

450 All eligible studies had either an unclear risk or, a high risk of bias in at least one of the QUADAS-2 

451 domains. Amongst the included studies, 80% did not report as to how patients were enrolled in the 

452 study, making them unclear. Also, many of the studies did not clearly report a pre-specified threshold 

453 which may influence the diagnostic accuracy of the test if the authors select a positivity cut-off after 

454 obtaining the results. Thus, we support that DTA studies following the Standards for Reporting of 

455 Diagnostic Accuracy Studies (STARD) guidelines by Cohen et al. [37] or the proposed STARD-AI 

456 guidelines by Sounderajah et al. [38], when available, to avoid these uncertainties.

457 Regarding the QUADAS-2 domain on flow and timing, specifically as regards the signalling question 

458 relating to whether all enrolled patients were included in the analysis, we deemed a study as high risk 

459 if the discrepancies between the enrolled and analysed patients were not motivated, or were related to 

460 the severity of RDR (even though most studies have excluded ungradable images from the analysis). 

461 This was done since including ungradable images may lead to inaccuracy and not give meaningful 

462 results. Therefore, it is important that during the implementation of AI in DR screening programmes, 

463 the protocol for evaluating images as ungradable should be available, (e.g. considering mydriasis, if 

464 needed, assuring quality images when capturing photos, etc.), to avoid missed detections and 
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465 unnecessary referrals since during DR screening, patients with fundus images deemed ungradable by 

466 AI should also be referred to ophthalmologists for proper assessment.

467 Another limitation found is the representativity of the level of economic development by World Bank 

468 country classification. The subgroup for HIC is represented only by Australia, and the subgroup LMIC, 

469 only by China and India. Although there were DTA studies conducted in other countries (i.e. USA, 

470 Spain, Zambia, etc), they were, unfortunately, excluded against our eligibility criteria.

471

472 Applicability of findings to the review question

473 Concerns regarding the applicability of all included studies were deemed low, except for two studies 

474 that were not able to avoid inappropriate exclusions. We assessed the applicability of findings to our 

475 review question with low concerns since all studies included AI models that were able to detect RDR 

476 in real-world settings; included patients were all clinically diagnosed with type 1 and/or type 2 diabetes; 

477 the grading of the same images was all compared to the grading of the trained HGs.  

478

479 Conclusion

480 Our review provides evidence that AI could effectively screen for RDR even in real-world settings. 

481 Whether in the HICs or LMICs, the detection of RDR using AI in real-world settings is highly sensitive 

482 and specific. It has higher accuracy when deployed at the primary-level than in tertiary-level healthcare 

483 settings.  

484

485 Implications for practice

486 Although AI in screening for DR has been showing promising results, it is important to consider where 

487 to deploy them. Patient-wise, it will be able to screen more patients living with diabetes, leading to early 

488 diagnosis and treatment. It can also increase disease awareness, promoting a healthy lifestyle and 

489 diabetes control to these patients. However, healthcare-wise, AI might be unnecessarily referring a 
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490 handful of patients without RDR to tertiary healthcare centres. In HICs, where manpower is usually not 

491 an issue, this might not be a problem; however, in LMICs, where it is a challenge, referring false positive 

492 cases to the already few and straining eye health workers can overburden them. Thus, we recommend 

493 a clinical pathway in these low-resource settings, where trained or certified lay graders in primary 

494 healthcare can countercheck all the fundus images of patients who screened positive for RDR before 

495 officially referring them, rather than just leaving the referral decisions to the AI system.      

496

497 Implications for research

498 In recent years, researchers and clinicians have been advocating the use of real-world performance of 

499 AI for healthcare to evaluate further their real impact on image quality and system usability rather than 

500 just validating them using retrospective high-quality databases [24]. Our review was able to pool the 

501 diagnostic accuracy of AI in screening RDR of studies using prospective data collection; therefore, can 

502 provide recommendations to evidence-based guidelines to integrate AI in DR screening programmes in 

503 real-world settings. We recommend further studies on integrating OCT aside from using fundus imaging 

504 in AI algorithms so screening for DME will be more accurate.    
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