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Abstract 

Objective: To create and validate an ensemble of machine learning algorithms to 

accurately predict ICU admission or mortality upon initial presentation to the emergency 

department. 

Methods: This is a retrospective cohort study of a multicenter hospital system in the 

United States. The electronic health record was queried from March 2020 to December 

2021 for patients who presented to the emergency department who were subsequently 

COVID-positive. Associated patient demographics, vitals, and laboratory vitals were 

obtained. High-risk individuals were defined as those who required ICU admission or 

died; low-risk individuals did not meet those criteria. The dataset was split into a 3:1 

training to testing dataset. A machine learning ensemble stack was built to predict ICU 

admission and mortality. 

Results: Of the 3,142 hospital admissions with a COVID positive test, there were 1,128 

(36%) individuals labeled as high-risk, and 2,014 (64%) as low-risk. We obtained 147 

unique variables. CRP, LDH, procalcitonin, glucose, anion gap, creatinine, age, oxygen 

saturation, oxygen device, and obtainment of an ABG were chosen. Six machine 

learning models were then trained over model-specific hyperparameters, and then 

assessed on the testing dataset, generating an area under the receiver operator curve 

of 0.751, with a specificity of 95% in predicting high-risk individuals based on an initial 

emergency department assessment. 

Conclusion: A novel machine learning model was generated to predict ICU admission 

and patient mortality from a multicenter hospital system and validated on unseen data.  
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1 Introduction 

The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 

continues to pose a significant challenge to public health. The clinical outcomes of 

COVID-19 infection range from asymptomatic to serious complications and death. While 

vaccinations have decreased rates of transmission and treatments have improved rates 

of mortality, the pandemic remains an ongoing challenge1–3. It is essential for effective 

screening and triaging of patients with COVID-19 as this can mitigate the burden on the 

healthcare system and aid in the allocation of resources to those in greatest need4.  

 

One method used to triage high-risk individuals is applying a scoring system that 

predicts mortality and a higher level of care needs. Currently, multiple scoring systems 

are used nationwide. These include National Early Warning Score (NEWS)5, Modified 

Early Warning Score (MEWS)6, Between the Flags (BTF)7, Quick Sequential Sepsis-

Related Organ Failure Assessment (qSOFA)8, and Systemic Inflammatory Response 

Syndrome (SIRS)9. However, these scoring systems were not specifically created for 

COVID infections and do not account for known predictors of COVID-related mortality. 

To meet these needs, there have been multiple groups creating new scoring systems 

with more advanced statistical methods. For example, individual machine learning (ML) 

algorithms have been applied to predict mortality in patients with COVID-1910–12. 

However, stacking ML algorithms into an ensemble is an effective method in increasing 

model performance over a variety of clinical and non-clinical problems13–15.  
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In this study, we sought to develop a ML ensemble that predicts high and low-risk 

patients who have tested positive for COVID based on a set of variables commonly 

obtained upon initial presentation to the emergency department.  

 

2 Methods 

2.1 Study design and data collection 

This is an IRB-approved, retrospective cohort study from three academic hospitals in 

the greater Chicago area – Loyola University Medical Center, Gottlieb Memorial 

Hospital, and MacNeal Hospital. The electronic health record (EHR) software (Epic 

Systems; Verona, WI) was queried from January 1, 2020, to December 31, 2021. 

Inclusion criteria included all individuals admitted to one of the three hospitals who 

tested positive for COVID-19 via polymerase chain reaction (PCR). For each patient, lab 

values, demographics, and disposition were collected. Common lab values include 

complete metabolic panel (CMP), complete blood count (CBC) with differential, 

magnesium, phosphorus, procalcitonin, d-dimer, lactate dehydrogenase (LDH), c-

reactive protein (CRP), troponin, brain natriuretic peptide (BNP), ferritin, international 

normalized ratio (INR), activated partial thromboplastin time (aPTT), and arterial blood 

gas (ABG). Vital signs include temperature, systolic and diastolic blood pressure, heart 

rate, oxygen saturation, respiratory rate, and first oxygen device. Vitals used in model 

generation were those that were first recorded upon presentation to the hospital. 

Comorbidities were those that are included in the Charlson comorbidity index, a 

composite score used to predict 10-year survival16. Other variables include race, 

gender, ethnicity, height, weight, and body mass index (BMI).  
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We defined high-risk patients as those that were discharged to hospice, died in the 

hospital, and/or were admitted to the intensive care unit (ICU). Low-risk patients were 

defined as those that do not meet any of the high-risk requisites. The complete patient 

cohort was pseudo-randomly split into a 3:1 training to testing dataset. The training 

dataset was further partitioned into five repeats of v-fold cross validation resamples for 

robust model evaluation. Importantly, all of the feature engineering and feature selection 

were performed on the training dataset. The testing dataset was used only for final 

model evaluation. 

 

2.2 Feature selection and engineering 

Feature engineering was used to reformat the set of predictors to improve model 

performance. The neutrophil to lymphocyte ratio (NLR) was calculated from the CBC. 

Variables to indicate the presence of high-risk lab tests were created, including troponin, 

BNP, or ABG. Nominal predictors with infrequently occurring (<10%) values were 

grouped into an “other” category. Nominal variables were encoded into dummy 

variables, a numeric binary model term for the number of levels of the original data. 

Terms with zero variance were eliminated. Missing data were imputed with k-nearest-

neighbors. Features with zero variance or Spearman correlation values above 0.9 were 

eliminated.  

 

Feature selection was used to narrow the list of predictors to a set that improve model 

performance. Four unique methods of feature selection were applied before model 
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generation: domain expertise, univariate analysis, stepwise logistic regression, and an 

embedded random forest model. The statistical significance of differences for each 

predictor was analyzed using a two-sided t-test. Stepwise logistic regression models 

were generated on the training dataset across the bootstrap resampled training data. 

This method iteratively eliminated each variable to assess the change in model 

performance. Three distinct methods of data imputation were assessed within an elastic 

net model: k-nearest neighbors, bagged trees, and mean imputation. The elastic net 

models were tuned over a variety of L1 and L2 regularization values. The random forest 

model was tuned across model-specific hyperparameters across each training 

resample. 

 

2. 3 Ensemble stacking 

We assessed six distinct supervised ML classifiers. The classifiers include random 

forest (RF), flexible discriminant analysis (FDA)17, radial basis function supervised 

vector machine (SVM), naïve Bayes (NB), elastic net (EN), and extreme gradient 

boosted trees (XGBoost)18. Each classifier was tuned over a Latin hypercube of model-

specific hyperparameters across the resampled training dataset. All model predictions 

were then combined into a new data frame and least absolute shrinkage and selection 

operator (LASSO) was applied as meta learner across six distinct penalties. A higher 

penalty generally results in fewer members being included in the final model stack. 

Ultimately, this process determines the stacking coefficients of the individual models 

and selects those with non-zero stacking coefficients for the final ensemble stack. 
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2.4 Software 

All statistical analysis was performed with R programming language v.4.0.319. Packages 

used were ‘tidymodels,’20 ‘tidyverse,’21 ‘stacks,’22 ‘workflowsets,’23 ‘pROC,’24 ‘readxl,’25 

‘RColorBrewer,’26 ‘viridis,’27 ‘GGally,’28 and ‘corrplot.’29 

 

3 Results 

3.1 Cohort characteristics 

COVID-19-positive PCR results ranged from March 17, 2020 to December 13, 2021 

(Figure 1A). In total, there were 4,685 unique admissions with a COVID positive test. 

Those admissions consisted of 3,995 unique patients -- of which, 3,142 patients had 

labs and a COVID positive test within three days of admission. 147 unique variables 

were queried from the EHR. The complete patient cohort was then split, creating a 

training and testing dataset of 2,356 and 786 individuals, respectively (Supp. Table 1) 

The patient ages ranged from 0 to 104 years with a median age of 60. 1,483 (47%) 

patients were women. 1644 (52%) were White, 812 (26%) were Black, and 602 (19%) 

identified as another race (Table 1). The median Charlson comorbidity index was 3, 

with a minimum of 0 and a maximum of 23 (Table 1). The majority of individuals were 

discharged home (Supp. Table 1). 1,148 (36%) patients were labeled as high-risk and 

2,014 (64%) were labeled as low-risk (Table 1).  

 

3.2 Feature selection and engineering 

Sixty-one variables were statistically different from the high and low-risk groups (Figure 

1B). The three most significant variables were whether an ABG was obtained, if the 
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patient was on room air, and the degree of elevation of the anion gap (Figure 1B). The 

largest fold change among laboratory tests was procalcitonin; with an average value of 

2 among high-risk patients and an average of 0.57 in low-risk patients (Figure 1B). 

Initial presentation of patients on room air, high GFR, and high lymphocyte percentage 

is predictive of low-risk (Figure 1B). There was no significant difference in model 

performance when missing variables were imputed across different statistical 

techniques (Supp. Figure 1). 82 predictors were assessed in the stepwise LR models, 

generating 82 unique models. Average model performance decreased most with the 

elimination of whether an ABG was obtained, initial presenting oxygen saturation, 

breathing on room air, mean platelet value, glucose, platelet count, and patient age 

(Figure 1C). 

 

The RF model was tuned across 25 model-specific hyperparameters, including the 

number of predictors at each split, the number of trees, and the minimum number of 

data points in a node that are required for further splitting. These hyperparameters were 

tuned over 10 bootstrap resamples of the training dataset. In general, model 

performance improved with an increasing number of trees, low number of predictors at 

each split, and a low node size (Supp. Figure 2B). The RF model with the greatest 

AUROC consisted of 986 trees, 14 predictors at each split, and a node size of 3. This 

model was then pseudo-randomly fit 10 times to calculate Gini Impurity of each variable, 

a measure of variable importance. The variables with the highest importance were 

whether an ABG was obtained, the admit date, procalcitonin, glucose, LDH, and the first 

O2 device (Figure 1D). 
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Based on the orthogonal feature selection methods, the final variables chosen for 

ensemble stacking were CRP, LDH, procalcitonin, glucose, anion gap, creatinine, age, 

oxygen saturation, oxygen device, and obtainment of an ABG. 

 

3.2 Ensemble stacking 

Each model was tuned across 30 model-specific hyperparameters using a Latin 

hypercube, generating 1,971,960 predictions (Figure 2A). The maximum AUROC for 

EN was 0.747, 0.764 for FDA, 0.753 for NB, 0.767 for RF, 0.749 for SVM, and 0.762 for 

XGBoost (Figure 2B). The maximum accuracy for EN was 0.741, 0.747 for FDA, 0.706 

for NB, 0.755 for RF, 0.748 for SVM, and 0.750 for XGBoost (Figure 2B). Out of 166 

possible candidate members, the ensemble retained one RF classifier and two FDA 

classifiers with a LASSO penalty of 0.1 (Figure 2C). The ensemble was then fit to the 

testing dataset and achieved a final AUROC of 0.751 with a specificity of 95% at a 

sensitivity of 32%, generating a NPV of 72% and a PPV of 78% (Figure 2D, E).  

 

 

4 Discussion 

In this study, we developed an ensemble stack of ML algorithms to identify high-risk 

individuals initial presentation to the hospital who tested positive for COVID-19 via PCR. 

We queried the electronic health records of three Chicago-area hospitals, identifying 

3,142 cases for analysis. These patients were labeled as high and low-risk based on 

whether they were discharged to hospice, died in the hospital, and/or admitted to the 
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ICU. We used this definition as it is likely to be most clinically relevant. This stratification 

potentially allows for the early identification of patients at the greatest risk and the 

subsequent allocation of resources to those in greatest need. We applied six distinct ML 

algorithms, combining them into an ensemble stack used to make final predictions on 

the testing dataset. To our knowledge, this is the first time an ensemble stack has been 

used in the analysis of COVID-19. An ensemble stack has many benefits over 

traditional ML methods as it combines the strengths of the individual models while 

minimizing each model’s limitations, often outperforming the individual classifiers13,14. 

The final ensemble stack had an AUROC of 0.75 on the testing dataset – comparable to 

the training results, thus decreasing the likelihood of model overfitting. Our model 

demonstrated a 95% specificity at a sensitivity of 32%. While the NPV and PPV will vary 

across time as prevalence of high and low-risk individuals change, the current NPV and 

PPV were 71% and 78%, respectively. These results demonstrate an initial proof-of-

concept in using an ensemble stack to generate prognostic scoring systems in COVID-

19. 

 

Feature selection and engineering are an integral part of the generation of any ML 

algorithm. This process reduces the computational training time, may improve model 

performance, and, in this case, limit the number of input variables to make a clinically 

relevant tool. In this study, we utilized an orthogonal approach to select features. 

Domain expertise and literature review were utilized to select an initial set of variables to 

query within the EHR. Next, we performed a univariate statistical analysis, and 

generated a logistic regression wrapper and embedded RF model. BMI, a variable 
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previously identified as a predictor for severe COVID-19, was not identified as a 

predictive variable through the wrapper or embedded model30. This is possibly due to 

the ability of ML models to identify trends in data that are not seen in more conventional 

statistics31. Although the admission date is a clear predictor of risk in many of our 

analyses, it was not chosen as a final feature because it may change with new COVID 

variants and medicines32. The obtainment of an ABG was the most predictive variable 

through multiple analysis methods. However, this is a subjective decision made by the 

provider that may vary depending on culture and across institutions. We included this 

variable in the final model, but it may limit broader applicability. Other predictors within 

the ensemble include the laboratory markers CRP, procalcitonin, glucose, anion gap, 

creatinine, and LDH. CRP, an acute phase reactant, has previously been shown to be 

associated with COVID-19 severity and used in other ML COVID-19 prognostic 

models33,34. LDH, an important enzyme used in the anaerobic metabolic pathway, is 

also associated with COVID-19 severity35. Similarly, multiple studies have identified 

kidney injury as common in severe COVID-1936. Non-lab values included in the 

ensemble stack are oxygen saturation at presentation, initial oxygen device, and patient 

age – all of which are strongly associated with COVID-19 severity37. 

 

There are several limitations to this study. First, the hospitals queried in this study are 

located in the greater Chicago area, and thus may not represent results from distinct 

geographical regions across the United States or in other countries. Additionally, there 

was no external validation to assess model performance. Vaccination status, which is a 
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strong predictor of disease severity,38 was not included as this variable was 

incompletely captured in many of the hospital records. 

 

In comparison to other prognostic scoring systems, we looked at one point in time to 

make risk predictions, whereas other prognostic scoring systems continually re-evaluate 

patients throughout hospitalization. Including variables from different time points 

throughout hospitalization may have led to improved model metrics. The last limitation 

of this study is that we are unable to show that identifying high-risk individuals translates 

into improved patient outcomes39. As health care continues its transition into utilizing big 

data for clinical decision-making, it will remain important to show that predictive 

analytics improve outcome40. Importantly, this ML approach is easy to deploy, and 

retrain as more data becomes available which will improve predictive performance.  
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Tables: 
 
Table 1: Overview of the training and testing dataset. 
 
  Train (N = 2,356)  Test (N = 786)  Cohort (N = 3,142) 
Risk       

High  846  282  1,128 
Low  1510  504  2,014 

Gender       
Male  1258  416  1,674 
Female  1098  370  1,468 

Race       
White  1212  414  1,626 
Black  597  211  808 
Asian  43  11  54 
Other  464  136  600 

First O2 device       
Room Air  1880  623  2,503 
Nasal cannula  246  100  346 
Mask  109  29  138 
Endotracheal tube  20  10  30 

Vitals       
Age  58.7 (0 - 104)  58.3 (0 - 101)  58.6 (0 - 104) 
Heart rate  97 (0 - 288)  96 (0 - 192)  97 (0 - 288) 
Systolic blood pressure  131 (53 - 255)  131 (79 - 241)  131 (53 - 255) 
Diastolic blood pressure  80 (11 - 166)  75 (35 - 254)  75 (11 - 254) 
Respiratory rate 22 (8 - 109) 22 (9 - 91) 22 (8 - 109) 
Oxygen saturation  94 (30 - 100)  94 (50 - 100)  94 (30 - 100) 
Temperature  99.1 (82.4 - 105.8)  99.1 (92 - 104)  99 (82.4 - 105.8) 
Body mass index  30.8 (11 - 88)  30.8 (11 - 89)  30.8 (11 - 88) 

Labs       
Anion gap  12.2 (1 - 35)  12.2 (4 - 41)  12.2 (1 - 41) 
C-reactive protein  77 (0 - 431)  80 (0.6 - 469)  78 (0 - 469) 
Creatinine  1.58 (0.19 - 32.5)  1.55 (0.19 - 16.8)  1.57 (0.19 - 32.5) 
Glucose  156 (20 - 1355)  160 (42 - 896)  157 (20 - 1355) 
Lactate dehydrogenase  377 (108 - 3191)  368 (88 - 2550)  374 (88 - 3191) 
Procalcitonin  1.3 (0.02 - 97.1)  0.78 (0.02 - 52.2)  1.17 (0.02 - 97.1) 

Comorbidities       
Charlson score  4 (0 - 23)  4 (0 - 20)  4 (0 - 23) 
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Figures: 
 

 
 
Figure 1  
A)14 day rolling average of COVID hospitalizations split into high and low-risk from 
January 1, 2020 to December 31, 2021. B) Volcano plot of the two-sided t-test of 
numerical variables. Statistically significant variables are highlighted in purple. A 
negative log 2 fold change is indicative of variables associated with high-risk patients. 
C) Iterative elimination of variables within multiple logistic regression models to assess 
variable importance. Positive performance drop indicates worse model performance 
with the elimination of that variable. D) Relative variable importance calculated by Gini 
impurity within 10 random forest models. Higher values indicate greater variable 
importance within the model. 
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Figure 2 
A) AUROC of the six candidate machine learning classifiers across the resampled 
training dataset. B) Accuracy and AUROC of the six candidate members across the 
training dataset. C) Stacking coefficient of the three candidate members that compose 
the ensemble stack. D) AUROC of the ensemble stack when assess on the testing 
dataset. E) Confusion matrix of the ensemble stack when assessed on the testing 
dataset. 
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Supplementary Figure 1: 
Accuracy and AUROC of the three imputation methods assessed in the training dataset: 
bagged trees, K-nearest neighbors, and mean imputation. 
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Supplementary Figure 2. 
A) AUROC of the RF model used to calculate variable importance. B) The three 
hyperparameters used to tune the RF model that was used to calculate variable 
importance.  
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