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ABSTRACT 

The relationship between growth and gut microbiota establishment is critical but under-

investigated during late childhood. This is an important knowledge gap since the adult 

microbiota connects with other organs to influence health. We studied gut microbial 

communities composition and dietary patterns in 13 years old males and females from the 2004 

Pelotas birth cohort (Brazil). We had previously shown that three BMIZ and HAZ patterns of 

growth since birth are present in this cohort, reflecting the nutritional status of these children. 

Here, we show that there is an association between growth patterns and gut microbiota, which 

encompasses the five pubertal stages, and which is affected by sex. Using Partial Least Square 

Path Modelling, we also show that there is a strong relationship between dietary patterns and gut 

microbiota, in males but not females. These data provide the microbiota and dietary profiles of 

highly phenotyped children and highlight the importance of childhood growth and sex for the 

maturation of the gut microbiota and long-term healthy growth. The role of pubertal diet in the 

relationships identified, further underlies the importance of dietary patterns establishment during 

adolescence while providing an opportunity for late modification of growth-microbiota 

relationships.  
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INTRODUCTION 

Children patterns of growth and health throughout life are intertwined. The first 3 years of life 

are critical for childhood growth and development and correspond to major diversification and 

maturation of the gut microbiota (Bokulich et al., 2016; Stewart et al., 2018; Yassour et al., 2018; 

Yatsunenko et al., 2012). Microbial colonization in early life plays a critical role in development 

and disturbances may impact health outcomes later in life (Robertson et al., 2019). It has been 

shown that undernourished children have a less mature gut microbiota than healthy children 

(Balasubramaniam et al., 2021; Méndez-Salazar et al., 2018; Subramanian et al., 2014). Studies 

in adequately nourished and over nourished children are scant. One study in Canadian children 

showed that preschool (0-5 years of age) BMI growth trajectories are associated with the 

longitudinal variation of the gut microbiota diversity and relative abundance at 3 and 12 months 

of age (Reyna et al., 2022).  

Adolescence is the other critical period in childhood characterized by specific 

developmental milestones associated with rapid physical growth and sexual maturation (Norris et 

al., 2022). This is also an important time for dietary patterns modification (Winpenny et al., 

2018) and dietary patterns are known to influence the gut microbiota (Singh et al., 2017; 

Turnbaugh et al., 2009; Wu et al., 2011). However, the relation between the gut microbiota, 

puberty and childhood growth has not been well studied. The microbiota in adolescence has been 

reported to differ from that of adults (Agans et al., 2011; Hollister et al., 2015; Ringel-Kulka et 

al., 2013; Yatsunenko et al., 2012). Children harbor a less diverse microbiota than adults (Agans 

et al., 2011; Radjabzadeh et al., 2020) , and differences between sexes might be highlighted in 

puberty. Pubertal timing has been associated with microbiota composition in a sex-dependant 
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manner and with hormone levels (Korpela et al., 2021; Yuan et al., 2020). No studies have 

explored the association between the gut microbiome and growth into adolescence. 

The objective of this study was to assess whether childhood growth from birth is 

associated with the adolescent microbiota. We used a novel analytical pipeline that we recently 

established and that allows identification of growth trajectory patterns since birth while allowing 

for increased weight on later stages of childhood growth (López-Domínguez et al., 2023). We 

report that patterns of growth through childhood are associated with the gut microbiota during 

adolescence, suggesting that interventions to shift the trajectory to that of a healthy growth-

compatible microbiome throughout early childhood could affect longer-term growth. 
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METHODS 

Study design and participants 

Pelotas 2004 Birth cohort 

The 2004 Pelotas birth cohort is a prospective study of 4231 children born in 2004 in the urban 

area of Pelotas in southern Brazil (Barros et al., 2006). Briefly, mothers were recruited at the five 

maternity hospitals in the region, covering 98% of all deliveries, after providing written informed 

consent. After birth, children were followed up at 3, 12, 24, 48 months, and at 6 and 11 years of 

age when anthropometry, socioeconomic, behavioural, and demographic data were collected by 

trained research staff.  

 

12-year-old follow-up 

In May 2017, the 2004 Pelotas Birth Cohort started a sub-study, the Oral Health Study, to assess 

the oral health of 1200 adolescents born between September and December of 2004 (Silveira 

Schuch et al., 2021) . For our prospective cross-sectional study, we subsampled 500 children 

participating in the Oral Health Study (Figure 1). Children were stratified based on 

anthropometric z-scores calculated using data from the 11 years of age follow up with 

AnthroPlus Software by the World Health Organization (WHO 2009) and a stratified 

subsampling approach was used to ensure selection of participants from our subpopulations of 

interest (i.e., stunting, wasting, normal weight, overweight and obesity). All participants with 

height/age z-score below -2 (stunting) and those with BMI/age z-score below -2 (wasting) and 

above 3 (obesity) were included. The remaining participants were randomly selected in equal 

number from the following two strata: between -2 and 2 (normal weight) and between 2 and 3 

(overweight) (Supplementary table 1).  
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 During their at-home visit, the Oral Health Study team invited children to participate, and 

those who agreed were provided with a stool collection kit. A follow-up home visit was carried 

out by a trained interviewer from the microbiome sub study to collect the stool sample, 

anthropometric measurements (weight, height, and abdominal circumference) and a 

questionnaire. The questionnaire collected information on pet ownership, physical activity and 

dietary habits, description of stool collection and handling, use of medications and included a 

pubertal-self assessment and a food frequency questionnaire (details are provided below).  

 

Anthropometric measurements and growth trajectories patterns. 

The details of anthropometric measurements were previously described (Barros et al., 2006; 

Santos et al., 2011, 2014). Briefly, children’s length/height and weight were measured using 

standardized protocols (Habicht, 1974) by trained personnel. Length/height at birth, 3, 12, 24 and 

48 months was measured using a foldable wooden anthropometer (with 1 mm precision). Height 

at 6 and 11 years was taken with a stadiometer (Harpenden) (maximum 2.06 m and 1 mm 

precision). Birthweight was measured using electronic pediatric scales with 10 g precision, and 

subsequent measurements were taken using an electronic scale (150 kg capacity and 100 g 

precision). At 3, 12 and 24-month visits, mother’s and child’s weights were measured together, 

and the child’s final weight was calculated by subtracting mother’s weight and the estimated 

weight of any remaining clothes. At the 4, 6, 11 and 13-year visit, the child was weighted 

without shoes and wearing light clothes. Height and weight information collected at the 13 years 

follow up and used to derive Body Mass Index-for-age (BMIZ) and Height-for-age z-scores 

(HAZ), and then stratified based on WHO cut-offs. Growth trajectory patterns were derived from 

our previous study in this cohort, where we used shape-based clustering (k-means) of 
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gestational-age corrected data, an approach that improves interpretability of growth patterns in 

later childhood  (López-Domínguez et al., 2023). 

 

Pubertal assessment 

Stages of puberty were identified according to Tanner (Marshall & Tanner, 1969, 1970) with a 

two-pages self-reported tool assessing breast and pubic hair development for females and 

genitalia and pubic hair development for males, developed based on previous literature (Morris 

et al. 1980) This method was previously shown to be in agreement with physician’s assessment 

(Matsudo & Matsudo, 1994; Rasmussen et al., 2015; Schmitz et al., 2004; Taylor et al., 2001). 

For subsequent analyses, children were grouped into three categories corresponding to Tanner 

Stages 1-2 (n=46), Stage 3 (n=104), and Stages 4-5 (n=184)). 

 

Dietary assessment 

Children completed a semi-quantitative Food Frequency Questionnaire (FFQ) specifically 

developed for this population (Schneider et al., 2016; Vaz et al., 2021) that contains 87 food 

items classified into 11 groups and estimates food consumption during the previous year. The 

tool consists of a booklet with pictures of mean servings to estimate consumed portion sizes and 

frequency of consumption was recorded in a tablet. Eight frequency options were given for each 

food: (1) five or more times a day, (2) two to four times a day, (3) once a day, (4) five to six 

times a week, (5) two to four times a week, (6) once a week, (7) one to three times a month and 

(8) never or less than once a month. Energy and nutrient intake were analyzed using the 

Brazilian Table of Food Composition database (Lopes Tdo et al., 2015) complemented with the 
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USDA Food Composition database (U.S. Department of Agriculture, 2017) for foods not 

included in the Brazilian database. 

 

Dietary patterns 

Food items consumed by less than 20% of the participants were removed from the analysis, as 

they were considered not to be part of their regular diet (soy milk, nuts, shrimp, alcoholic drinks: 

beer, wine, other). The remaining items were combined into 19 groups based on nutrient 

composition, frequency of consumption and the population’s traditional diet (Supplementary 

table 2). To derive the dietary patterns, we applied Principal Components Analysis (PCA) and 

Varimax rotation to obtain orthogonal factors. The number of components extracted was based 

on eigenvalues >1.4 and scree test plots. Dietary patterns were named according to the food 

items included and participants received a score for each dietary pattern identified. Factor 

loadings of > 0.25 were considered to have strong associations with that pattern. Dietary pattern 

scores were classified into tertiles, and the group with the lowest score was considered to have 

the lowest adherence to that pattern.  

 

Stool sample collection 

Stools were collected at home during the recruitment visit using the Stool Nucleic Acid 

Collection and Preservation Tube (Norgen Biotek® Thorold, ON, Canada). A video was created 

to explain the collection process to the participants. The interviewer collected the samples at 

home and transported them to the Center of Epidemiology of the University of Pelotas for 

storage until shipping to the University of Toronto.  
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Fecal microbiota composition analysis 

DNA was extracted using the ZymoBIOMICS DNA Miniprep kit, product number D4300 

(Zymo Research, Irvine, CA), according to the manufacturer’s instructions but including a lysis 

step (Mini BeadBeater (Biospecs Products Inc) run for 2 minutes). DNA was stored at -20°C. 

The V3V4 hypervariable region of the 16S rRNA gene was amplified from the DNA using the 

barcoded forward 338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and reverse 806R (5’-

GGACTACHVGGGTWTCTAAT-3’) sequencing primers to allow for multiplexing (Caporaso 

et al., 2012, Kozich et al., 2013). Amplification reactions were performed using 12.5 uL of 

KAPA2G Robust HotStart ReadyMix (KAPA Biosystems), 1.5 uL of 10 uM forward and reverse 

primers, 7.5 uL of sterile water and 2 uL of DNA. The V3V4 region was amplified by cycling 

the reaction at 95°C for 3 minutes, 18x cycles of 95°C for 15 seconds, 55°C for 15 seconds and 

72°C for 15 seconds, followed by a 5-minute 72°C extension. All amplification reactions were 

done in triplicate to reduce amplification bias, pooled, and checked on a 1% agarose TBE gel. 

Pooled triplicates were quantified using PicoGreen and combined by even concentrations. The 

library was then purified using Ampure XP beads and loaded on to the Illumina MiSeq for 

sequencing, according to manufacturer instructions (Illumina, San Diego, CA). Sequencing is 

performed using the V3 (300bp x 2) chemistry. A single-species (Pseudomonas aeruginosa 

DNA), a mock community (Zymo Microbial Standard: 

https://www.zymoresearch.de/zymobiomics-community-standard) and a template-free negative 

control were included in the sequencing run.  

The UNOISE pipeline, available through USEARCH v11.0.667 and vsearch v2.10.4, was used 

for sequence analysis (Edgar, 2010, 2013, 2016; Rognes et al., 2016). The last base was removed 

from all sequences, and the 3’ tail was trimmed after the quality dropped below q15 for each 
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read, using cutadapt v.1.18. Sequences were assembled and quality trimmed using –

fastq_mergepairs with a –fastq_trunctail set at 3, a –fastq_minqual set at 2, a -fastq_maxdiffs set 

at 20, a -fastq_pctid set at 70, and minimum and maximum assemble lengths set at 100 and 600 

base pairs, respectively. Assembled sequences were quality filtered using –fastq_filter with a –

fastq_maxee set at 1.0. The trimmed data was then processed following the UNOISE pipeline.  

Sequences were first de-replicated and sorted to remove singletons, then denoised and chimeras 

were removed using the unoise3 command. Assembled sequences were mapped back to the 

chimera-free denoised sequences at 99% identity OTUs. Taxonomy assignment was executed 

using SINTAX, available through USEARCH, and the UNOISE compatible Ribosomal Database 

Project (RDP) database version 16, with a minimum confidence cutoff of 0.8 (Wang et al., 

2007). OTU sequences were aligned using align_seqs.py v.1.9.1 through QIIME1 (Caporaso et 

al., 2010). Sequences that did not align were removed from the dataset and a phylogenetic tree of 

the filtered aligned sequence data was made using FastTree (Price et al., 2009). The 16S copy 

number were estimated with the SINAPS algorithm, accessed through USEARCH. These 

analyses were performed at the University of Toronto Centre for the Analysis of Genome 

Evolution & Function (CAGEF). Mean sequencing depth of samples was 29,742 (2,120 - 

67,121) and data were rarefied at 2,000 sequences per sample to calculate diversity metrics. 

Alpha-diversity (Chao1 and Shannon index (Chao, 1984; Shannon, 1948)) and beta-diversity 

metrics (weighted and unweighted UniFrac distances (C. A. Lozupone et al., 2007; C. Lozupone 

& Knight, 2005)) were estimated in QIIME2 using q2-diversity (Bolyen et al., 2019). 

 

Statistical analyses 
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Associations between the gut microbiota diversity and variables of interest were assessed as 

follows: Within groups diversity (alpha diversity) was assessed using Kruskal-Wallis and 

generalized linear models with microbiota richness (Chao1 index) and evenness (Shannon 

index). Variance between groups (beta diversity) was assessed with Permutation analysis of 

variance (PERMANOVA) and multivariate ANOVA based on similarity tests (ADONIS) 

(Anderson, 2001) using Unweighted and Weighted UNIFRAC distance metrics. Models were 

constructed by adjusting for sex, skin colour, household income, type of birth, and perinatal 

characteristics (maternal age, education and smoking during pregnancy) selected after testing 

them independently for associations with the microbiota (Supplementary figure 1 and 

supplementary tables 3 and 4). Differential abundance was assessed with analysis of 

compositions of microbiomes (ANCOM) (Mandal et al., 2015) with OTUs.  

 

Partial Least Squares Path Modeling (PLS-PM) 

PLS-PM was used to identify the relationships between growth trajectories since birth, pubertal 

status, dietary patterns, and gut microbiota composition using the plspm R package (Sanchez, 

2013). PLS is an exploratory method that allows to test complex relationships among variables 

using latent variables and uses bootstrapping to obtain information about the variability of the 

parameter estimates. We created a model of cross correlations integrating microbiota profiles and 

the explanatory variables and identify the key OTUs that were responsible for the differential 

microbiota structure. Models were tested for the whole sample and separately by growth pattern 

and by sex. 
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RESULTS 

Participant characteristics and growth patterns membership. 

331 children, 12.8 ± 0.17 years old, were included in the study (Figure 1). Participants were 

classified into wasting (n=11), normal (n=245) and overweight (n=75) for BMIZ; and in stunting 

(n=10) and normal (n=321) for HAZ (Table 1). Females (46.5%) were predominantly classified 

in pubertal stage 4-5 (70.8%), followed by stage 3 (19.5%) and stages 1-2 (9.7%). In contrast, 

males were equally classified into stage 3 (41.8%) and stages 4-5 (40.1%), followed by stages 1-

2 (18.1%). Most children were grouped into the Stable growth trajectories pattern (BMIz n = 

157, 47%; HAz n = 165, 50%), followed by the Decreasing (BMIz n = 96, 29%; HAz n = 98, 

30%), and the Increasing (BMIz n = 78, 24%; HAz n = 68, 20%) patterns. Mean BMIz and HAz 

were classified as “normal” in all patterns, except for the BMIz Increasing pattern. The 

distribution among patterns of children selected for this study reflects that of the whole cohort 

for both the BMIz and HAz (López-Domínguez et al., 2023).  

 

Dietary patterns. 

Three dietary patterns were identified to best describe the reported dietary intake of participants, 

explaining a cumulative 35% of the total variance (Table 2). The first component identified was 

labelled “Processed", and contained high loadings of fast foods and snacks, candies and sweets, 

processed meats, cookies and cake, pastas and tubers, soda, and dairy. The second component 

labelled “Coffee, Tea and Vegetables” was characterized by high loadings of coffee, tea, sugar, 

and vegetables and legumes. The third component was labelled "common-Brazilian", with high 

loadings of beans, rice, bread, and fats. The percentage of variance explained by each dietary 
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pattern was 13.1%, 11.6%, and 10.8%, respectively. The eigenvalues in each dietary pattern were 

3.4 (Processed), 1.8 (Coffee, Tea and Vegetables), and 1.4 (common-Brazilian). 

 

Gut microbiota. 

Fourteen unique phyla-level and 157 unique genus-level taxa were identified (Figure 2). Based 

on relative abundance, at the phylum level the gut microbiota consisted primarily of Firmicutes 

(62.3 ± 16%) and Bacteroidetes (30.1 ± 17%), followed by Actinobacteria and Proteobacteria 

(3.9 ± 4% and 1.5 ± 2%, respectively); only these top four phyla were present in all samples 

(Figure 2A). There was a gradient, and an inverse relationship, in the relative abundance of 

Firmicutes and Bacteroidetes, with their ratio varying between 0 - 53.7 and 0 - 34.4 across the 

sample. Sixty percent of all stool samples (n=200) contained Archaea. 

At the genus level, Prevotella (18.1 ± 20%), unidentified-genus from the Ruminococcaceae 

family (8.9 ± 6%), Bacteroides (8.5 ± 9%), and Faecalibacterium (8 ± 9%) were predominant, 

followed by unidentified genus from the Lachnospiraceae family (6.2 ± 4%), Blautia (5 ± 4%), 

unidentified genus from the Clostridiales order (4.6 ± 3%), and Ruminococcus (3.1 ± 3%) 

(Figure 2B). Only 7 genera were found in all samples: unidentified genus from the 

Ruminococcaceae family, Bacteroides, Faecalibacterium, unidentified genus from the 

Lachnospiraceae family, Blautia, unidentified genus from the Clostridiales order, and 

Lachnospiracea incertae sedis (1.8 ± 1%). 

 

Gut microbiota diversity, sex, growth patterns since birth, pubertal stage and diet 

Sex 
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No differences in gut microbial alpha or beta diversity were observed among sex in the crude or 

adjusted models (Figure 3A and Table 3).  

BMIZ patterns 

Children in the Increasing BMIz pattern had lower richness (Chao1 Kruskal-Wallis, p< 0.001) 

and evenness (Shannon Kruskal-Wallis, p< 0.01) compared to those from the Stable and 

Decreasing patterns (Figure 3). The gut microbiota beta-diversity of children in the Increasing 

BMIz pattern was different from those in the Decreasing and Stable patterns only when 

microbial abundance was not accounted for (Unweighted UniFrac PERMANOVA, p<0.01) 

(Table 3). Subgroup analysis showed that differences were only observed in male participants. 

Differences remained in the adjusted model.  

HAZ patterns 

No differences in gut microbial alpha or beta diversity were observed among HAz trajectory 

patterns in the crude or adjusted models (Figure 3 E-G, 3 O-Q and Table 3). 

Pubertal stage 

No differences in gut microbial alpha or beta diversity were observed among pubertal stages in 

the crude or adjusted models (Figure 3 H-J, 3 R-T and Table 3). 

Dietary patterns 

Children with low adherence to the common-Brazilian dietary pattern displayed lower richness 

(Chao1 Kruskal-Wallis, p< 0.05) and evenness (Shannon Kruskal-Wallis, p< 0.05) compared to 

those with high adherence (Figure 4). Different gut microbiota was displayed compared to both 

medium and high adherence groups (Unweighted and Weighted UniFrac PERMANOVA, 

p<0.05). In the subgroup analysis, differences in richness and evenness were observed only in 

females. The gut microbiota beta-diversity was also different between all tertiles of adherence for 
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the Coffee, Tea and Vegetables pattern when abundance was not accounted for (Unweighted 

UniFrac PERMANOVA, p<0.01) (Table 3) and lower richness was found in the low adherence 

group compared to the high adherence (Figure 4). In the subgroup analysis, differences were 

shown in males only between the High and the Middle and Low tertiles. No differences in 

evenness were observed in this pattern. We were not able to identify any differences in the gut 

microbiota alpha (Figure 4 A-C, 4 J-L) or beta diversity (Table 3), when looking at the Processed 

dietary pattern. Differences remained the same in the adjusted models. 

 

Gut microbiota composition, sex, growth patterns since birth, pubertal stage and diet 

Sex 

We did not identify significant features among sex. 

BMIZ patterns  

We did not identify significant features among BMIz patterns.  

HAZ patterns 

We did not identify significant features among HAz patterns. 

Pubertal stage 

We did not identify significant features among pubertal stages.  

Dietary patterns  

For the Processed dietary pattern females Prevotella was higher in those with low adherence. 

Children with high adherence to the Coffee, Tea and Vegetables pattern had lower abundance of 

Clostridium XIVa, Ruminococcaceae family, Prevotella, and higher of Prevotella copri. In those 

with low adherence, Firmicutes was lower, and those with medium adherence had higher 
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abundance of Clostridiales order. Specifically, in females Clostridium XIVa was lower in the 

high adherence group, and in males Firmicutes was lower in the low adherence group.  

Low adherence to the common-Brazilian pattern was associated with lower Lactobacillus 

ruminis in the whole sample, and with Faecalibacterium prausnitzii in females.  

 

Path modeling 

To analyze the relationship among microbiota composition and the growth patterns, puberty, and 

dietary patterns, PLS-PM were constructed for the whole sample and separately by sex for the 

BMIz and HAz patterns (Figure 5). We hypothesized that the association between growth 

trajectory patterns in childhood and pubertal stage is at least partly explained by the correlation 

between dietary patterns and the gut microbiota composition. In the BMIz model, negative 

associations were shown between dietary patterns and BMIz patterns with the gut microbiota in 

the sex-specific models (Females -0.22, -0.22; Males -0.50, -0.22), in this model the gut 

microbiota was negatively associated with puberty (-0.22). This relationship was also observed 

in the by-sex analysis, though the negative association was found only in females (-0.34, Figure 

5C), while a positive association was found in the males model (0.16, Figure 5E). In all paths 

modeled the dietary patterns, BMIz and HAz growth patterns showed an association with the 

microbiota composition, and in turn the microbiota composition influencing puberty stage, 

although the direction of the relationship was different between sex (Supplementary tables 5 and 

6). 

 

DISCUSSION 
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The host and its gut microbiota co-evolve in early life to reach a mature dynamic equilibrium 

status that characterizes adulthood. Although it is recognized that very early life, within 3 years 

of age, is a critical stage for the formation of the microbiota, research in recent years suggests 

that its continuous reshaping during childhood growth may be critical to establish the adult 

baseline. Here we show that there is indeed an association between growth trajectory patterns 

from birth to late childhood and the gut microbiota at age 13. We also show that the relationship 

encompasses stages of puberty and dietary patterns, and that it is, at least in part, sex-specific. 

Although the sex variable was not associated with the gut microbiota in this study, even in the 

adjusted models, differences observed among variables were sex dependant.   

Sex specificity of gut microbial communities is an ongoing topic of research and data 

suggests that sex is an important contributor in shaping the gut microbiota in early life (Kim et 

al., 2020; Valeri & Endres, 2021). Pre-clinical studies were the first to provide evidence that the 

microbiota dichotomizes by sex at puberty (Markle et al., 2013). The concept has been more 

recently investigated in two human studies, one in 5-15 years old Chinese children (Yuan et al., 

2020) and one in 13 years old Finnish children (Korpela et al., 2021), both using 16S rRNA 

sequencing data.  The first found taxa associated with levels of testosterone and the second found 

that pubertal timing was associated with the microbiota in females but not in males. We did not 

find any differences in terms of alpha and beta diversity, nor taxa relative composition between 

males and females. Because the microbiota and hormone metabolism, including estradiol and 

testosterone, are related (Calcaterra et al., 2022; Shin et al., 2019), assessing hormonal levels in 

the children under study may be necessary to reconcile results across studies. Towards the 

understanding of potential hormone-dependent relationships, we investigated whether the 

microbiota differed among pubertal stages but were not able to detect differences. Similar to 
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Yuan et al, this could be due to the age of the children in our study (most females (76%) had 

already reached menarche), and to its cross-sectional nature. Although, as expected (WHO, 

2010), there was a larger spread across pubertal stages in boys, the sample size within the 

subgroups, as well as inter-individual variation, was likely too low to detect potential differences.  

We found that children, specifically males, with an Increasing BMIz trajectory pattern 

have a distinct microbiota diversity, characterized by lower evenness and richness, compared to 

those who grew in a Stable or Decreasing pattern. Similar results were reported in a Canadian 

cohort (Reyna et al., 2022), where children grouped in a rapid BMIz growth trajectory gained 

less microbiota diversity in their first year of life. A cohort study in Norway reported that the gut 

microbiota at age 2 has the potential to identify children at risk of obesity later in life 

(Stanislawski et al., 2018). In the present study, the Increasing BMIz pattern also showed higher 

proportion of children classified as overweight at 13 years and higher fat mass at 11 years than 

those in the other two patterns. Lower diversity has been found in individuals with obesity 

(Castaner et al., 2018) and a recent review highlighted specific taxa associated with obesity in 

school-age children (Vander Wyst et al., 2021). We were not able to identify specific taxa 

associated with the growth trajectories but found lower richness in children classified as 

overweight at 13 years, and that this difference was driven by males. 

Most studies carried out in adolescents do not include the effect of dietary intake. This is 

important because adolescence comprises a stage of dietary independence and because of the 

heavy influence diet has on shaping the gut microbiota (Singh et al., 2017; Turnbaugh et al., 

2009; Wu et al., 2011). Here, we showed that children, specifically females, with high adherence 

to the common-Brazilian dietary pattern, characterized for high intake of low processed foods, 

have higher microbiota evenness and richness. Although we did not find associations with the 
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Processed dietary pattern, the microbiota from children with high adherence to both the 

common-Brazilian and the Vegetable, Tea and Coffee patterns differed from those with low 

adherence. Also, the path analyses showed the strongest relation to be between the dietary 

pattern and the microbiome in males, specifically. 

This is the first study to assess the association of childhood growth trajectories and 

pubertal microbiota. We were able to integrate fecal sample collection in an established birth 

cohort and include perinatal and childhood variables in the analysis. Thanks to the great follow 

up rates from the Pelotas Birth cohorts, we were able to collect a large number of samples.  

Some limitations include the assessment of pubertal staging with a self-reported tool, which 

could lead to individual bias and is less reliable measuring hormonal levels in blood. The use of a 

FFQ relies on child’s memory and thus is prone to bias, we tried to overcome this by using PCA 

instead of only focusing on specific nutrients. Due to the high proportion of girls who had 

reached puberty in this study, the age of follow-up might not be ideal to study pubertal 

variations, new research should try to include a wide age range of participants to better capture 

the different stages. 

We identified associations among childhood growth, diet the pubertal gut microbiota in a 

sex-dependent manner. This means that we could intervene throughout early childhood to affect 

the microbiome in puberty, and beyond this time, we may still have an opportunity to shift the 

trajectory to that of a healthy compatible microbiome. While microbiota is known to respond to 

short-term stimuli, core microbial features seem to be established through years and the entire 

period of childhood is important. Further research should focus on clarifying the direction of the 

associations among gut microbiota, growth, puberty and diet. 
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Figure 1. Flow diagram of sample selection and collection 
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Figure 2. Gut microbiota from a subsample of children from the 2004 Pelotas Birth Cohort at 13 

years of age  

Relative abundance at the A) phylum and B) genus level (top 20 genera shown) by sex.  
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Figure 3. Association of sex, puberty stage, BMIz and HAz patterns, and the gut microbiota 

alpha diversity 

Gut microbiota bacterial richness (Chao1 index) and evenness (Shannon index) in association 
with Sex (A, K), BMIz patterns (B, C, D, L, M, N), HAz patterns (E, F, G, O, P, Q),  and Puberty 
stage (H, I, J, R, S, T). Associations were tested using Kruskal-Wallis test with significance at p 
< 0.05 (bold). Abbreviations: NS, not significant; Fem, female; Inc, increasing; Sta, stable; Dec, 
decreasing. 
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Figure 4. Association of dietary patterns and the gut microbiota alpha diversity 

Gut microbiota bacterial richness (Chao1 index) and evenness (Shannon index) in association 
with food patterns adherence: Processed Food, A, B, C, J, K, L ; Coffee, Tea and Vegetables, E, 
F, G, O, P, Q; and Common-Brazilian, H, I, J, R, S, T. Associations were tested using Kruskal-
Wallis test with significance at p < 0.05 (bold). Abbreviations: L, Lower tertile; M, Mid tertile, 
H, Higher tertile. 
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Figure 2. Cross-associations between childhood growth patterns, dietary patterns, pubertal 

stage and microbiota composition at 13 years of age. 

 
Arrows represent the associated paths tested between the BMIz and HAz growth patterns, dietary 
patterns loadings, pubertal stages and microbiota composition summarized as OTUs for A, B) 
the whole sample, C, D) Females and E, F) males. Numbers indicate the path coefficients 
representing the strength and direction of the relations between the response and the predictors. 
Blue and red lines represent positive and negative effects, respectively. Dashed lines indicate the 
coefficients that did not significantly (P > 0.05) differ from 0.  
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Table 1. Participants characteristics by growth trajectory pattern 

 ALL  
(n=331) 

BMIz pattern HAz pattern 
 Decreasing  

(n=96) 
Stable  

(n=157) 
Increasing  

(n=78) 
Decreasing  

(n=98) 
Stable 

(n=165) 
Increasing 

(n=68) 
Age (years) 12.8 ± 0.17 12.8 ± 0.16 12.8 ± 0.17 12.8 ± 0.18 12.8 ± 0.18 12.8 ± 0.17 12.8 ± 0.15 
Sex (Female) 154 (46.5%) 50 (52.1%) 73 (46.5%) 31 (39.7%) 44 (44.9%) 78 (47.3%) 32 (47.1%) 
Maternal age (years) 25.9 ± 6.85 25.9 ± 6.94 25.7 ± 6.92 26.2 ± 6.64 25.7 ± 6.73 26.1 ± 7.1 25.5 ± 6.43 
Maternal education 
(years) 8.2 ± 3.25 7.5 ± 3.15 8 ± 3.18 9.2 ± 3.29 7.2 ± 3.1 8.5 ± 3.18 8.7 ± 3.38 

Maternal BMI (kg/m2) 23.8 ± 4.53 23.4 ± 4.34 23.5 ± 4.71 24.6 ± 4.39 24.3 ± 5.3 23.4 ± 4.19 24 ± 4.16 
Maternal smoking (yes) 84 (25.4%) 22 (22.9%) 39 (24.8%) 23 (29.5%) 32 (32.7%) 41 (24.8%) 11 (16.2%) 
Skin colour        

White 210 (63.4%) 60 (62.5%) 95 (60.5%) 55 (70.5%) 58 (59.2%) 107 (64.8%) 45 (66.2%) 
Black 52 (15.7%) 19 (19.8%) 23 (14.6%) 10 (12.8%) 16 (16.3%) 27 (16.4%) 9 (13.2%) 
Brown 53 (16%) 11 (11.5%) 30 (19.1%) 12 (15.4%) 16 (16.3%) 26 (15.8%) 11 (16.2%) 
Other 12 (3.6%) 3 (3.1%) 8 (5.1%) 1 (1.3%) 7 (7.1%) 3 (1.8%) 2 (2.9%) 

Income        
Quintile 1 64 (19.3%) 18 (18.8%) 30 (19.1%) 16 (20.5%) 18 (18.4%) 32 (19.4%) 14 (20.6%) 
Quintile 2 72 (21.8%) 21 (21.9%) 38 (24.2%) 13 (16.7%) 20 (20.4%) 38 (23%) 14 (20.6%) 
Quintile 3 55 (16.6%) 11 (11.5%) 26 (16.6%) 18 (23.1%) 22 (22.4%) 24 (14.5%) 9 (13.2%) 
Quintile 4 81 (24.5%) 29 (30.2%) 33 (21%) 19 (24.4%) 25 (25.5%) 41 (24.8%) 15 (22.1%) 
Quintile 5 59 (17.8%) 17 (17.7%) 30 (19.1%) 12 (15.4%) 13 (13.3%) 30 (18.2%) 16 (23.5%) 

Type of birth (cesarian) 154 (46.5%) 41 (42.7%) 71 (45.2%) 42 (53.8%) 37 (37.8%) 74 (44.8%) 43 (63.2%) 
Breastfeeding at 3 months        

No 73 (22.1%) 21 (21.9%) 39 (24.8%) 13 (16.7%) 24 (24.5%) 32 (19.4%) 17 (25%) 
Partial 111 (33.5%) 30 (31.2%) 50 (31.8%) 31 (39.7%) 33 (33.7%) 61 (37%) 17 (25%) 
Predominant 54 (16.3%) 19 (19.8%) 27 (17.2%) 8 (10.3%) 16 (16.3%) 26 (15.8%) 12 (17.6%) 

Exclusive 93 (28.1%) 26 (27.1%) 41 (26.1%) 26 (33.3%) 25 (25.5%) 46 (27.9%) 22 (32.4%) 
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Breastfeeding at 12 
months (yes) 139 (42%) 38 (39.6%) 69 (43.9%) 32 (41%) 39 (39.8%) 72 (43.6%) 28 (41.2%) 

Age of introduction of 
solids (months) 4.4 ± 1.28 4.5 ± 1.33 4.4 ± 1.28 4.5 ± 1.23 4.4 ± 1.3 4.4 ± 1.27 4.4 ± 1.29 

BMI-for-age z-score 0.7 ± 1.56 -0.3 ± 1.3 0.6 ± 1.43 2 ± 1.19 0.5 ± 1.42 0.5 ± 1.65 1.1 ± 1.45 
Wasting (<-2 BMIz) 11 (3.3%) 6 (6.2%) 5 (3.2%) 0 (0%) 0 (0%) 11 (6.7%) 0 (0%) 
Overweight (>2 BMIz) 75 (22.7%) 3 (3.1%) 28 (17.8%) 44 (56.4%) 18 (18.4%) 33 (20%) 24 (35.3%) 

Height-for-age z-score 0.3 ± 1.14 0 ± 1.07 0.3 ± 1.14 0.7 ± 1.11 -0.2 ± 1.06 0.3 ± 1.05 1 ± 1.14 
Stunting (<-2 HAz) 10 (3%) 5 (5.2%) 4 (2.5%) 1 (1.3%) 6 (6.1%) 4 (2.4%) 0 (0%) 

Fat mass at 11 years (%) 28.6 ± 12.56 21.1 ± 9.03 28.3 ± 11.92 38.3 ± 11.1 26.7 ± 11.69 28.2 ± 13.01 32.2 ± 12.1 
Pubertal stage Females        

Stage 1-2 15 (9.7%) 10 (20%) 4 (5.5%) 1 (3.2%) 3 (6.8%) 9 (11.5%) 3 (9.4%) 
Stage 3  30 (19.5%) 12 (24%) 13 (17.8%) 5 (16.1%) 8 (18.2%) 19 (24.4%) 3 (9.4%) 
Stage 4-5  109 (70.8%) 28 (56%) 56 (76.7%) 25 (80.6%) 33 (75%) 50 (64.1%) 26 (81.2%) 

Pubertal stage Males        
Stage 1-2  32 (18.1%) 6 (13%) 17 (20.2%) 9 (19.1%) 15 (27.8%) 10 (11.5%) 7 (19.4%) 
Stage 3  74 (41.8%) 21 (45.7%) 33 (39.3%) 20 (42.6%) 23 (42.6%) 32 (36.8%) 19 (52.8%) 
Stage 4-5  71 (40.1%) 19 (41.3%) 34 (40.5%) 18 (38.3%) 16 (29.6%) 45 (51.7%) 10 (27.8%) 

 

The growth trajectory patterns are as per our previous study (López-Domínguez et al., 2023).
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Table 2. Factor loadings of the three dietary patterns identified. 
 

Processed Coffee, Tea and 
Vegetables 

Common-
Brazilian 

Fast food and snacks 0.446 0.062 -0.142 
Candies and sweets 0.410 -0.170 0.191 
Milk and dairy products 0.356 -0.304 0.099 
Processed meats 0.335 0.037 0.047 
Cookies and cake 0.320 0.088 -0.146 
Pastas and tubers 0.287 0.204 -0.200 
Soda 0.251 -0.063 -0.187 
Coffee -0.033 0.557 0.031 
Sugar 0.042 0.499 0.037 
Teas -0.072 0.337 -0.135 
Vegetables and legumes 0.086 0.307 0.065 
Beans -0.052 -0.014 0.492 
Rice -0.006 -0.017 0.456 
Bread 0.027 0.078 0.381 
Fats 0.099 0.077 0.323 
Meats and eggs 0.218 0.095 0.119 
Fruits and fruit juices 0.196 0.125 0.202 
Fish 0.176 0.048 -0.046 
Vegetable spices -0.012 0.116 0.232 
Number of food groups 7 4 4 
Eigenvalues  3.43 1.84 1.48 
% of variance explained 13.1% 11.6% 10.8% 
% of cumulative variance 
explained 

13.1% 24.7% 35.5% 

The dietary patterns were composed by the food groups with the value of the factor loadings in 

bold. 
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Table 3. Comparison (p-values shown) of gut microbiota beta-diversity and variables of interest 

(sex, puberty, BMIz and HAz patterns, dietary patterns). 

 Unweighted UNIFRAC Weighted UNIFRAC 
 All 

(n=331) 
Females  
(n=154) 

Males  
(n=77) 

All 
(n=331) 

Females  
(n=154) 

Males  
(n=77) 

Sex (Female) 0.67     0.08     
Puberty stage 0.757 0.739 0.057 0.646 0.876 0.591 

Stage 1-2 vs 3 0.86 0.9 0.43 0.87 0.79 0.84 
Stage 1-2 vs 4-5 0.86 0.9 0.64 0.87 0.79 0.84 
Stage 3 vs 4-5 0.86 0.9 0.02 0.87 0.79 0.8 

BMIz pattern 0.009 0.21 0.05 0.12 0.23 0.71 
Decreasing vs Stable 0.89 0.94 0.86 0.45 0.9 0.79 
Decreasing vs Increasing 0.001 0.12 0.05 0.13 0.19 0.79 
Stable vs Increasing 0.001 0.16 0.05 0.21 0.24 0.79 

HAz pattern 0.08 0.06 0.34 0.2 0.38 0.45 
Decreasing vs Stable 0.24 0.17 0.7 0.32 0.62 0.46 
Decreasing vs Increasing 0.09 0.02 0.44 0.23 0.56 0.46 
Stable vs Increasing 0.45 0.58 0.37 0.49 0.66 0.46 

Dietary pattern adherence             
Processed 0.4 0.34 0.34 0.8 0.35 0.32 
High vs Low 0.39 0.44 0.37 0.78 0.41 0.43 
High vs Medium 0.52 0.57 0.59 0.78 0.41 0.43 
Low vs Medium 0.94 0.57 0.59 0.78 0.58 0.58 

Coffee, Tea and Vegetables 0.001 0.003 0.003 0.009 0.19 0.18 
High vs Low 0.003 0.009 0.01 0.02 0.14 0.13 
High vs Medium 0.03 0.01 0.02 0.71 0.56 0.57 
Low vs Medium 0.02 0.63 0.61 0.03 0.6 0.58 

Common-Brazilian 0.001 0.001 0.001 0.006 0.03 0.03 
High vs Low 0.003 0.003 0.003 0.01 0.02 0.03 
High vs Medium 0.02 0.08 0.07 0.45 0.35 0.35 
Low vs Medium 0.07 0.1 0.12 0.01 0.16 0.14 

Associations were tested using PERMANOVA test (999 permutations) where significance was 
set at p < 0.05.  
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