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22 Abstract

23 Background: Low health literacy is associated with poor health outcomes. Hospital 

24 discharge instructions are often written at advanced reading levels, limiting patients’ 

25 with low health literacy ability to follow medication instructions or complete other 

26 necessary care. Previous research demonstrates that improving the readability of 

27 discharge instructions reduces hospital readmissions and decreases healthcare costs. 

28 We aimed to use artificial intelligence (AI) to improve the readability of discharge 

29 instructions.

30

31 Methodology/Principal Findings: We collected a series of discharge instructions for 

32 adults hospitalized for heart failure (n=423), which were then manually simplified to a 

33 lower reading level to create two parallel sets of discharge instructions. Only 343 sets 

34 were then processed via AI-based machine learning to create a trained algorithm. We 

35 then tested the algorithm on the remaining 80 discharge instructions. Output was 

36 evaluated quantitatively using Simple Measure of Gobbledygook (SMOG) and Flesch-

37 Kincaid readability scores and cross-entropy analysis and qualitatively. Using this test 

38 dataset (n=80), the average reading levels were: original discharge instructions (SMOG: 

39 10.5669±1.2634, Flesch-Kincaid: 8.6038±1.5509), human-simplified instructions 

40 (SMOG: 9.4406±1.0791, Flesch-Kincaid: 7.2221±1.3794), and AI-simplified instructions 

41 (SMOG: 9.3045±0.9531, Flesch-Kincaid: 7.0464±1.1308). AI-simplified instructions 

42 were significantly different from original instructions (p<0.00001). The algorithm made 

43 appropriate changes in 26.1% of instances to the original discharge instructions and 

44 improved average reading levels by 1.26±0.32 grade levels (SMOG) and 1.02±0.47 
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45 grade levels (Flesch-Kincaid). Cross-entropy analysis showed that as the data set 

46 increased in size, the function of the algorithm improved.

47

48 Conclusions/Significance: The AI-based algorithm learned meaningful phrase-level 

49 simplifications from the human-simplified discharge instructions. The AI simplifications, 

50 while not in complete agreement with the human simplifications, do appear as 

51 statistically significant improvements to SMOG and Flesch-Kincaid reading levels. The 

52 algorithm will likely produce more meaningful and concise simplifications among 

53 discharge instructions as it is trained on more data. This study demonstrates an 

54 important opportunity for AI integration into healthcare delivery to address health 

55 disparities related to limited health literacy and potentially improve patient health.
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56 Author summary 

57 Patient-facing materials are often written at too high of a reading level for patients, such 

58 as hospital discharge instructions. These instructions provide critical information on how 

59 to control health conditions, take medications, and attend follow-up visits. Difficulty 

60 understanding these instructions could lead to the patient returning to the hospital if they 

61 do not understand how to control their health condition.

62

63 Improving the readability of discharge instructions can reduce hospital readmissions. It 

64 may improve health outcomes for patients and reduce healthcare costs. Artificial 

65 intelligence (AI) may be used to improve the reading level of patient-facing materials. 

66 Our work aims to create a tool that can accomplish this goal.

67

68 We obtained hospital discharge instructions for heart failure. Discharge instructions 

69 were edited by medical experts to improve their readability. This created two sets of 

70 discharge instructions that were processed using AI. We created and tested an AI tool 

71 to automatically simplify discharge instructions. Although not perfect, we found that the 

72 tool was successful. This research shows that AI can be used to address health literacy 

73 needs within health care by making patient-facing health materials easier to understand. 

74 This is important to empower all patients to take action to improve their health.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.18.23291568doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.18.23291568
http://creativecommons.org/licenses/by/4.0/


5

76 Introduction

77 Limited health literacy is an important predictor of health status and affects about 9 out 

78 of 10 adults in the United States [1]. It is defined as the degree to which individuals can 

79 find, understand, and use information and services to inform health-related decisions 

80 and actions for themselves and others [2]. Limited health literacy is related to health 

81 disparities [3-7], higher healthcare costs [8-14], and poorer health outcomes [15].

82

83 Patient-facing literature is often written at too high of a readability level for their intended 

84 recipients [16], including hospital discharge instructions [13-14, 17]. This can make it 

85 difficult for patients to understand their medication dosing instructions, timeline for 

86 follow-up appointments, and other aspects of care. As a result, patients could be 

87 readmitted to hospitals [18, 19], resulting in increased costs for the healthcare system 

88 as a whole with the risk of increasing morbidity and mortality for patients. A study by 

89 Choudhry et al. demonstrated improved readability of discharge summaries by breaking 

90 up long sentences, changing complex terminology, and assessing content with 

91 readability calculators. As a result, the study team found that 30-day patient 

92 readmissions in the post-hospital setting were reduced by 50% [20]. 

93

94 Our study aims to leverage natural language processing and artificial intelligence (AI) to 

95 improve the readability of hospital discharge instructions. AI can be used to address 

96 contextual information, grammatical structure, and changes to word order. Most current 

97 AI solutions related to the discharge process revolve around care coordination [21], 

98 rather than focus on patient discharge instructions, or aim to predict patients likely to be 
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99 readmitted to the hospital [22-24]. We examined whether an AI-based system can learn 

100 and incorporate meaningful simplifications of hospital discharge instructions. We believe 

101 that we were able to achieve this aim.

102

103 Materials and methods

104 Study overview

105 Institutional Review Board approval was obtained for this study. We obtained a list of 

106 medical record numbers for adults hospitalized from 2016 to 2021 at our academic 

107 medical center with a diagnosis code of heart failure, a leading cause of readmissions, 

108 addressed during their hospitalization. This list was obtained through our institution’s 

109 information management department. Discharge summaries for these hospitalizations 

110 written between 2016 to 2021 were then collected manually from the electronic medical 

111 records. 

112

113 We collected 423 discharge instructions. These discharge instructions were not 

114 randomly collected from the list of medical record numbers available. Collected 

115 discharge instructions were re-formatted to replace bulleted lists with sentences. This 

116 ensured that bulleted lists were not perceived as run-on sentences by readability 

117 calculators. The readability scores of the discharge instructions were then calculated 

118 using the Simple Measure of Gobbledygook (SMOG) index and Flesch-Kincaid score 

119 [25], creating a compilation of reading level scores for the original set of discharge 

120 instructions that correlate to years of education and grade reading level.

121
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122 The original versions of discharge instructions were then manually rewritten by medical 

123 experts as human simplifiers using a standardized process to improve readability. This 

124 process included eliminating long sentences and exchanging complex terms with lay 

125 terms. The manual simplification of text was performed on a line-by-line basis to create 

126 parallel data sets for AI training, while working to preserve the original meaning of the 

127 content for patients. The readability scores of the human-simplified discharge 

128 instructions were then calculated using the SMOG index and Flesch-Kincaid score.

129

130 Of the 423 discharge instructions, only 343 parallel discharge instructions (“training 

131 dataset”) were processed via AI-based machine learning to create an algorithm trained 

132 on the data. This algorithm was then tested on the remaining 80 discharge instructions 

133 that the algorithm had not seen before (“test dataset”). The output from the algorithm 

134 was evaluated quantitatively using readability scores and cross-entropy analysis, which 

135 measures how well the algorithm predicts human simplification on a word-by-word 

136 basis. The output was also evaluated qualitatively by human readers examining 

137 grammar and semantic content.

138

139 Algorithm development

140 The text-simplification task is formulated as a machine translation problem. Machine 

141 translation algorithms take text in a source language and output text in a target 

142 language, such as English or German. In our case, the source language is text from the 

143 original versions of hospital discharge instructions, and the target language is an AI-

144 simplified version of the text. "Translation" in this case does not refer to translation 
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145 between different languages, but rather the formal operation of the algorithm. All text, 

146 both input and output, is rendered in English.

147

148 Like most state-of-the-art machine translation algorithms, our model is built on 

149 transformers. Transformers are neural network architectures that learn representations 

150 of input sequences from attention-based transformations.

151

152 Results

153 The average SMOG reading level of the training dataset (n=343) with no simplifications 

154 was 10.9300 ± 1.4272. By Flesch-Kincaid, the average reading level was 9.0776 ± 

155 1.7771. The average reading level of the human-simplified instructions was 9.3110 ± 

156 0.8953 by SMOG and 7.3081 ± 1.2092 by Flesch-Kincaid.

157

158 We found that the average SMOG reading level of the test dataset (n=80) was 10.5669 

159 ± 1.2634 for the original discharge instructions and 9.4406 ± 1.0791 for human-

160 simplified instructions (Fig 1). The average Flesch-Kincaid reading level was 8.6038 ± 

161 1.5509 for the original discharge instructions and 7.2221 ± 1.3794 for human-simplified 

162 instructions,

163

164 In comparison, the average SMOG reading level for the AI-simplified instructions in the 

165 test dataset (n=80) was 9.3045 ± 0.9531 (Fig 1). The human-simplified and the AI-

166 simplified were both significantly improved reading levels from the original discharge 

167 instructions (Table 1). The average Flesch-Kincaid reading level was 7.0464 ± 1.1308 
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168 for AI-simplified instructions. We found that the algorithm made appropriate changes to 

169 the original discharge instructions in 26.1% of instances (Table 2), as well as average 

170 readability level improvements of 1.2624 ± 1.0791 grade levels by the SMOG index and 

171 1.5574 ± 1.3274 grade levels by the Flesch-Kincaid score. We did find that the 

172 algorithm may maintain the original text without making any simplifications, although a 

173 human simplifier could identify opportunities to simplify the text. At times, the algorithm 

174 would introduce text that did not make sense within the meaning of the sentence (Table 

175 3). The cross-entropy analysis showed that mean cross-entropy decreased as the data 

176 set increased in size, indicating that the function of the algorithm improved as the data 

177 set size grew (Fig 2).

178

179 Table 1: Comparing average readability scores among the three versions of 

180 discharge instructions (n=80).

Average reading 
level of original 

discharge 
instructions

Average reading 
level of human-

simplified 
instructions

Average reading 
level of AI-
simplified 

instructions
P-value

SMOG index 10.5669 ± 1.2634 9.4406 ± 1.0791 9.3045 ± 0.9531 p<0.00001

Flesch-Kincaid 
readability 

score
8.6038 ± 1.5509 7.2221 ± 1.3794 7.0464 ± 1.1308 p<0.00001

181 Average SMOG index and Flesch-Kincaid readability scores of the original, human-

182 simplified, and AI-simplified discharge instructions (n=80), one-way analysis of variance 

183 (ANOVA) test

184
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185 Table 2: Examples of text from original discharge instructions with correlating 

186 human-simplified and AI-simplified text.

Original discharge 
instructions

Human-simplified text AI-simplified text

Please take all of your 
medications exactly as 
prescribed. Tell your 

primary care provider if you 
cannot afford your 

medications.

Please take all of your 
medicine exactly as 

written. Tell your family 
doctor if you can't pay for 

your medicine.

Please take all of your 
medications exactly as 

ordered by the doctor. Tell 
your family doctor if you 

can not pay for your 
medications .

It was our pleasure to care 
for you during your 

hospitalization.

It was our pleasure to care 
for you during your stay in 

the hospital.

It was our pleasure to care 
for you during your hospital 

stay.

If you find a discrepancy 
between your home 
medications and the 

medication list found later 
in this packet, please 
address this with your 

family doctor.

If you find a difference 
between your home drugs 

and the drug list found 
later in this packet, please 

ask about this with your 
family doctor.

If you find a difference 
between your home 
medications and the 

medication list found later 
in this packet , please talk 
about this with your family 

doctor .
187

188 Table 3: Examples of text from original discharge instructions with correlating 

189 human-simplified and AI-simplified text, with AI-simplified text unchanged or 

190 inappropriately simplified.

Original discharge 
instructions

Human-simplified text AI-simplified text

This number will connect 
you to the hospital operator 

and ask for the Cardiac 
Surgery PA on duty.

This number will get you to 
the hospital operator and 
ask for the heart surgeon 

on duty.

This number will connect 
you to the hospital operator 

and ask for the Cardiac 
Surgery PA on duty.

If you do not hear from the 
provider on this date, 

please contact them on the 
next business day.

If you do not hear from the 
doctor on that day, please 

call them the next 
weekday.

If you do not hear from the 
doctor on this date , please 
contact them on the next 2 

business day.
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Do not discontinue 
medications without first 

discussing with your 
physician.

Do not stop medications 
without first discussing with 

your doctor.

Do not put any first pee 
first discussing with your 

doctor.

191

192 Discussion

193 We found that our AI-based algorithm learned meaningful phrase-level simplifications 

194 from the human-simplified discharge instructions. The AI simplifications, while not 

195 completely agreeing with the human simplifications, do appear as statistically significant 

196 improvements to SMOG and Flesch-Kincaid reading levels. Future studies should 

197 evaluate patient comprehension of the simplified texts. A similar study identified difficult 

198 terms, replaced them with easier synonyms, and generated and inserted explanatory 

199 texts for them [26]. Most text replacements were deemed correct and user evaluation 

200 showed a non-statistically significant trend toward better comprehension when 

201 translation was provided. Another study automated simplification of medical text based 

202 on word frequencies and language modeling using medical ontologies enriched with lay 

203 terms [27]. The language model was trained on medical forum data and tested using 

204 crowdsourcing. The researchers found their model generated simpler sentences while 

205 preserving grammar and the original meaning. One study, however, used natural 

206 language processing to substitute difficult terms for simpler terms and split long 

207 sentences into shorter sentences in electronic medical records and journal articles; it 

208 found that the length of sentences and reading grade level increased from baseline; 

209 however, the study did not evaluate comprehension [28].

210
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211 Our study’s cross-entropy findings show that the algorithm is more concise and does 

212 not produce unnecessarily long sentences. Decreasing cross entropy with increased 

213 data set size indicates that the AI-based algorithm will likely produce more meaningful 

214 and concise simplifications among discharge instructions as we continue to train the 

215 algorithm on more data sets. Studies investigated methods to expand resources that 

216 link medical terms with lay terms, which may facilitate algorithm training. These 

217 methods include creating a system that identifies terms based on their importance for 

218 patients [29], ranking medical terms mined from electronic medical records by 

219 importance for patient comprehension [30], and predicting which medical terms are 

220 unlikely to be understood by a lay reader [31,32].

221

222 Text simplification via machine learning can be a challenging process, but it serves an 

223 important role in reducing barriers to health literacy. Health literacy is associated with a 

224 range of social and individual factors [3-6], and certain populations are likely more 

225 adversely affected by limited health literacy compared to others without such limits, 

226 such as certain racial groups [4], seniors [6], young adults [6], and Medicare and 

227 Medicaid populations [7]. Limited health literacy is associated with increased risk of 

228 hospitalization [33,34], mortality [35], and high healthcare costs [8,9]. High healthcare 

229 costs could be driven in part by individuals’ difficulty understanding how to manage their 

230 chronic conditions, hospital discharge instructions [10-14], and/or other medical-related 

231 literature.

232
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233 There are opportunities to assess patients’ health literacy levels to determine their 

234 literary needs. A study found that only 20% of hospitals reported routinely screening 

235 patients and 41% of hospitals reported never screening health literacy [36]. Hospitals 

236 that screen for health literacy may have higher medication adherence [36] and reduced 

237 hospital readmission rates [37]. Screening tools to measure health literacy include the 

238 Brief Health Literacy Screen (BHLS) [38], Test of Functional Health Literacy (S-

239 TOFHLA) [38,39], Single Item Literacy Screener (SILS), and Newest Vital Sign (NVS). 

240 Other opportunities to address health literacy include tailoring education [40], engaging 

241 caregivers [41] and conducting activities that increase patients’ self-efficacy [42]. 

242

243 This study is limited by its small sample size of hospital discharge instructions, as there 

244 is a lack of high-quality, medically accurate, and publicly available datasets for 

245 evaluating medical text simplification. These discharge instructions were not randomly 

246 collected from the list of medical record numbers available. Further, our study is limited 

247 to heart failure discharge instructions, which may have less variability than those for 

248 other diagnoses. Expanding our data set is a priority for future studies, as well as 

249 evaluating comprehension of AI-simplified discharge instructions.

250

251 AI has the potential to improve the lives of individuals. This includes within improving 

252 the readability of health-related materials. There is a need to ensure an appropriate 

253 match between the readability of the health content and the health literacy level of the 

254 patient. The association of limited health literacy with poor outcomes such as increased 
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255 risk of hospitalization and death warrants the need for continued investigations into such 

256 interventions.
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436

437 Fig 1: Average readability scores for the three versions of discharge instructions. 

438 Average readability scores of the original, human-simplified, and AI-simplified discharge 

439 instructions (n=80) using the SMOG index and Flesch-Kincaid readability scores.
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440

441 Fig 2: Mean cross entropy by the size of the hospital discharge instruction data 

442 set. Cross entropy decreased as the data set increased in size, indicating that the 

443 algorithm improved as the size of the data set grew (n=343).
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