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ABSTRACT 18 

Background: Given suboptimal performance of Boolean searching to identify methodologically 19 

sound and clinically relevant studies in large bibliographic databases such as MEDLINE, 20 

exploring the performance of machine learning (ML) tools is warranted.  21 

Objective: Using a large internationally recognized dataset of articles tagged for methodological 22 

rigor, we trained and tested binary classification models to predict the probability of clinical 23 

research articles being of high methodologic quality to support a literature surveillance 24 

program.  25 

Materials and Methods: Using an automated machine learning approach, over 12,000 models 26 

were trained on a dataset of 97,805 articles indexed in PubMed from 2012-2018 which were 27 

manually appraised for rigor by highly trained research associates with expertise in research 28 

methods and critical appraisal. As the dataset is unbalanced, with more articles that do not 29 

meet criteria for rigor, we used the unbalanced dataset and over- and under-sampled datasets. 30 

Models that maintained sensitivity for high rigor at 99% and maximized specificity were 31 

selected and tested in a retrospective set of 30,424 articles from 2020 and validated 32 

prospectively in a blinded study of 5253 articles. 33 

Results: The final selected algorithm, combining a model trained in each dataset, maintained 34 

high sensitivity and achieved 57% specificity in the retrospective validation test and 53% in the 35 

prospective study. The number of articles needed to read to find one that met appraisal criteria 36 

was 3.68 (95% CI 3.52 to 3.85) in the prospective study, compared with 4.63 (95% CI 4.50 to 4.77) 37 

when relying only on Boolean searching. 38 
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Conclusions: ML models improved by approximately 25% the efficiency of detecting high quality 39 

clinical research publications for literature surveillance and subsequent dissemination to 40 

clinicians and other evidence users.  41 

 42 

Keywords: bioinformatics; machine learning; evidence-based medicine; literature retrieval; medical 43 

informatics; Natural Language Processing; biomedical informatics.  44 

INTRODUCTION 45 

The increasing pace with which medical literature is produced is well established. So is the challenge in 46 

filtering the high-quality, clinically relevant articles from those not ready for clinical practice. Validated 47 

search strategies that filter articles by research methods, such as systematic reviews (1) and randomized 48 

controlled trials (2) have been integrated into biomedical databases to improve the efficiency of finding 49 

evidence. Though these strategies perform well, maximizing sensitivity or recall (i.e., the proportion of 50 

all on-target articles that are retrieved) comes at the cost of lower specificity (the proportion of off-51 

target articles that are excluded from the result set) and precision (positive predictive value, i.e., the 52 

proportion of retrieved articles that are on target). Low specificity leads to significant time and 53 

resources needed to manually review and appraise the quality of the studies reported in the articles.  54 

More recently, machine learning (ML) approaches have been applied to retrieve high quality evidence 55 

from the biomedical literature (3). There are several types of ML approaches which are determined by 56 

the mathematical method used (4,5). The most common approaches are supervised ML, unsupervised 57 

ML, ensemble learning, and neural networks. Supervised ML relies on a prelabelled training dataset to 58 

provide the machine with the necessary input to make accurate predictions (6).  There are several 59 

supervised ML algorithms used to train models. For example, authors have used Artificial Neural 60 

Networks, Decision Tree, K-Nearest Neighbour, Naïve Bayes, Random Forest, and Support Vector 61 
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Machine algorithms for predicting diseases (7). Automated machine learning (AutoML) iterates, selects, 62 

and optimizes ML models at multiple steps of the process (8) by automating the selection of promising 63 

algorithms, hyperparameter tuning, pre-processing, and features selection (8,9). The system searches 64 

through possible model and hyperparameter configurations and selects those that perform best on the 65 

given task. This reduces the time needed to train and test models and inaccuracies in the model that 66 

may arise from human errors and bias.  67 

At the McMaster Health Research Information Unit (HiRU), we evaluate, at the time of publication, 68 

original studies, systematic reviews, and evidence-based guidelines in ~120 top health care journals and 69 

research synthesis services (10) through the Premium LiteratUre Service (PLUS). Candidate studies are 70 

retrieved from PubMed daily using validated, highly sensitive Boolean search strategies to maximize 71 

recall of high-quality studies. Articles are then manually appraised by highly trained research associates 72 

with expertise in health research methods and critical appraisal to determine if they meet explicit 73 

criteria for scientific merit. Those that meet the criteria are reviewed by a clinical editor and rated for 74 

clinical relevancy and newsworthiness by a cadre of >6000 clinicians worldwide (11). The identified 75 

research is packaged into several evidence information services, tailored to the needs of knowledge 76 

users (e.g., publishers, authors, guideline developers, policy makers) and end users (e.g., clinicians) 77 

(Figure 1A). This process and application of critical appraisal criteria is consistent with the methods the 78 

HiRU team used in creating the HEDGES dataset of articles published in 2006 which has been used in the 79 

development of numerous Boolean search strategies (2,12–14) and ML models (15–17). Through PLUS, 80 

we have curated a database of articles manually classified according to methodological rigor and clinical 81 

relevance since 2012. For example, in 2019, 59 052 items indexed in PubMed in the journal set were 82 

reduced to 17 349 (29.3%) by the sensitive Boolean search filters, all of which were manually appraised 83 

by research associates. Of these, 3749 articles met critical appraisal criteria (18), giving a number of 84 

articles needed to read to identify one that met criteria (number needed to read; NNR), measured as the 85 
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inverse of precision, of 4.63 (95% CI 4.50 to 4.77). The NNR provides a measure of human effort required 86 

during the critical appraisal step and a proxy for efficiency; a lower NNR reflects fewer off target articles 87 

and reduced time and effort for research associates to screen them out.  88 

Maintaining PLUS is a resource-intensive activity, and currently limited to a subset of ~120 journal titles 89 

(11).  Reducing the NNR, by having staff focus on fewer articles that are more likely to meet criteria for 90 

rigor, while maintaining high recall (sensitivity >99%), can improve the efficiency of the process. This is 91 

particularly important as PLUS has expanded to include appraisal of all COVID-19 publications since 92 

March 2020 across all of PubMed. 93 

Objective: To improve the efficiency of identifying high-quality clinical research to support a literature 94 

surveillance service while maintaining sensitivity at 99% (to ensure high quality articles are not missed) 95 

and reducing the NNR.  96 

 97 
 98 
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Figure 1. Illustration of the literature surveillance process A. before and B. after addition of a machine 99 

learning algorithm to predict quality of the article. 100 

MATERIALS AND METHODS 101 

 102 

We performed a retrospective study using a labelled dataset of articles that were critically appraised for 103 

methodologic rigor and clinical relevance to train, validate, and test algorithms that predict the 104 

likelihood of a clinical article meeting appraisal criteria for rigor. We used automated ML as an efficient 105 

approach to training multiple models. Selected models were prospectively evaluated by having trained 106 

research associates, blinded to model predictions, appraise incoming articles in the literature 107 

surveillance program, as a test of the external validity of model predictions. 108 

Quality standard database 109 

We define high-quality or rigor as meeting at least all critical appraisal criteria for a particular article 110 

type (review, guideline, original study) or purpose category (treatment, diagnosis, prognosis, etiology for 111 

harm primary prevention, quality improvement, economics, or clinical prediction guides) based on 112 

established evidence assessment criteria (18). The critical appraisal step, conducted manually by 113 

research associates, has previously documented high inter-rater agreement (kappa > 0.80 for all 114 

categories)(10). Articles that meet methodological criteria are then reviewed by a clinical editor with 115 

advanced research methods training and at least three members of an online community of >4000 116 

clinicians who rate the methodologically rigorous articles for clinical relevance and newsworthiness (11). 117 

Over the course of two decades, we have reviewed more than 500,000 articles and have curated an 118 

internal database that also includes articles that did not meet methodological rigor criteria or clinical 119 

relevance or newsworthiness. Notably, the database is unbalanced, with about 4.5 times the number of 120 

articles that fail to meet methodologic rigor or clinical relevance than those that pass. The growing 121 

database now includes articles on COVID-19 indexed in PubMed not limited to the core journal set. 122 
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Model training and performance  123 

Our approach to model training was to use automated machine learning (AutoML), a process that allows 124 

for running multiple sequential experiments with varying settings. The process, depicted in Figure 2, 125 

automatically iterates model training using the combinations of pre-processing options, weighting 126 

methods, feature selection, and hyper-parameters listed in Table 1, and optimizes selections to identify 127 

the best performing combinations—essentially the approach optimizes performance and abandons 128 

steps that do not lead to better performing models. The performance of an AutoML system depends on 129 

the quality of the data and the specific task at hand. We chose AutoML for this study since our dataset 130 

was of high quality as it was reviewed and appraised by human experts, and we wanted to remove our 131 

biases and grow our understanding of the best approaches for our dataset. AutoML allowed for 132 

experimentation while developing expertise. We used Microsoft’s ML.NET AutoML (19) to train and test  133 

binary classification models that predicted if an article was of high-quality or not to help us get a highly 134 

optimized model, driven by a set goal of improving specificity while maintaining sensitivity above 99%.   135 

We tested weighting by term frequency (TF), inverse document frequency (IDF), and TF-IDF to account 136 

for frequency of words within titles and abstracts of articles and their frequency across a dataset.  A 137 

convenience sample of algorithms available in the public domain and in ML.NET that provided a 138 

probability score as an output measure was selected for training. This allowed us to set a threshold of 139 

99% sensitivity rather than the default 50%.  The available algorithms at the time of training were 140 

FastTree, Limited-memory Broyden-Fletcher-Goldfarb-Shanno Logistic Regression, Stochastic Dual 141 

Coordinate Ascent Logistic Regression, Stochastic Gradient Descent Calibrated Logistic Regression, 142 

Symbolic SGD Logistic Regression, and Light Gradient Boosting Machine (LightGBM) .  143 

 144 

Table 1. Parameters and features used in the training of models using automated ML.  145 
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Preprocessing/featurization  Options Datasets 
applied to 

Case Lowercase or unchanged All 

Numbers Removed or left as is All 

Punctuation Removed or left as is All 

Stop words Removed or left as is All 

Normalization L1, L2, infinity, or none All 

Ngram length 1 or 2 All 

 3 Undersampled 
dataset only 

All lengths* Yes or no All 

Weighting TF, IDF, or TF-IDF All 

IDF = inverse document frequency; TF = term frequency.  146 

*All lengths applies when ngram length is >1 and indicates whether it only uses ngrams of the specified 147 

length (use all lengths = false) or uses ngrams of all lengths up to and including the specified length (use 148 

all lengths = true). 149 

 150 

Figure 2. Example depiction of the autoML process.  151 

Models with >99% sensitivity were ranked by maximal specificity. The classification models were trained 152 

using titles and abstracts of a random 80% of articles from 2012-2018 (n = 97,805). Of these, 17,824 met 153 
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criteria for rigor for one or more article categories; 79,981 did not. To address the imbalance in articles, 154 

we created 3 training datasets: 80% of the full dataset (unbalanced; n = 97,805), and two additional 155 

datasets to achieve balance through oversampling (articles meeting criteria were included multiple 156 

times to equal the number of articles that did not; n = 159,962) and undersampling (random subset of 157 

articles not meeting criteria were matched to the number that did; n = 35,648).   158 

Trained models were tested on the remaining hold-out set of 20% (n = 24,678) of articles from 2012-159 

2018. Models with ≥99% sensitivity with the best specificity for each of the full, over-, and under-160 

sampled datasets were retained, and one model per dataset was selected from the leaderboard. Models 161 

return a probability score ranging from 0 (does not meet criteria) to 1 (meets criteria) for each article. 162 

The probability threshold was determined as the point where sensitivity was 99%. To determine if 163 

ensembling the three models improved performance compared with the individual models,  we tested 164 

their performance individually and combined—using a majority vote such that articles predicted to pass 165 

in ≥2 of the 3 models were classified as ‘pass’ (or classified as ‘fail’ if 0 or 1 model predicted a pass)—in a 166 

retrospective sample of 30,424 articles in our dataset that were published in 2020.  167 

The performance of the models in the hold-out test set is akin to internal validation. Since our goal is to 168 

implement an algorithm into a literature surveillance program, we assessed its performance in real-time 169 

in an external test on unseen data.  We prospectively evaluated the accuracy of the majority vote 170 

algorithm by applying it after Boolean searches of PubMed and before critical appraisal by our research 171 

associates, who were blinded to the predictions of 5253 articles published between March 9 to May 11, 172 

2021.  Staff appraised all articles predicted to pass and a random subset of those predicted to fail.  False 173 

negative articles were assessed by a senior clinical researcher (BH)  to determine clinical relevance and 174 

newsworthiness .  175 

Evaluation metrics 176 
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For all trained models, during the testing phase we calculated sensitivity (recall), specificity, accuracy, 177 

precision, NNR (1/precision), and F-score (harmonic mean of recall and precision metrics) in the 20% 178 

hold-out set of articles from 2012-2018. We also calculated the area-under-the-curve (AUC) of the 179 

receiver operating characteristic (ROC) curve. The ROC curve is created by plotting the true positive rate 180 

(sensitivity) against the false positive rate (1-specificity) by varying the threshold applied to the 181 

probability outputs of a classifier. AUC is thus a threshold-independent parameter which demonstrates 182 

the overall performance of the classifier. The statistical probability was calculated for the three selected 183 

models and majority vote algorithm in the 2020 data and the prospective evaluation. For the 184 

prospective evaluation, we estimated the bias-corrected sensitivity and specificity with corresponding 185 

95% confidence intervals (CIs) using the Begg and Greenes (20)  formula that corrects for any bias when 186 

a only subsample is verified to account for the articles that were predicted to fail and that were not 187 

verified by design. The bias correction models the diagnostic distribution of the articles that were 188 

verified (20). 189 

 190 

RESULTS 191 

Selected models and their performance 192 

We trained 3456 models using the unbalanced and oversampled datasets and 5760 models using the 193 

undersampled dataset. The preprocessing steps and parameters used in the selected top performing 194 

models are shown in Table 2; each of the three selected models used the LightGBM binary classification 195 

algorithm (21,22). LightGBM (light gradient-boosting machine)(21) is a gradient boosting framework that 196 

uses decision tree algorithms. It is a more efficient implementation of gradient boosting decision tree 197 

(23) which is an ensemble model of decision trees trained in sequence and a widely-used machine 198 

learning algorithm, thanks to its efficiency, accuracy, and interpretability. The performance 199 
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characteristics of each of the three models in the test datasets from 2012-18 and 2020 are listed in Table 200 

3. The oversampled dataset shows more variation in the ROC curves of all trained classifiers, which could 201 

be due to having higher number of training examples resulting in underfitting of some classifiers; the 202 

ROC curves are available in Appendix A. The classifiers trained on undersampled data also have slightly 203 

more variation in performance compared to unbalanced data, which may be because some information 204 

was lost compared to using all available data. Nevertheless, the AUC values for the three top performing 205 

models are very close to each other indicating a high performance for the selected LightGBM model in 206 

all three cases.  207 

 208 

Table 2. Characteristics of the dataset, preprocessing, and feature extraction steps  employed by 209 

AutoML in the training of the model   selected from each dataset experiment* 210 

 
Model 1 
(Unbalanced 
dataset) 

Model 2 
(Balanced by 
over-sampling) 

Model 3 
(Balanced by 
under-
sampling) 

Number of articles in training datasets 97 805 159 962 35 648 

Ratio of negative:positive articles (or 
%positive) 

4.5:1 1:1 1:1 

Number of models trained 3456 3456 5760 

    

Features employed in the selected best model: 

Text converted to lowercase Yes Yes No 

Removal of punctuation Yes Yes Yes 
Removal of stop words Yes No No 

Removal of Diacritics Yes Yes Yes 
Removal of numbers Yes Yes Yes 
Weighting method TF-IDF TF-IDF TF-IDF 

Normalization technique None None L1 

N-grams Uni-grams Bi-grams Tri-grams 
L1 = Manhattan Distance or Taxicab norm. TF-IDF = term frequency - inverse document frequency. 211 
*All selected models used LightGBM binary classification model.  212 
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 213 

Table 3. Performance characteristics for the three models in the testing datasets (20% from 2012-2018, 214 

and 2020). 215 

NA =  not applicable; NNR = number needed to read. *20% of the articles from 2012-2018 for internal 216 
testing, n=24,677. †n=30,424. ‡Predictions determined by majority vote of articles meeting 2 of 3 217 
probability thresholds from the unbalanced, over- and under-sampled models to pass. 218 

 219 

Prospective evaluation 220 

Testing 
dataset  

Model 
Sensitivity (95% 
CI) 

Specificity 
(CI) 

Precision 
F-
score 

Accuracy 
NNR 
(CI) 

AUC 
(CI) 

2012-
2018* 

2 
99.0% (98.7 to 
99.3) 

53.7% 
(53.0 to 
54.4) 

32.6% 0.490 62.1% 

3.07 
(3.02 
to 
3.13) 

0.952 
(0.949 
to 
0.956) 

 

1 
99.0% (98.7 to 
99.3) 

51.0% 
(50.3 to 
51.6) 

31.3% 0.475 59.8% 

3.20 
(3.14 
to 
3.26) 

0.952 
(0.949 
to 
0.955) 

 

3 
99.0% (98.7 to 
99.3) 

51.8% 
(51.1 to 
52.5) 

31.6% 0.480 60.5% 

3.16 
(3.10 
to 
3.22) 

0.948 
(0.944 
to 
0.951) 

2020† 

Combined‡ 

99.2% (98.8 to 
99.4) 

57.5% 
(56.9 to 
58.1) 

26.2% 0.415 63.0% 

3.86 
(3.79 
to 
3.93) 

NA 

 

2 

99.1% (98.7 to 
99.4) 

57.3% 
(56.7 to 
57.9) 

26.1% 0.413 62.8% 

3.87 
(3.80 
to 
3.95) 

0.962 
(0.959 
to 
0.964) 

 

1 

99.0% (98.7 to 
99.3) 

56.4% 
(55.8 to 
57.0) 25.7% 0.408 62.0% 

3.94 
(3.86 
to 
4.01) 

0.959 
(0.956 
to 
0.962) 

 

3 

99.0% (98.7 to 
99.3) 

56.0% 
(55.4 to 
56.6) 

25.5% 0.406 61.7% 

3.96 
(3.88 
to 
4.04) 

0.956 
(0.953 
to 
0.959) 
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For the prospective evaluation, we opted to use the majority vote algorithm to classify 5253 consecutive 221 

articles entering the surveillance system; 2856 (54%) were predicted to be high quality and 2397 (46%) 222 

were not (Figure 3). All the 2856 predicted to be high quality and a random sample of 584 of the 2397 223 

predicted to not be high quality were assessed by human appraisers. The remaining 1813 (90%) were 224 

not assessed and considered true negatives. Of the random sample predicted to not be high quality and 225 

appraised by staff, four were adjudicated to be high quality (false negatives), all of which required using 226 

information from the full text of the manuscript to confirm they met the appraisal criteria for their 227 

article categories. Sensitivity was 99.5% (CI, 98.7 to 99.9), specificity was 53.5% (CI, 52.0 to 55.0), and 228 

the F-score was 0.427 (Table 4). The results of the corrected analysis that adjusts for 1813 articles that 229 

were not assessed (bias corrected calculation) overlapped with the uncorrected values (Table 4). 230 

 231 
 232 

Figure 3. Prospective evaluation of model performance in >5000 articles retrieved from PubMed. 233 
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Table 4. Prospective performance of the majority vote ML algorithm. 234 

Article 
subset 

N Sensitivity 
(95% CI) 

Specificity 
(CI) 

Precision F-score Accuracy NNR (CI) 

All 5253 99.5% (98.7 to 
99.9) 

53.5% (52.0 
to 55.0) 

27.2% 0.427 

60.3% 
3.68 (3.52 to 

3.85)  
All-
corrected* 

5253 97.9% (95.9 to 
99.9) 

53.4% (51.3 
to 55.4) 

NA NA NA NA 

COVID  3317 100% (97.4 to 
100)† 

59.3% (57.6 
to 61.1) 

9.7% 0.177 61.0% 10.29 (9.33 to 

11.49) 
NA = not applicable; NNR = number needed to read. 235 
*Bias correction to account for the 1813 articles that were predicted to fail but not verified (20).  236 
†97.5% one-sided CI. 237 
 238 

DISCUSSION 239 

Model training and performance 240 

The initial approach of using AutoML and supervised machine learning led to efficient development of 241 

models for identifying articles pre-filtered by highly sensitive Boolean searches likely to be found 242 

rigorous and clinically relevant at critical appraisal. Adopting AutoML was time efficient and allowed for 243 

the system to test various permutations of preprocessing steps and algorithms with minimal 244 

programmer time. Each of the selected highest performing models used the LightGBM binary 245 

classification algorithm (21). Our selected top performing models used TF-IDF, which accounts for both 246 

the number of times a word appears in a document and the inverse of the number of documents in the 247 

dataset that includes the word; this essentially eliminates naturally occurring English terms and gives 248 

higher values to words that are less common across the documents, or articles, in this case.  249 

Training the models with datasets of varying size and balanced/unbalanced allowed us to assess the 250 

value in data augmentation. We also explored the effect of combining models to determine if such an 251 

approach would improve performance. Though the improvement was very small, our decision to test 252 

the ensemble and implement it was based solely on our efforts to maximize specificity to reduce the 253 

NNR. Keeping sensitivity high at 99%, the specificity of the trained models was >50% in the random test 254 
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set from 2012-2018, with slightly better performance with the model trained using the larger 255 

oversampled dataset compared with the unbalanced and undersampled datasets. Though this offered a 256 

larger sample, it came at the cost of time required for model training. Despite having more models 257 

trained using the undersampled dataset, the performance of the top models was consistent with the 258 

unbalanced dataset model. All models had similar specificity in the 2020 dataset and performed 259 

marginally better than in the 2012-18 set. This could be the result of a larger sample and a broader 260 

range of journal titles and article types with the inclusion of COVID-19 publications.  261 

The results for the majority vote combined models, where articles predicted to pass for at least two of 262 

the three models, did not factually improve the performance in the three testing datasets across years. 263 

Such ensemble approaches of combining models have been used by Aphinyanaphongs et al., (24) and 264 

Kilicoglu et al. (17) and showed improved F-scores. Ensemble techniques are used to reduce variability 265 

across models by averaging out the errors made by each, assuming they are making different errors 266 

(25). Ensemble models generally perform better when the base models they combine are as diverse as 267 

possible (26). Our three models were built to represent the full unbalanced dataset, a balanced 268 

undersampled dataset, and a larger oversampled dataset, but they include the same positive class of 269 

articles and employed the same type of ML model and are likely not diverse enough to boost 270 

performance when combined.  271 

Testing and application of the ML models improved specificity compared with our traditional approach 272 

of Boolean filters alone. Our goal was to maximize recall/sensitivity and specificity and reduce the NNR. 273 

Prior to applying the ML models to the PLUS process (and before COVID-19), our NNR in 2019 was 4.63 274 

(95% CI 4.50 to 4.77). With the addition of COVID-19 articles, in 2020 our overall NNR was 7.11 (CI 6.92 275 

to 7.31). In the 2021 prospective evaluation with the addition of the ML models, the NNR was reduced 276 

to 3.68 (CI 3.52 to 3.85) for all article categories. For the four false negative articles, the main apparent 277 

reason for being missed was insufficient information in the title or abstract to be judged as valid.   278 
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Machine learning for biomedical evidence 279 

Our approach is consistent with reported methods in our recent systematic review of ML applied to 280 

improve the identification of high-quality articles (3). We used an established gold standard for high 281 

quality articles produced through our PLUS process. Seven studies included in the review trained their 282 

models using the Hedges dataset or articles included in ACP Journal Club, both of which are produced by 283 

the same process in HiRU (3). Like other studies, we used title and abstracts as training features. Of the 284 

10 studies included in our earlier systematic review, seven used datasets of articles that had been 285 

critically appraised by our process (3). 286 

Our models optimized recall to reduce the loss of relevant articles but that came at the cost of reducing 287 

specificity and precision. The precision of our models, which ranged from 26% to 33%, was surpassed by 288 

Kilicoglu et al. (17) who used ensemble models (74%), and Del Fiol et al.(16) (34%) and Afzal et al. (27) 289 

(86%) who used neural network models. The high precision achieved is likely attributed to the targeting 290 

particular categories of articles. Kilicoglu et al. (17) used an ensemble model which achieved a precision 291 

of 37% and recall of 63% when applied to articles in general, and precision of 74% and recall of 86% 292 

when used to identify rigorous treatment articles—all of which are randomized controlled trials (RCTs)—293 

a category with established terminology and structure for reporting. Afzal et al. (27) used the Cochrane 294 

library as training dataset for their neural network, which includes systematic reviews and RCTs, which 295 

again use explicit study design terminologies in the title, abstract, or commonly both. This facilitates the 296 

retrieval function for the model and improves the overall model performance. The use of additional 297 

features, like MeSH terms and MEDLINE metadata could also explain the improved performance of their 298 

model, though these elements are not readily available for an article when it is first posted in PubMed; 299 

there is a delay from PubMed creation date and indexing being applied, a delay that varies by journal 300 

title (28). Aphinyanaphongs et al. trained models using treatment, diagnosis, prognosis, and etiology 301 
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articles from ACP Journal Club (29,30) (24,31)which reflects the range of article types included in our 302 

dataset. 303 

Deep learning is also being applied to address information retrieval and evidence classification. 304 

Ambalavanan and Devarakonda (32) trained sciBERT, a pretrained deep learning algorithm, and looked 305 

at both class ratios and size of the training sets for classifiers of treatment articles using the Clinical 306 

Hedges dataset. They found that recall was maximized when there were more positive to negative 307 

articles, precision was improved in larger training sets though there appeared to be a point at which 308 

bigger did not mean better, and the F-score was optimal using a reasonably large set of balanced articles 309 

(15,000:15,000). They modeled a number of steps in the article classification process (e.g., of interest to 310 

humans, original study, treatment article, rigorous), and found that the F-score was lowest for predicting 311 

rigor, which is a more difficult task. Notably, their study focused on articles in the treatment category 312 

while our model covers articles from the full range of categories covered in the surveillance process. 313 

We recently published results on models for classifying articles for rigor that we developed by finetuning 314 

BioBERT, another pretrained language model (33). Our selected model outperformed the model 315 

reported here, saving 60% of the manual assessments required by research associates. That model has 316 

been integrated into our process but does require more computational power. Future work will 317 

continue with both deep and shallow learning as each has optimal uses depending on resources 318 

required for implementation. 319 

F-score is the balance between recall (not missing a significant number of instances) and precision (how 320 

many instances it classifies correctly) and it provides an intuitive value of the robustness of the 321 

developed models. The article classification tasks assigned to the model were binary, with recall 322 

optimized to increase the model robustness over its precision. This intentional optimization towards 323 

higher recall was guided by our motive to minimize the chance of losing relevant articles. This limited 324 
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our flexibility in maximizing precision and resulted in a lower overall F-score. The wide range of article 325 

categories in both training dataset and the stream of articles screened by the model would also have 326 

reduced the F-scores. Had we sought to classify articles from a particular purpose category, such as 327 

treatment studies using RCT designs, we expect the F-score would be higher.  328 

Implications for evidence surveillance  329 

Retrieving the best quality evidence to clinicians has driven research into the creation of initial Boolean 330 

search strategies and now the advancements made applying ML models. We implemented the majority 331 

vote ML algorithm into our process in May 2021 (see Figure 1B). Between May 11, 2021 to Mar 11, 332 

2022, 25 867 articles were retrieved from PubMed with the Boolean searches; 11 776 (45.5%) were 333 

predicted not to meet criteria and were removed from the critical appraisal queue. With a conservative 334 

estimated time of 5 minutes of human resources to appraise each article, this saved >981 hours of 335 

research associate time during that period while maintaining the integrity of the evidence processed. 336 

This has been particularly important as we added COVID-19 related articles from all indexed journals to 337 

our surveillance program in 2020 to support quick access for practitioners, policy makers, and lay 338 

persons to appraised emerging research through the COVID-19 Evidence Alerts website (34). The ML 339 

model has offset some of the additional burden of this growing body of COVID-19 literature. 340 

 341 
 342 

Future model development 343 

Using Auto-ML, we were able to train and test models that improved the efficiency of our literature 344 

surveillance process. There are several pretrained deep learning language models, such as BERT, 345 

BioBERT, and PubMedBERT, available for application to clinical literature. We have begun preliminary 346 
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development of deep learning models using our dataset and the results are promising. Our future 347 

research includes assessing model performance by category of articles and applying our models more 348 

broadly beyond the titles monitored for PLUS. Given the richness of our dataset, including tagged 349 

reasons for not meeting critical appraisal criteria and other article metadata captured at the time of 350 

appraisal, we hope to enhance model performance by leveraging these data.  351 

Strengths and limitations 352 

Our models were trained using the largest tagged dataset of health care research articles across a range 353 

of article categories to date and based on an established gold standard in the field. Although the critical 354 

appraisal criteria are applied by a single reader, all included studies and those passing with questions are 355 

assessed by a final editor. The dataset overcomes some of the challenges we identified in our review: 1) 356 

the criteria applied to assess rigor is an established gold standard based on best evidence-based 357 

medicine practices; 2) the dataset is the largest, yet, and the training dataset included 17 824 articles in 358 

the high-quality class that allowed for creating of oversampled and undersampled datasets for training; 359 

3) journals for a range of clinical domains are included in the dataset (current list of journals can be 360 

found here: https://hiru.mcmaster.ca/hiru/journalslist.asp); and 4) the training dataset contemporary 361 

and   includes articles from 2012-2018 and was tested in 2020 dataset. The prospective, blinded 362 

evaluation of the performance of the selected combined models highlights the value of real-world 363 

application and impact.  364 

The models, however, were derived using prefiltered articles from PubMed for a subset of ~120 journals 365 

and generalizability to all the content in a literature database is uncertain. These concerns are allayed by 366 

the performance of the models in the 2020 articles which are more numerous and cover a greater array 367 

of journal titles as all pre-filtered COVID-19 articles were included. Though the number to read was 368 

higher (not surprising given the amount of lower quality evidence in COVID-related studies), specificity 369 
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and accuracy were improved. We used logistic regression approaches, and more advanced deep 370 

learning techniques expected to perform better, as seen in the results of Del Fiol et al (16) and Afzal et al 371 

(27). We have started using deep learning approaches in furthering our work in the area, initially to 372 

further increase the specificity of classifiers for all categories of articles.  We plan to evaluate models for 373 

applications other than literature surveillance and investigate questions about optimal class ratios and 374 

training dataset size for model development. Further work will include training deep learning models for 375 

specific article categories, using more of the features in our dataset that correspond to rigor, and 376 

developing interpretable AI models.  377 

Conclusion 378 

Using ML-based probability ranking, we improved the specificity of identifying biomedical articles that 379 

meet methodological rigor criteria while preserving a very high sensitivity. The selected models perform 380 

well in an active surveillance program that supports knowledge translation to practicing clinicians. 381 

Future work includes training deep learning models using the dataset to develop higher performing 382 

models to facilitate identification of high-quality research soon after publication. 383 

 384 
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