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Abstract 
When respiratory viruses co-circulate in a population, individuals may be infected with multiple 
pathogens and experience possible virus-virus interactions, where concurrent or recent prior 
infection with one virus affects the infection process of another virus. While experimental studies 
have provided convincing evidence for within-host mechanisms of virus-virus interactions, 
evaluating evidence for viral interference or potentiation using population-level data has proven 
more difficult. Recent studies have quantified the prevalence of co-detections using populations 
drawn from clinical settings. Here, we focus on selection bias issues associated with this study 
design. We provide a quantitative account of the conditions under which selection bias arises in 
these studies, review previous attempts to address this bias, and propose unbiased study designs 
with sample size estimates needed to ascertain viral interference. We show that selection bias is 
expected in cross-sectional co-detection prevalence studies conducted in clinical settings, except 
under a strict set of assumptions regarding the relative probabilities of having symptoms under 
different viral states. Population-wide studies that sample participants irrespective of their 
symptom status would meanwhile require large sample sizes to be sufficiently powered to detect 
viral interference, suggesting that a study’s timing, inclusion criteria, and the expected 
magnitude of interference are instrumental in determining feasibility.  
 
Overview of virus-virus interactions 
Seasonal cocirculation of respiratory viruses may result in individuals being infected 
concurrently or sequentially with multiple pathogens. In this context, virus-virus interaction is 
often broadly defined as the phenomenon where concurrent or recent prior infection with one 
virus affects the infection process of another virus.1 Interactions may be classified as positive 
(synergistic) if infection with one virus promotes the presence of another virus or negative 
(antagonistic, competitive) if infection with one virus impedes the presence of another virus. An 
additional classification described in the literature distinguishes homologous and heterologous 
interference within negative virus-virus interactions based on whether two viruses are 
antigenically distinct.1 
 
In a null model in which two viruses A and B transmit independently from one another, 
knowledge that an individual harbors one virus would provide no information about whether 
they harbor the other – that is, 
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 𝑃(𝐴|𝐵) = 𝑃(𝐴|~𝐵) = 𝑃(𝐴) (1) 

If Equation (1) is not true, there could be several explanations for an observed statistical 
association between viruses A and B under a causal inference framework2: (1) virus A promotes 
or inhibits virus B, (2) virus B promotes or inhibits virus A, (3) there is a common cause, 𝐿, of 
infection or noninfection with viruses A and B (also known in epidemiology as a confounder of 
the causal relationship between the infection processes of viruses A and B), or (4) the sample has 
been collected in a way that conditions on a common effect, 𝐶, of two variables – one of which is 
virus A or a variable associated with virus A, and the other is virus B	or a variable associated 
with virus B (also known as selection bias or collider-stratification bias).  
 
Whereas explanations (1) and (2) reflect interactions within an individual between the infection 
processes of two viruses, explanations (3) and (4) do not. Studies attempting to examine 
phenomena (1) or (2) should therefore ordinarily try to minimize bias from confounding or 
selection bias. The causal mechanisms underlying explanations (1) and (2) can be due to 
“biological/direct” mechanisms (e.g. antiviral role of activated interferon-stimulated genes)3–9, 
and/or “behavioral/indirect” mechanisms that lead to people infected with virus A not getting 
infected with virus B (e.g. they are more likely to stay at home when feeling unwell). Age and 
immunocompetence are examples of explanation (3), or common causes of the risk of infection 
of each of the two viruses, that have been discussed in the literature.10,11 
 
With regard to explanation (4), various studies have attempted to ascertain virus-virus 
interactions at the population level using cross-sectional co-detection prevalence studies, aided 
by the development of multiplex PCR.3,12–15 In this study design, the expected proportion of co-
detections of two viruses under the null model of independence is calculated as the product of the 
individual prevalence of the two viruses. That is, if the prevalence of virus A is 𝑝! and 
prevalence of virus B is 𝑝" in the population, then under the null hypothesis of no interaction, the 
expected proportion of the population infected with both viruses would be 𝑝!𝑝" in an unbiased 
sample of the population. If the observed number of co-detections is significantly less than this 
expected number, negative interaction, or viral interference, is inferred.  
 
Key to this study design is the assumption that an unbiased sample of the population is used, that 
is, a sample in which the prevalence of each virus and of the two together is the same as that in 
the source population. Co-detection studies, however, are often conducted using clinical samples 
from people with acute respiratory illness (ARI) symptoms due to ease of surveillance in these 
populations. Selection bias, or collider-stratification bias, is a common methodological issue with 
this type of study.2 An intuitive way to think about the bias is that the sample of symptomatic 
patients presenting to the hospital with ARI symptoms is likely to have higher proportions of 
individuals with at least one of the respiratory viruses than the population from which it is 
drawn. It has therefore been correctly argued that finding a departure from independence in such 
a sample – a reduced proportion of co-infected compared to the expected proportion based on the 
prevalence of singly infected individuals – may reflect only this biased sampling and not 
necessarily any underlying antagonism in the population.16–18 Table 1 summarizes different 
possible explanations for an observed statistical association between viruses A and B.  
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Table 1. Possible explanations for an observed statistical association between the cross-sectional 
prevalence of two viruses (that is, 𝑝!" ≠ 𝑝!𝑝" , where 𝑝!" is the prevalence of infection with 
both viruses simultaneously). 

Explanation for statistical 
association 

Diagram of one such 
explanation 

Explanation’s effect on 
infection with virus B among 

individuals infected with 
virus A, or vice versa 

Relevant 
literature 

Direct interference: virus A 
infection causes changes in target 
cells that inhibit infection with 
virus B, and/or vice versa* 

 
Reduces probability of 
coinfection and of observing 
coinfection 

3–5,19 

Direct potentiation: virus A 
infection causes changes in target 
cells that promote infection with 
virus B, and/or vice versa* 

 
Increases probability of 
coinfection and of observing 
coinfection 

20,21 

Indirect interference: virus A 
infection reduces contact rates, 
thereby reducing probability of 
acquiring virus B, and/or vice-
versa* 

 
Reduces probability of 
coinfection and of observing 
coinfection 

22 

Cross-immunity interference: 
adaptive immunity from past 
infection with virus A decreases 
susceptibility to virus B, and/or 
vice versa 

 
Reduces probability of 
coinfection but may not 
decrease, and may even 
increase the probability of 
observing a coinfection   

10 

Confounding: a common 
determinant of infection with 
viruses A and B creates a non-
causal association between them 

 

Reduces or increases 
probability of coinfection, 
depending on the confounder, 
with corresponding effect on 
the probability of observing 
coinfection 

10,11 

Selection bias via a sub-
multiplicative effect, which 
means that the odds of being 
symptomatic given the presence 
of both viruses is less than the 
product of the odds of being 
symptomatic with each of the two 
viruses individually. 

 
. . 

Reduces probability of 
observing a coinfection when 
only symptomatic subjects are 
studied 

16–18 

Selection bias via a supra-
multiplicative effect, which 
means the odds of being 
symptomatic given the presence 
of both viruses is greater than the 
product of the odds of being 
symptomatic with each of the two 
viruses.  

 
 

Increases probability of 
observing a coinfection when 
only symptomatic subjects are 
studied 

Hypothetical 

* Note that if the sign of the interaction is opposite for A’s effect on B and B’s effect on A, the overall effect on the 
probability of co-infection depends on additional factors10 
 
The SARS-CoV-2 pandemic has regenerated interest in studying virus-virus interactions because 
of their implications for disease forecasting and evaluation of interventions. This article will 
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focus specifically on the selection bias issues associated with co-detection prevalence studies 
drawn from clinical setting populations given the study design’s simplicity and therefore 
widespread use in the absence of population-level cohort studies. Here, we first provide a 
quantitative account of the conditions under which selection bias arises in co-detection studies 
and its mechanistic interpretation, then discuss previous attempts to address this bias, and last, 
propose unbiased study designs with estimates of the sample sizes needed to ascertain viral 
interference. We focus on virus-virus interactions in the form of interference due to recent 
studies that have motivated this article, but the same arguments equally apply to the case of 
potentiation.  
 
Defining the selection bias issue in co-detection studies 
Let 𝐴 and 𝐵 be Bernoulli random variables representing the presence or absence of viruses A and 
B, respectively. Then, let 𝑋#$ indicate the number of individuals with viruses A and/or B in the 
population.  
 

 B=1 B=0 
A=1 𝑋%% 𝑋%& 

A=0 𝑋&% 𝑋&& 
Table 1. Population-level frequencies of having virus A and virus B. The directionality and strength of the OR would serve as 
indicators of virus-virus interaction, under a set of assumptions. 

The population odds ratio (OR) estimated from Table 2, 𝑂𝑅', is defined as the ratio of the odds 
of having virus A in the presence of virus B, relative to the odds of having virus A in the absence 
of virus B, in the population: 
 
 𝑂𝑅' = 4

𝑋%%
𝑋&%

5 / 4
𝑋%&
𝑋&&

5 (2) 

If 𝑂𝑅' < 1, the odds of having virus A in the presence of virus B is less than the odds of having 
virus A in the absence of virus B. This is symmetric, in that 𝑂𝑅' < 1 also indicates that the odds 
of having virus B in the presence of virus A is less than the odds of having virus B in the absence 
of A. Using the probability notation from the previous section, an alternative way to express a 
negative statistical association between viruses A and B is the prevalence ratio, 𝑝!|"/𝑝!|") < 1, 
where the prevalence of virus A among individuals with virus B is 𝑝!|" =

'!!
'!!*'"!

  and the 

prevalence of virus A among individuals without virus B is 𝑝!|") =
'!"

'!"*'""
. 

 
In reality, 𝑂𝑅' is rarely if ever observed because only a sample, not the whole population, is 
assayed for viral infection in any particular study. In practice, that sample often consists of 
patients who report ARI symptoms and present to a clinical setting, where they receive 
molecular testing. Let 𝑌#$ indicate the number of individuals with viruses A and/or B among 
patients reporting ARI symptoms in a clinical setting.  
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 B=1 B=0 

A=1 𝑌%% 𝑌%& 

A=0 𝑌&% 𝑌&& 
InTable 2. Sample-level frequencies of having virus A and virus B. The directionality and strength of the OR would serve as 
indicators of virus-virus interaction, if the sample is an unbiased sample of the population and a set of assumptions are met. 

Similarly, the OR estimated from Table 3, 𝑂𝑅+ , is defined as the ratio of the odds of having virus 
A in the presence of virus B, relative to the odds of having virus A in the absence of virus B, in 
the clinical sample: 
 
 𝑂𝑅+ = 4

𝑌%%
𝑌&%
5 / 4

𝑌%&
𝑌&&
5 

 
(3) 

The values in Table 3 are related to those in Table 2 by the ratio of individuals with each virus 
state among ARI patients to that among the general population, 𝑆#$, which are summarized in 
Table 4. Conceptually, these probabilities represent the relative selection probabilities of people 
being included in the clinical sample based on their viral status.   
 

 B=1 B=0 
A=1 𝑆%% = 𝑌%%/𝑋%% 𝑆%& = 𝑌%&/𝑋%& 

A=0 𝑆&% = 𝑌&%/𝑋&% 𝑆&& = 𝑌&&/𝑋&& 
Table 3. The probability that an individual with a given infection state is included in the sample of individuals with ARI 
symptoms. 

The OR of this selection probability matrix, 𝑂𝑅,,	can be calculated by dividing the OR from the 
sample, 𝑂𝑅+, by the OR from the population, 𝑂𝑅' . 
 
 

𝑂𝑅, = 4
𝑆%%
𝑆&%

5 / 4
𝑆%&
𝑆&&

5 = 4
𝑌%%/𝑋%%
𝑌&%/𝑋&%

5 / 4
𝑌%&/𝑋%&
𝑌&&/𝑋&&

5 = 𝑂𝑅+/𝑂𝑅'		 (4) 

 
Greenland23 referred to 𝑂𝑅, as a selection-bias factor and pointed out that a corrected estimate, 
here the unbiased population-level OR, 𝑂𝑅', which is the estimand of interest, could be obtained 
by dividing the biased sample OR, 𝑂𝑅+, by the selection-bias factor, or the odds ratios of the 
selection probabilities:  
 
 𝑂𝑅' = 𝑂𝑅+/𝑂𝑅, (5) 

Knowledge of 𝑂𝑅, would be sufficient to obtain an unbiased estimate of 𝑂𝑅' – the population- 
level odds ratio, with all other assumptions holding for valid inference previously described. The 
key obstacle to this approach, however, is determining the selection probabilities in Table 4 in 
the first place, as they are generally unknown.  
 
Looking at Equation (5), we can understand somewhat intuitively the circumstances under which 
selection bias can arise when using a symptomatic sample. As an example of a scenario 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 18, 2023. ; https://doi.org/10.1101/2023.06.17.23291541doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.17.23291541
http://creativecommons.org/licenses/by-nd/4.0/


Page 6 of 15 
 

involving two viruses that each cause a ten-fold increase in the probability that an individual has 
ARI symptoms, possible values for the selection probabilities of Table 4 could be the following: 
 

 B=1 B=0 
A=1 1 0.1 

A=0 0.1 0.01 
Table 4. Example selection probabilities of having ARI symptoms given viral states A and B, where 𝑂𝑅! = 1	and there is 
therefore no selection bias 

There would be no selection bias in this sample of symptomatic patients since 𝑂𝑅, = 1; 
alternatively, having virus A raises one’s probability of having symptoms by the same 
multiplicative factor regardless of having virus B, and equivalently, having virus B raises one’s 
odds of having symptoms by the same multiplicative factor regardless of having virus A. 
 
If the viruses under investigation are individually more likely to cause symptoms and the 
probability of having symptoms with one virus differs depending on whether one has the other 
virus, one possibility is that there is a sub-multiplicative effect of viruses A and B together 
causing symptoms relative to their individual effects: 
 

 B=1 B=0 
A=1 1 0.3 

A=0 0.2 0.01 
Table 5. Example selection probabilities of having ARI symptoms given viral states A and B, where the 𝑂𝑅! < 1	(i.e.  bias 
downward under the null) because of the sub-multiplicative effect of the viruses together causing symptoms  

In this scenario, if the population 𝑂𝑅' = 1, the sample-calculated OR is biased downward 
(𝑂𝑅+ = 𝑂𝑅,	𝑂𝑅' = 0.17) compared to the population OR.  
 
As a final example, having either virus A or virus B alone could not raise the probability of 
having symptoms by much relative to not having either, while having both viruses could greatly 
increase the probability of having symptoms:  
 

 B=1 B=0 
A=1 1 0.3 

A=0 0.2 0.1 
Table 6. Example selection probabilities of having ARI symptoms given viral states A and B, where the 𝑂𝑅! > 1	(i.e.  bias upward 
under the null) because of the supra-multiplicative effect of the viruses together causing symptoms 

In this case, the viruses have a synergistic effect on pathogenesis, so that their joint presence has 
a supra-multiplicative effect on the likelihood of having symptoms relative to the effect of each 
individual virus. The OR is biased upward (𝑂𝑅+ = 1.67) in this scenario under the null. 
 
As these examples illustrate, the OR estimated from the clinical sample, 𝑂𝑅+, is unaffected by 
selection bias only when 𝑂𝑅, = 1, and without knowledge of the selection probabilities, the 
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magnitude of selection bias cannot be estimated. Previous commentaries have specifically 
pointed to the probability of having ARI symptoms among individuals without either virus, 𝑆&&, 
as likely significantly lower than that of the other selection probabilities, which would induce 
selection bias.16,17 Since 𝑆&& is in the numerator of 𝑂𝑅,, all else equal, 𝑂𝑅, will be smaller (and 
thus more likely to be less than 1) if 𝑆&& is small. The foregoing shows more precisely the 
conditions under which 𝑂𝑅, < 1.   
 
The examples from Tables 5-7 also demonstrate that a related research question of trying to infer 
synergy in pathogenesis based on individuals’ viral states using data from symptomatic 
individuals is affected by the same selection bias issue. In particular, observing 𝑂𝑅+ > 1 in a 
symptomatic sample could imply that the two viruses increase the probability of symptoms more 
than multiplicatively (𝑂𝑅, > 1) but could also imply that they tend to occur together more often 
than expected under independence in the population (𝑂𝑅' >1), for example if they tend to be 
common in the same demographic groups. 
 
Related study designs and research questions 
Experimental models for viral interference have shown that coinfection or sequential infection 
often results in decreased replication of virus B in the presence of virus A rather than a complete 
blockade of virus B.3,4 Examining viral loads in coinfections has therefore been proposed as a 
method to evaluate virus-virus interactions. Recently, using a sample of symptomatic 
individuals, Burstein et al. (2022) restricted consideration to individuals with virus B and 
compared the abundance of virus B among individuals with and without virus A, instead of 
comparing the presence and absence of virus B among individuals with and without virus A. 
This comparison involved estimating the average qPCR cycle threshold (Ct) value difference 
between monoinfected versus coinfected samples, adjusted for confounders.17 We show below 
that the same form of selection bias is likely to appear in this design. While Burstein et al. 
considered abundance of virus B as a continuous quantity, we illustrate for simplicity by 
dichotomizing virus B infected individuals as having high or low viral loads. 
 
Consider expected proportions under the null hypothesis of no interaction in the population. Let 
𝑝! be the prevalence of virus A and 𝑝" be the prevalence of virus B. Individuals with virus B are 
further separated into “high” and “low” viral load groups based on the probability of having high 
viral load given having virus B, 𝑝-. Here, a high viral load corresponds to low Ct values based on 
a cutoff value. The population proportion frequencies are summarized as the following: 
 

 B=high B=low B=0 Total 
A=1 𝑝!𝑝"𝑝- 𝑝!𝑝"(1 − 𝑝-) 𝑝!(1 − 𝑝") 𝒑𝒂 

A=0 (1 − 𝑝!)𝑝"𝑝- (1 − 𝑝!)𝑝"(1 − 𝑝-) (1 − 𝑝!)(1 − 𝑝") 𝟏 − 𝒑𝒂 

Total 𝒑𝒃𝒑𝒉 𝒑𝒃(𝟏 − 𝒑𝒉) 𝟏 − 𝒑𝒃 𝟏 
Table 7. Population proportion frequencies of having virus A and virus B, where individuals with virus B are separated into high 
vs. low viral load groups 

The population odds ratio for any two columns of Table 8 (or for the first two columns collapsed 
vs. the third, mimicking the presence/absence study design) is 1 under the null hypothesis. 
However, in a symptomatic population, the selection probabilities again enter the calculation. 
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 B=high B=low B=0 

A=1 𝑆%,-23- 𝑆%,456 𝑆%,& 

A=0 𝑆&,-23- 𝑆&,456 𝑆&,& 
Table 8. Selection probabilities, representing the probability of being in the sampled population having ARI symptoms, for each 
category of presence/absence of virus A and abundance of virus B.  

Since the analysis is restricted to individuals positive for virus B, to estimate the sample OR, 
element-wise multiplication is applied to the matrix values in Tables 8 and 9, and the OR of the 
resultant matrix, excluding the 𝐵 = 0 column, is calculated. The sample odds ratio would be 1 
under the null only if: 
 
 

𝑂𝑅, = D
𝑆%,-23-
𝑆&,-23-

E / D
𝑆%,456
𝑆&,456

E = 1		 (6) 

 
This modified study design therefore also ultimately relies on similar assumptions for the relative 
pathogenesis of viruses A and B and their joint probabilities of causing symptoms, but in this 
case, assumptions regarding the selection probabilities are made based on the presence/absence 
of virus A and the relative viral abundance of virus B. Although this example reduces the 
analysis by Burstein et al. (2022) into a binary example for their semi-quantitative viral load 
measure, if the selection bias issue is present in the binary case, it also applies to the case of a 
quantitative measure for viral load. A related limitation of this design is that it relies on a dose-
response effect of the amount of B on A. If the interaction is so strongly inhibitory that a high 
viral load of B is incompatible with A, the design would miss this strongest of all possible 
interactions.  
 
In summary, selection bias in co-detection prevalence studies arises because viral status and viral 
load likely affect the probability of symptoms and therefore the likelihood of individuals being 
included in the sample. The OR estimated from a clinical sample could be corrected to estimate 
the unbiased population-level OR if the selection probabilities (i.e. the probability of having ARI 
symptoms for different combinations of viruses A and B) were known, but they typically are not. 
This premise is important because selection bias is not an issue only in the case where the 
crossproduct of the selection probabilities equals one. Attempts to address this issue by using a 
semi-quantitative viral load measure for one virus are prone to the same selection bias issue. 
Likewise, use of symptomatic samples to assess whether viral infections are synergistic in 
causing symptoms falls prey to the same bias, in the other direction: an excess of dually infected 
individuals among symptomatic persons compared to single infection prevalence could be due to 
synergy in causing symptoms, or due to potentiation of infection by one virus when one is 
already infected with the other, or a combination of these two.  
 
In the next section, we propose study designs and provide sample size estimates for studies not 
conditioned on symptom status that may be used to ascertain virus-virus interactions. 
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Study designs to measure virus-virus interactions 
Human challenge studies have been used for hundreds of years to garner greater scientific 
understanding of viral lifecycles and pathogenesis. In human challenge studies, volunteers are 
intentionally infected with a pathogen at a safe infectious dose and isolated in a quarantine unit 
during their infection, where they receive close and continuous medical monitoring.24 To our 
knowledge, human challenge studies have yet to be conducted to study virus-virus interactions. It 
is plausible that a study could be designed such that volunteers are randomized to be inoculated 
with either one virus or mock inoculation, and a few days, all volunteers are inoculated with a 
different challenge virus. Detailed information on symptoms progression, viral kinetics, and 
immune correlates of protection could be collected. This design would be analogous to the 
experimental studies that have investigated virus-virus interactions using organoid models3–6,8,9 
and animal models,7,25 and it could help elucidate understanding of direct, within-host 
mechanisms of interaction, but not indirect mechanisms. Human challenge studies, however, are 
also associated with significant ethical considerations and require weighing prospective benefits 
to society relative to the higher risks posed to participants.  
 
As another study design option, the effect of co-infection with respiratory viruses on a 
standardized attenuated challenge virus could be examined. A Phase 4 immunogenicity study of 
a trivalent live attenuated influenza vaccine (LAIV) in The Gambia recruited clinically well 
children and found that children with asymptomatic respiratory viruses had upregulated mucosal 
interferon responses, which correlated with reduced replication of live attenuated influenza 
viruses post-challenge, compared to children without viral infections at baseline.26 Relatedly, a 
study of children with cystic fibrosis and their siblings found decreased replication of a live 
attenuated influenza vaccine strain in participants who tested positive for another respiratory 
virus before vaccination.27  
 
Another valid approach to assess virus interactions in humans would be observational studies 
that sample from populations in a way that does not condition on symptoms. This would involve 
population-based community studies, where nasopharyngeal swab samples are collected weekly 
from all participants regardless of symptoms. Moreover, to minimize confounding, ideally the 
participant age group and the time window of sample collection should be as narrow as possible, 
though these factors could also be adjusted for in the analysis, as we discuss below. To ensure 
specimen collection is done irrespective of symptoms, participants could collect specimen 
samples at home, and the samples could be retrieved every few days by study administrators for 
analysis. The OR estimated from the sample population in this case may serve as an estimate of 
the population unimpeded by selection bias. Self-reported symptom status at the time of 
participants’ sample collection could also be collected every week. This information on 
symptoms could then be used to estimate the selection probabilities of Table 4, and ORs 
estimated from clinical samples could be adjusted using Equation (5). Longitudinal community 
surveillance studies using similar study designs have been conducted in New York City28, 
Utah29,30, and Australia31 and have revealed prevalence values for low pathogenicity viruses that 
are higher than previously thought. Also, certain populations have been sampled in this way 
during COVID-19 and samples from these studies may be among the largest sample sets ever 
collected in this way. 
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While large community-based sampling studies may represent a methodologically straight-
forward approach to collecting unbiased data, they are expensive and have logistical challenges, 
such as the collection of specimen samples from volunteers. Conducting studies in settings where 
surveillance is already established and routinely performed, like in hospitals and clinical settings, 
therefore remains attractive, if individuals can be sampled irrespective of their symptom status.  
For example, collecting samples from individuals admitted to the ER for reasons unrelated to 
ARI symptoms could generate an unbiased study population in this setting, if one assumes that 
these individuals have the same prevalence of respiratory symptoms as the overall population. 
 
To provide a sample size estimate for co-detection studies, we use possible virus-virus 
interaction between three pairs of viruses as examples. Based on estimates of children <10 years 
old from a community-based sampling study in New York City, the average prevalence over two 
winter seasons from October to February 2016-2017 and 2017-2018 was ~18% for rhinovirus 
(RV), ~4% for adenovirus, ~10% for coronavirus, and ~2% for influenza.28 In a hypothesis 
testing framework for two viruses, virus A and virus B, we would test the null hypothesis 
𝐻&: 𝑂𝑅 = 1 and alternative hypothesis 𝐻%: 𝑂𝑅 ≠ 1, using the notation: 
 
 

𝑂𝑅 =
𝑝%(1 − 𝑝&)
𝑝&(1 − 𝑝%)

 (7) 

 
where 𝑝& is the probability of an individual having virus B given they do not have virus A and 𝑝% 
is the probability of an individual having virus B given they have virus A. The total sample size 
required, n, would then be calculated based on a two-sided hypothesis test for an OR estimated 
from a cross-sectional study32: 
 
 𝑛 =

𝑟 + 1
𝑟(𝜆 − 1)!𝑝"		!

+𝑧$%&/!-(𝑟 + 1)𝑝((1 − 𝑝() + 𝑧$%)-𝜆𝑝"(1 − 𝜆𝑝") + 𝑟𝑝"(1 − 𝑝").
!
		 (8) 

 
where 

• 𝑟 is the ratio of the number of individuals who have virus A to the number of individuals 
without virus A 

• 𝜆 is the ratio of the prevalence of the outcome (virus B) in the exposed (virus A positive) 
to the prevalence of the outcome in the unexposed (virus A negative); that is, 𝑝%/𝑝& 

• 𝑝7 is the average of the prevalence of the outcome (virus B) in the exposed and 
unexposed; 𝑝7 =

8"(:;*%)
:*%

  
• 𝛼 is the Type I error rate 
• 𝛽 is the Type II error rate 

 
Using an example of RV as virus A and influenza virus as virus B, we assume 𝛼 = 0.05, 𝛽 =
0.2 for 80% power, 𝑝& =	0.02, which is the prevalence of influenza virus in this population, and 
𝑟 = 0.175/0.825 ≈ 0.21, based on the prevalence of RV in the population. Using a range of OR 
values, which are used to calculate 𝑝%, the estimated required total sample size to detect viral 
interference between RV and influenza in children during a winter season would fall between 
approximately 1,760 participants for OR = 0.05 and 260,000 for OR = 0.9 (Figure 1). For RV 
and coronavirus, the range is between approximately 300 to 56,000 participants based on the 
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expected OR. The examination of two low prevalence viruses like adenovirus and influenza 
would meanwhile require between approximately 7,000 and 1,000,000 participants depending on 
the OR.  

 
Figure 1. Estimated required total sample size (shown on log scale) needed to observe ORs between 0.05 and 0.9 for three 
example virus pairs in cross-sectional, co-detection prevalence studies.  

These sample size estimates are lower bound estimates since the analysis would also need to 
adjust for confounding. Important confounders to consider include the age of participants and the 
time period over which samples are collected based on the study design and population. 
Additionally, if multiple study sites are used, the geographic region of the study site and 
specimen analysis method would also be potential confounders. These high sample size 
estimates indicate that studying viral interference using large population-based sampling studies 
may be most feasible if the magnitude of viral interference is believed to be significant and if the 
studies are conducted among highly susceptible populations like children during high viral 
circulation weeks to maximize the likelihood of capturing co-detections.  
 
Conclusion 
The SARS-CoV-2 pandemic and its effect on the dynamics of other respiratory pathogens have 
spurred scientific interest in virus-virus interactions. Interest in virus-virus interactions also 
increased during the 2009 A(H1N1) pandemic, as ecological reports from several European 
countries suggested that high RV transmission during the summer delayed the onset of A(H1N1) 
outbreaks until late fall.33,34 Various studies have been conducted using cell culture and animal 
models to explore direct/biological mechanisms of viral interference.3–9,19 While these 
experimental studies have been instrumental in elucidating within-host mechanisms for viral 
interference, observing these mechanisms’ effects at the population level has been more elusive.  
 
At the population level, studies have used time-series analyses and co-detection prevalence 
studies to ascertain virus-virus interactions that reflect a combination of direct and indirect, or 
behavior-driven, mechanisms.12,30,31,35–37 Modeling studies have also been conducted to show 
that using cross-sectional prevalence studies to infer the impact of multivalent vaccines on type 
replacement may lead to biased conclusions.10,38  
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Here, we focused on selection bias issues that arise when using clinical data from symptomatic 
patients in co-detection studies, which is a common practice due to the expense and logistic 
difficulties of conducting community-wide sampling studies. A key challenge with this study 
design is selecting individuals irrespective of their symptom status. We provided a mechanistic 
interpretation of the selection bias that arises in these studies and discussed the conditions under 
which it would be expected. Community-based viral sampling studies and clinical setting-based 
studies conducted among individuals being admitted and tested for reasons unrelated to ARI 
symptoms are two possibilities for unbiased study designs. The large sample sizes estimated to 
be required for these studies suggest that many current efforts are underpowered to detect virus-
virus interactions. Given the implications of virus-virus interactions on disease forecasting and 
the design and implementation of public health interventions, there is a scientific need to 
ascertain possible interference and its effects using unbiased designs.  
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