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Abstract

We present Crykey, a computational tool for rapidly identifying cryptic mutations of SARS-CoV-2. Specifically,
we identify co-occurring single nucleotide mutations on the same sequencing read, called linked-read
mutations, that are rare or entirely missing in existing databases, and have the potential to represent novel
cryptic lineages found in wastewater. While previous approaches exist for identifying cryptic linked-read
mutations from specific regions of the SARS-CoV-2 genome, there is a need for computational tools capable of
efficiently tracking cryptic mutations across the entire genome and for tens of thousands of samples and with
increased scrutiny, given their potential to represent either artifacts or hidden SARS-CoV-2 lineages. Crykey
fills this gap by identifying rare linked-read mutations that pass stringent computational filters to limit the
potential for artifacts. We evaluate the utility of Crykey on >3,000 wastewater and >22,000 clinical samples; our
findings are three-fold: i) we identify hundreds of cryptic mutations that cover the entire SARS-CoV-2 genome,
ii) we track the presence of these cryptic mutations across multiple wastewater treatment plants and over a
three years of sampling in Houston, and iii) we find a handful of cryptic mutations in wastewater mirror cryptic
mutations in clinical samples and investigate their potential to represent real cryptic lineages. In summary,
Crykey enables large-scale detection of cryptic mutations representing potential cryptic lineages in wastewater.
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Introduction

Wastewater monitoring is a vital tool complementing clinical testing for COVID-19 surveillance1–9, and can fill in
the surveillance gap when clinical testing is unavailable or halted. Multiple studies have demonstrated that
SARS-CoV-2 variants of concern (VOCs) can be detected in wastewater samples10–15, preceding clinical testing
by up to two weeks9. Furthermore, wastewater samples contain information on the genomic diversity of the
circulating variants in the entire community, avoiding the sampling bias inherent to the clinical surveillance,
which focuses on symptomatic patients16–18. Importantly, wastewater monitoring can also be used to detect
novel and rare SARS-CoV-2 lineages not represented in GISAID’s EpiCoV database19, termed cryptic
lineages20. A few methods have been proposed for the detection of cryptic lineages from wastewater samples,
but they often require a combination of ultra-deep sequencing of specific genomic regions as well as a mixture
of short-read, long-read, and proximity ligation sequencing technologies and thus are not compatible with most
wastewater sequencing protocols used for routine monitoring due to time and cost limitations16,21. Moreover,
non-uniform sequencing coverage caused by amplicon efficiency heterogeneity and environmental RNA
degradation creates a challenge for detecting cryptic lineages from wastewater samples5,22,23. Furthermore, the
origin of these cryptic lineages in wastewater is still an open question24. It has been proposed that they could
be rare intra-host lineages that are not represented in the consensus genomes available in public databases,
rare lineages with low prevalence in the population, lineages from non-human hosts (like rats), or technical
artifacts20,21,25.

In this manuscript, we introduce Crykey, a novel computational method for detecting rare linked-read mutations
from wastewater samples that exploits the co-occurrence of point mutations on the same sequencing read or
read-pair (from now on, linked-read or LR mutations). The rationale is that LR mutations found in wastewater
samples but nonexistent or at a very low prevalence (e.g. < 0.0001) in public databases represent potential
cryptic lineages (from now potential cryptic lineage will be denoted as CR); i.e. rare linked-read mutations
supported by 5 or more reads which we claim are indicative of one of the following: real cryptic lineages,
SARS-CoV-2 transcription variation due to subgenomic mRNAs26, or systematic artifacts. We used Crykey to
analyze 3,175 wastewater samples collected in Houston, Texas, USA, from February 2021 to November 2022.
Our results are threefold: (i) We discover numerous cryptic mutations spanning the whole SARS-CoV-2
genome, (ii) we monitor the occurrence of these cryptic mutations across numerous wastewater treatment
plants (WWTPs), observing them over a period of three years in Houston, and (iii) we identify a cryptic
mutations in wastewater samples that reflect those in clinical samples, and explore the possibility of these
representing actual hidden lineages.

Results
To evaluate the utility and efficiency of Crykey, we applied it to SARS-CoV-2 amplicon sequencing data from
3,175 wastewater samples collected from 39 wastewater treatment plants (WWTPs) in Houston between
February 2021 and November 2022, as well as in 5,060 short-read clinical samples collected within the
Greater Houston between December 2021 and January 2022 (Supplementary Figure 1), and nearly 9,000
short-read clinical samples collected outside of Texas over the same 8-week time period (between 2021-12-06
and 2022-01-31; Supplementary Figure 2). In addition, we examined over 7,000 long-read clinical samples on
a specific CR. We will now delve into the specific results from these data.
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Overview of Crykey and Computational Performance
Crykey is a computational tool designed to search for cryptic mutations from samples by performing fast
variant queries to determine how rare a set of LR mutations is among millions of publicly available genomes.
Genomes of the same lineage during a short period of time have more mutations in common. Therefore, we
indexed the Crykey database by partitioning the genomes into bins by sample collection date and lineage
(Figure 1a). By pre-computing the prevalence rate of each mutation in each bin, Crykey is able to quickly
reduce the search space from the entire database to a few hundreds of genomes for exact matching (Figure
1b, Figure 1c, and Figure 1d). We identified a total of 6,744 CR candidates in wastewater samples from
Houston. More than 67.8% of the candidate CRs were found in 50 or less sequences in the GISAID EpiCoV
database. Fully novel CRs (zero prevalence, or meaning it has not been previously observed) constitute more
than 32.8% of the data (Figure 2a). We benchmarked the processing time of exact searches on a Linux
machine with Intel Xeon Gold 6138 2.00GHz CPU. The process time increases as the rarity of the CR
candidates decreases, as the result of the expansion of the search space (Figure 2b).

Genomic distribution of CRs in wastewater samples
After quality control, we identified 705 CRs in the wastewater samples. Figure 3a shows the location of the
CRs along the reference SARS-CoV-2 genome, their mean allele frequency (AF) across wastewater samples,
prevalence in GISAID, and the number of weeks (not necessarily consecutive) detected in wastewater. 74.8%
of the CRs had a mean AF less than 0.2, while 7.8% of the CRs were detected at consensus level AF (mean
AF >= 0.5) (Figure 3a). The occurrence of the CRs varied significantly, ranging from 1 to 33 weeks (size of the
dot in Figure 3a). Almost half of them were located in the S (20.1%) and N (28.4%) genes. Most of the genome
regions are dominated by CRs that contain only non-synonymous mutations, except for gene N (Figure 3b).

Emergence of CRs co-occurs with the spread of new variants
The emergence of the CRs coincided with the spread of new VOCs. For example, the number of CRs and viral
load in wastewater increased significantly around July 2021 (Figure 4a), corresponding to the Delta wave in
Houston (Figure 4b). Similar patterns were observed during the emergence of B.1.1.529 (Omicron) in
December 2021, BA.2 (Omicron) in May 2022, and BA.5 (Omicron) in July 2022. Most CRs could be
associated with one (77%) or more (17%) known PANGO lineages circulating at the time (Supplementary
section 1). We observed fewer CRs between April and August 2022, when the sequencing breadth and depth
of coverage dropped due to primer dropouts in lower quality sequencing runs (thinner bars in Figure 4a). It is
hard to untangle whether this effect was due to specific genomic features of the BA.2 and BA.5 variants or
whether it was a consequence of the lower quality of the sequencing data during this period.

Houston CRs display distinct patterns
More than 400 CRs found in Houston wastewater were completely novel, or can only be found in less than 50
genomes in GISAID (Figure 5). The vast majority of the CRs did not persist for long, with over 85% found in
less than four consecutive weeks. Short-duration CRs (less than 4 weeks) were generally found in only a few
WWTPs and at low AFs (Figure 5). Interestingly, some CRs were detected in multiple WWTP across the city
and persisted for 4 months or longer. The most persistent CR observed, which we named CR12, was detected
in the wastewater for 33 weeks. CR12 contains mutations A29039T and G29049A, which cause K256* (stop
codon) and R259Q amino acid changes, respectively, on the N gene. The mean AF of CR12 across WWTPs
was generally low (<0.1), with a few exceptions. CR12s presence ramped up slowly in 1-7 WWTPs, peaked in
late November 2021 when observed in 16 WWTPs (Figure 6), and phased out in late February 2022 and
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remained undetected for two months (but notice that the sequencing coverage also dropped during this
period), re-appearing for a short time around May 2022.

Many CRs exhibited perplexing patterns of allele frequency, duration, and clinical sample prevalence. The first
occurrence of CR12 in Houston wastewater can be traced back to Aug 2, 2021, when Delta was dominant in
the community. As Omicron emerged in December 2021, CR12 continued to be present in the wastewater and
clinical samples (Figure 4 and Figure 6). To evaluate the possibility of CR12 being a technical artifact, we first
explored whether this could be due to a read mapping error by using a different read mapper, Bowtie227. The
results were consistent with those obtained previously with BWA MEM28. To investigate whether the mutations
comprising CR12 were due to systematic sequencing errors, for example primer dependent errors, we further
examined 7,113 clinical samples sequenced with the PacBio HiFi system (Sequel II), including 2,458 samples
collected from Texas, and 4,655 samples collected from other US regions between Nov 06, 2021 and Mar 21,
2022. Forty-five of those samples included reads that supported the presence of CR12, and 28 of them from
Texas (Supplementary Table 1). While observing the rare LR mutations comprising CR12 in PacBio data does
not fully rule out the possibility of technical artifact, it provides a basis for ruling out platform specific errors.

Investigating CRs in clinical samples
As Omicron became dominant in the community, several CRs specific to the VOC emerged and became more
prevalent among hosts (Figure 7). We explored the occurrence of 20 CRs with short-term or long-lasting
patterns in 5,060 clinical samples collected within the Greater Houston (between 2021-12-06 and 2022-01-31;
Supplementary Figure 2). 12 out of 20 CRs detected in the wastewater were seen in the clinical samples
(Figure 7), including CR3, CR5, CR8, and CR12 (Figure 8, Supplementary Figure 3-5). Remarkably, for these
CRs, the mean AF within the clinical samples was very low (< 0.05), except for CR5 (Supplementary Figure 4).
CR2 was associated with Delta, while the remaining eleven were mainly associated with Omicron. Likewise,
the consensus genomes for most of the Houston clinical samples carrying CRs (all but CR2) were identified as
Omicron, mainly BA.1.1 and BA.1.15 (Figure 7). The clinical prevalence of the Omicron CRs increased as the
Omicron variant spread in the city, as reflected by both the viral load in the wastewater (Figure 4a) and the
number of sequences from Texas in GISAID (Figure 4b). In contrast, CR2 was detected in the wastewater only
during the first two weeks of the sampling period, while also detected with very low prevalence in the clinical
samples during weeks 1-6 (Figure7). We also queried the number of sequences with each amino acid change
associated with CR1-CR12 all over the world using outbreak.info29,30. As expected, the consensus level
mutations are often found in millions of SARS-CoV-2 sequences, and the mutations with low AF are found in
much lower number of sequences, ranging from a handful to thousands (Supplementary Table 2). The
compendium of evidence for CR1-CR12 provides a mixed picture of factors driving the rare LR mutations
comprising these CRs. Low allele frequency, high prevalence, and geographic discordance casts doubt on
these CRs representing legitimate cryptic lineages.

However, CR8 exhibited a different pattern. We first detected CR8 in clinical samples in the 1st week at a low
prevalence rate. As the prevalence rate in clinical samples increases, we were able to detect CR8 in
wastewater on the 3rd week (Figure 8), from samples sequenced using distinct protocols. CR8 consists of two
mutations, C10449A and T10459C. C10449A is a consensus level mutation for Omicron strains, and it has an
individual mean AF close to 1 in both wastewater and clinical samples (Figure 8a and Figure 8e). The
prevalence rate of C10449A alone gradually increases in the first 3 weeks of detections starting from the week
of 2021-12-06, until the prevalence rate reaches 1, and the pattern is consistent in both wastewater and clinical
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samples; on the other hand, mutation T10459C is present as a low frequency mutation with individual mean AF
close to 0.02. The prevalence rate of T10459C alone in clinical samples increased at the first half of the
sampling period, reaching peak at week 4, and then decreased in the second half of the sampling period
(Figure 8a and Figure 8e). Since CR8 contains both a consensus level mutation C10449A and a low frequency
mutation T10459C, both mean AF and prevalence rate of the co-occurring mutations follows the pattern of the
T10459C (Figure 8b and Figure 8f), and as the prevalence rate of CR8 in clinical samples increases, we start
to detect it in wastewater on week 3 as well. The average number of reads that span CR8 regions are shown in
Figure 8c and Figure 8g as coverage and Crykey is sensitive enough to detect CR8 in wastewater given that
the coverage of wastewater samples is much lower than clinical samples (Figure 8d).

To assess whether there were geographic patterns at a national level associated with these CRs, we
processed nearly 9,000 clinical samples collected outside of Texas over the same 8-week time period
(between 2021-12-06 and 2022-01-31; Supplementary Figure 2). CR5 was detected across clinical samples
from Maryland (very high prevalence) and Massachusetts (low prevalence) (Supplementary Figure 6a). CR8
was detected in Maryland again at a very high prevalence (Supplementary Figure 6b). In addition, we identified
five additional CRs shared across clinical samples from Houston and Maryland (CR3, CR4, CR7, CR9, CR11).
Note that the distribution of the PANGO assignments for samples containing CR5 and CR8 differed between
states. Although both CRs are associated with Omicron, Houston was dominated by BA.1.15, while Maryland
and Massachusetts had a much higher proportion of BA.1.1 and BA.1.17, and Maryland had much higher
proportion of BA.1.18 and BA.1.20 as well.

Discussion
Wastewater monitoring for SARS-CoV-2 has been widely used for complementing clinical genomic surveillance
during the COVID-19 pandemic14,31 . A recent study claims to have identified cryptic SARS-CoV-2 lineages in
the wastewater that went undetected in the clinic, leaving it an open question as to the origin of these CRs20.
Our contribution centers on a novel detection tool, Crykey, designed to identify rare linked-read mutations in
wastewater using sequencing data. Specifically, Crykey leverages an optimized database lookup for the
co-occurrence of mutations that are present on the same reads or read pairs and to detect the presence of
CRs. Our method is fully compatible with standard mutation calling pipelines for SARS-CoV-2, and considers
CRs defined by mutations that may occur across the entire SARS-CoV-2 genome. To demonstrate the efficacy
of our new computational tool, we applied CryKey to >3,000 wastewater samples from Houston.

By examining three years of wastewater sequencing data and eight weeks of local clinical surveillance data,
our goal was to demonstrate the potential of Crykey to provide a finer-grain view of the emergence of potential
cryptic lineages within Houston. We also provide results that show twelve CRs were found in wastewater and
clinical samples from the same time period. Future work is required to validate CRs as they emerge and to
discern between potential systematic biases and legitimate CRs. In particular, cases where the CR is highly
prevalent in clinical samples but at a low frequency within each individual and cases when all the mutations
comprising a CR exhibit similar allele frequencies (which could represent read mapping or alignment error
caused by indels, or strong evidence for a novel cryptic lineage given the very low likelihood of multiple errors
being introduced on a single read from a high-fidelity sequencing platform), and combinations of consensus
level established mutations observed with single low-frequency mutations (which could represent the
emergence of a novel SARS-CoV-2 lineage or also represent an error co-located with a characteristic mutation
from a PANGO lineage) warrant further investigation.
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Interrogating outlier CRs with Crykey
While 85% of the CRs lasted for less than 4 weeks, we also observed some CRs that persisted for more than
10 weeks (Figure 5). Notably, CR12 was detected across multiple WWTPs in Houston for 33 weeks (Figure 6).
CR12 contains two LR mutations, A29039T and G29049A, which cause K256* and R259Q amino acid
changes on the N gene. The combination of these mutations is rare; there are only three entries in GISAID that
contain both mutations, and none of these originated from the United States. Previous work has shown that
N:K256 is one of the eight lysine residues in the protein N of SARS-CoV-2 that is likely to be directly involved in
RNA binding32. A29039T generates a stop codon that may affect the linker region, suppressing the
immunogenic domain of the nucleocapsid protein which might help vaccine escape32,33. N:R259 belongs to one
of the identified guanosine triphosphate binding pockets, and is well-conserved in multiple human
coronaviruses, including NL63, 229E, HKU1, OC43, as well as MERS and SARS-CoV-134, the N:R259Q
mutation has been reported multiple times at low prevalence rates in several SARS-CoV-2 lineages, likely
representing a hotspot mutation mostly belonging to the Delta variant35. A previous study suggested that the
nucleocapsid protein of SARS-CoV-2 is flexible and dynamic, and CR12 happens to be located on one of the
predicted disordered regions of the N gene36.

Potential origins of cryptic mutations: do they represent cryptic lineages, poorly understood biology
signals, or systematic noise?
The precise origin of the cryptic mutations we found in Houston wastewater remains an open question. One
could think of five possible scenarios: 1) they represent rare circulating SARS-CoV-2 lineages that went
un-sampled or under-sampled in the clinical samples, 2) they exist as intra-host mutations from the population
that have high enough prevalence to be detected in wastewater, 3) they represent signal from SARS-CoV-2
transcription such as subgenomic mRNAs, 4) they are spillover from an unidentified animal reservoir, or 5) they
are technical artifacts from environmental degradation, sample preparation or sequencing.

A first possible explanation behind CRs in the wastewater not being captured by clinical surveillance is low
community prevalence rates20,25,21. As only a small portion of the SARS-CoV-2 infections are sequenced,
transient cryptic lineages are likely to be missed by clinical surveillance. Clinical data also suffers from
sampling bias, where people with severe symptoms and access to healthcare resources are more likely to be
represented in the databases. Figure 5 shows that most of the cryptic mutations detected in Houston
wastewater were only found over 1 to 3 weeks, and these short-duration cryptic mutations may represent those
not captured by clinical testing. In support of this hypothesis, we found that a subset of the cryptic mutations
that were also supported by reads from clinical sequencing.

However, we observed several cryptic mutations with a high prevalence and low intra-host AF in the clinical
samples. Indeed, it is common to only report consensus-level mutations (i.e., mutations with allele frequencies
greater or equal to 0.5), or consensus genomes/assemblies to the public databases such as GISAID. As a
result, although CRs might be sampled, they will remain unreported. A recent study has shown that
molnupiravir treatment can induce de novo mutations in multiple individuals, but it is not clear whether the
cryptic mutations found in clinical samples are tied to therapy-related lineages37. We also observed cases
where a CR persisted for multiple weeks in wastewater samples but had little to no trace in clinical samples.
Why these CRs were not captured by clinical surveillance remains unknown. As a possible explanation for this
second scenario, previous studies have suggested that cryptic lineages may be carried by non-human hosts20,
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especially for those that persist for very long periods38. Given we lack representative genomes from
non-human hosts during the time frame of our results, we are unable to investigate the plausibility of this
scenario.

Temporally linked CRs (especially those that appear and disappear within a few weeks) provides compatible
evidence for legitimate novel cryptic lineages. Additionally, CRs that contain multiple low-frequency mutations
in a single read (and all supported by 5 or more reads) contrast themselves with CRs that contain a mutation
shared with a circulating PANGO lineage in addition to a companion low-frequency mutation (or mutations). On
the surface, low mean allele frequencies combined with high prevalence rates in clinical samples raises some
concern regarding their validity, especially given the lack of plausible explanation for transmission/community
spread of low frequency intrahost mutations (Supplementary Figure 5).

To investigate the potential origin of CRs, we evaluated a dataset of 5,060 clinical samples collected within
Greater Houston from 2021-12-06 to 2022-01-31. Our results suggest that CRs detected in wastewater could
be related to intra-host low frequency co-occurring mutations in clinical samples (Figures 7 and 8). The
unusual long life span of CR12, together with its high prevalence at low intra-host AF in clinical samples,
suggests that it could be a previously unreported artifact. However, examining over 7,000 clinical samples
sequenced with the PacBio HiFi system, and tested multiple read aligners, we can likely rule out that CR12 is
primarily related to primer artifacts, sequencing technology-dependent artifacts, and sequence alignment
errors.

Finally, cryptic mutations could represent some type of systematic bias. Even though we have taken extreme
care to filter out known sources of artifacts and have observed them across different sample types, amplicon
panels, read mappers, and sequencers, we cannot rule out unknown systematic artifacts or biases leading to
CR detection. Given there is no single mutational pattern observed (they can be comprised by multiple low
allele frequency mutations that are short duration or very long duration, as well as contain mutations that pair
an established consensus level mutation from a VOC with a transient low-frequency mutation), explanations for
each of these patterns and their variability over time requires further investigation. Indeed, the goal in
developing Crykey was to provide an efficient and sensitive tool for interrogating cryptic mutation patterns over
time and geography, with the hope of shedding light on their origin and facilitating the identification of artifacts.

Open challenges in tracking potential cryptic lineages mutations in wastewater
One of the key challenges in reliably detecting CRs in wastewater is the quality of the samples39,40. As shown in
Figure 4, the number of newly emerging CRs follows the same pattern as the viral load until June 2022, where
the samples collected afterward had worse quality regarding breadth of coverage. The performance of Crykey
is limited because the samples did not have enough sequencing depth across most of the regions of
SARS-CoV-2 genome during those weeks. Due to the inherent limitations of short-read sequencing platforms
that generate 100-200 bp reads, protocols used for sequencing, and the fragmented state of the viral RNA in
wastewater, there is a natural limit on the genomic span of the cryptic mutations we can use. Indeed,
degradation of genetic material in wastewater impacts the sequencing quality of the sample, at the same time
introducing noise for rare mutation detection41,42. Furthermore, genomic regions corresponding to sequencing
primers or adapters create coverage gaps (regions without read support) along the genome and pose a
challenge for identifying CRs that span longer regions. However, these limitations could be addressed using
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long-read sequencing if sample manipulation and extraction procedures allow intact longer RNA fragments to
be recoverable from wastewater samples.

Concluding remarks
Crykey represents an efficient and easy-to-use tool specifically designed to rapidly and comprehensively find
cryptic mutations across thousands of wastewater samples. We applied Crykey to detect numerous CRs in
Houston, some persisting for months. The concept of searching for rare LR mutations inside of a viral genome
that have never or rarely been reported is generalizable, and Crykey is not limited to SARS-CoV-2. Crykey can
be expanded and applied to multiple pathogens, such as influenza A virus, as long as the pathogen has an
established database of genomic sequences43,44. We are hopeful that our findings will help promote
community-wide discussion on best practices for cryptic lineage tracking in wastewater.

Methods

Crykey is a computational method for the identification of cryptic mutations (linked read mutations supported by
5 or more reads and occurring less than 0.01% of the total GISAID EpiCoV samples, which represents 1298
genomes or less and as few as zero genomes) representing potential cryptic lineages (CRs) in wastewater
samples on a full-genome scale. The workflow of the Crykey pipeline can be divided into 3 steps, including
database construction, sample processing to find CR candidates, and rarity calculations for each candidate
found in the previous step. Crykey first builds mutation look-up tables and a genome-to-mutation database
using the full GISAID’s EpiCoV database (Figure 1a) and then searches for CRs (Figure 1b). Specifically,
Crykey first extracts LR mutations from the alignment and searches for CR candidates by querying the
mutation look-up table (Figure 1c). Then, Each CR candidate is queried against a pre-built database to check if
it is novel or rare in terms of prevalence to create candidate CRs (Figure 1d). Candidate CRs are then passed
through a rigorous set of filters to nominate a subset as detected CRs. Due to the optimized database structure
that partitions the mutation prevalence information according to the associated PANGO lineage/lineages for a
given time period, Crykey is highly efficient and can easily scale to thousands of samples. We will now provide
specific details regarding the filtering steps and analysis methods used in this manuscript.

Candidate CR Lineage Determination
The database used in Crykey is built based on the multiple sequence alignment (MSA) generated by the
GISAID EpiCoV database. We extracted the mutations for each SARS-CoV-2 genome in the MSA using vdb
with the command vdbCreate -N input.msa45. We then trimmed the list of mutations associated with each
genome sequence with the vdb trim command. Combining the lineage assignment of each genome sequence
in the metadata, we calculate the prevalence rate of each mutation in each of the known lineages of
SARS-CoV-2, as well as building a mutation database containing mutation information for each individual
SARS-CoV-2 genome. The results shown in this manuscript are based on the GISAID EpiCoV database dated
at 2023-01-10.

To identify candidate cryptic lineages, Crykey first builds a default mutation lookup table where each mutation
in GISAID is associated with a set of lineages and specific weeks (based on sample collection date) of
occurrence in GISAID, regardless of prevalence rate. A second mutation lookup table is built at the same time
where only mutations with a prevalence rate greater than 0.5 are stored, which allows us to perform a fast
query on whether a set of SNPs belongs to any of the SARS-CoV-2 genome in a given time period.
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quality reads49. Then the filtered reads were aligned to the reference genome of SARS-CoV-2 (NCBI
Reference Sequence: NC_045512.2) with bwa mem v0.7.17-r1188 with default parameters28,49. The alignment
files were sorted and indexed with samtools v1.1450. Mutation calling was done using lofreq v2.1.5 with
command “lofreq call --no-default-filter --call-indels”, and then filtered with command “lofreq filter --cov-min 20
--af-min 0.02 -b fdr -c 0.001”51. Consensus genomes were generated and PANGO calling was done using
pangolin v4.2 with default parameters52.

After read mapping, the BAM files and the VCF files are collected for searching for CRs detected in wastewater
samples. 20 wastewater CRs detected during the 8 week sampling period were selected for testing. 10 of the
20 wastewater CRs occurred 2 of the 8 weeks, representing CRs with a short burst pattern; when
cross-referencing with the clinical sample data, we selected short lived CRs that were detected in the most
wastewater treatment plants. The rest of the 10 wastewater CRs we selected for the query are those that had
the longest duration of the clinical sampling period, ranging from 4 to 8 weeks of occurrence, representing CRs
with a long lasting detection pattern in both wastewater and clinical samples.

By using the alignments in the clinical samples, we counted the total number of reads spanning the regions
that the CRs contained, and counted the number of reads supporting all mutations from the CRs at the same
time. 5 bases towards both ends of the reads were ignored to avoid noise caused by sequencing errors. The
allele frequency of a potential cryptic lineage was calculated as the number of CR supporting reads over the
number of total reads covering those positions.

During the analysis, we further filtered the results, and samples with CRs with less than 5 supported reads or
with AF less than 0.02, or any of the mutations within the CR missing from the variant calling are considered as
CR absent. We counted forward and reverse read fragments that do and do not fully support all cryptic
mutations, and calculated both the p-value of the Fisher’s exact test and strand bias scores described in the
previous studies53,54. Samples with reads containing strain bias scores greater or equal to 1 and p-value of the
Fisher’s exact test less than 0.05 are also considered as CR absent.

All wastewater samples and clinical samples with insufficient coverage for a CR (number of reads that cover all
mutation positions of a CR is less than 10) are excluded from the calculation of AF, prevalence rate, and
coverage in Figure 7 and Supplementary Figure 3-5. The AFs of individual mutations from the CR are
extracted from the variant calling results. The AF of CR is calculated as the number of reads that contain all
mutations of a CR over the number of reads that cover all mutation positions of a CR. The prevalence rate is
calculated as the count of CR/mutation detected samples over the count of samples with sufficient coverage.

Validating CR12 (A29039T-G29049A) CR with PacBio clinical samples
The samples were downloaded from the NCBI SRA database under the BioProject PRJNA716984. We
subsampled 7,113 SRA runs with sample collection dates between 2021-11-06 and 2022-03-21, including
2,458 samples collected in Texas and 4,655 samples from 50 other regions (49 US states and Puerto Rico).
Samples with missing metadata (location or sample collection date) were excluded. The reads were aligned to
the reference genome of SARS-CoV-2 (NCBI Reference Sequence: NC_045512.2) with minimap2 using
map-pb preset55. The alignment files were sorted and indexed with samtools v1.14. The number of supporting
reads and the depth of coverage is calculated using the same method described in the previous section.
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Data availability
Source data is provided with this paper and has been deposited in the OSF database with DOI:
10.17605/OSF.IO/3SPRZ. All sequencing data supporting the findings of this study is publicly available.
Houston wastewater datasets are available for download via NCBI BioProject PRJNA796340. Houston short
read clinical datasets are available for download via NCBI BioProject PRJNA764181. Non-Texas short read
clinical datasets are available for download via NCBI BioProject PRJNA686984. The PacBio SARS-CoV-2
clinical datasets are available for download via NCBI BioProject PRJNA718231.

Code availability
The source code for Crykey is publicly available at https://github.com/treangenlab/crykey. The code used for
analysis and figure generation used in this study can be found in
https://github.com/treangenlab/crykey_analysis_scripts.
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Figures

Figure 1. Workflow and algorithms of Crykey. a) Crykey constructs a genome-to-mutation database and a
set of mutation lookup tables using GISAID sequences and metadata. b) Crykey searches for two or more
mutations located on the same read or read-pair and uses the mutation lookup tables to identify whether the
linked read mutations represent a candidate CR. Then, each candidate CR is queried against the
genome-to-mutation database to calculate its prevalence rate; if they meet the indicated thresholds they are
then considered a CR. c) Algorithm to search candidate CRs, with an example of a read-pair containing
mutations A and B. d) Algorithm for the fast exact search for prevalence calculation, with an example of a
candidate CR containing mutations A and B.
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Figure 2. Occurrence distribution and query time of candidate CRs found in Houston wastewater
samples. The candidate CRs identified in the samples are partitioned into bins based on their prevalence in
the GISAID database. a) y-axis shows the number of candidate CRs in each bin (n=50). Cumulative
percentages are plotted with a solid line on the second y-axis. b) shows the process time of each bins in the
box plot. The box plot includes both median lines (solid), and the box bounds the interquartile range (IQR). The
Tukey-style whiskers extend from the box by at most 1.5 × IQR. The outliers are shown. The average process
time of each bin is shown as a solid blue line.
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Figure 3. Distribution of CRs found in Houston wastewater. In both a) and b), the locations of CRs on the
SARS-CoV-2 reference genome found in Houston wastewater samples are shown on the x-axis, with
SARS-CoV-2 ORFs shown above the figure panels. In panel a), each CR is represented by a colored dot, the
y-axis indicates its mean AF in the wastewater sample, and the color indicates its rarity, defined as
-log10((n+1)/total number of sequences in GISAID), where n is the number of genomes supporting the CR in
the GISAID EpiCoV database; the larger the number the more rare the mutation in GISAID. The darker color
suggests that the CR is rare or unreported. The size of the dot shows the number of weeks the CR was
detected. Larger dots indicate the CR persisted longer in the community. Panel b) is a histogram showing the
count of CRs found in different 400 bp regions of the reference genome. CRs containing exclusively
non-synonymous mutations are marked in orange, and the CRs containing at least one synonymous mutation
are marked in gray. Higher bars indicate that more CRs were found in the associated region.
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Figure 4. CRs and viral load in Houston wastewater. In both panels a) and b), the x-axis shows the dates
from May, 2021 to November 2022. Panel a) shows the number of CRs (left y-axis) newly detected in Houston
wastewater per week as bars. The proportion of CRs containing only non-synonymous mutations is indicated
orange, while the remainder is in gray. The width of the bar indicates the average breadth of genome coverage
across all WWTP, ranging from 0.02 to 0.74. The normalized viral load in wastewater (right y-axis) (based on
the viral load from samples collected on July 6, 2020 in Houston) is shown as a dotted line. Panel b) shows the
number of SARS-CoV-2 sequences in the GISAID EpiCoV database from Texas, USA per sampling week.
Color corresponds to their PANGO lineage assignments. Omicron lineages other than BA.2, BA.5, and their
descendants are combined and denoted as “Omicron”.
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Figure 5. Persistence and Occurrence of CRs found in Houston wastewater. Each CR is represented by a
dot, with the size of the dot indicating the mean count of the wastewater treatment plants the CR was detected
at each week, and the color of the dot indicating mean allele frequency. The histogram on the bottom shows
the number of weeks that the unique CRs have been detected and their associated counts. The histogram on
the right shows the rarity of unique CRs in terms of occurrence in GISAID and their associated counts.
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Figure 6. Persistence of CR12 (A29039T-G29049A) in Houston wastewater. For both panels, the x-axis
shows time. In panel a), rows correspond to wastewater treatment plants (WWTPs) sampled, with the cell color
indicating the mean allele frequency (MAF) of the mutation set (cells with MAFs below 0.01 are colored as blue
and labeled as “Not Detected”. Samples with coverage below 10x are marked in gray and denoted as “No
Coverage”. Missing samples are marked in white. In panel b) the bars indicate the number of WWTPs in which
CR12 was detected, per week (left y-axis). The dotted blue line indicates the mean coverage of the wastewater
samples with coverage above 10x, per week (right y-axis).
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Figure 7. CRs detected in clinical samples from Greater Houston. The mutation combinations for each
wastewater CR are shown at the top of each panel. Cyan bars indicate the prevalence (left y-axis) and dotted
blue lines (right y-axis) the mean AF (right y-axis) of the CR in the clinical samples, with the error bars showing
the minimum and maximum of the observed AF. The areas shaded in gray indicate the periods during which
the CR was detected in the wastewater. The stacked bars to the right of the panels show the distribution of the
PANGO lineages of the consensus genomes of clinical samples with CRs. All Delta genomes are combined. All
Omicron genomes other than BA.1.1, BA.1.15, BA.1.17, BA.1.18, BA.1.20 are combined and denoted as
Omicron.
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Figure 8. CR8 detected in wastewater and clinical samples from Greater Houston. Figure a-d are
information of CR in wastewater each week. a) shows the individual AF (with mean AF shown in dotted line,
minimum/maximum of AF observed shown as error bars, the same below) and prevalence rate (shown as
bars, the same below) of mutations within CR. b) shows the AF and prevalence rate of CR. c) shows the mean
coverage at CR5 locations. d) shows the sample qualities and Crykey detections, with samples of insufficient
coverage colored in gray, samples of CR absent colored in blue, and samples of CR detected colored in
orange. Figure e-h are information of CR in clinical samples of Houston for 8 weeks of sampling period. e)
shows the individual AF and prevalence rate of mutations within CR. f) shows AF and prevalence rate of CR.
g) shows the mean coverage at CR locations. h) shows the distribution of the PANGO lineages of the
consensus genomes of the clinical samples with CR. Delta genomes are not found in any of the samples. All
Omicron genomes other than BA.1.1, BA.1.15, BA.1.17, BA.1.18, BA.1.20 are combined and denoted as
Omicron. For figure a-c, and e-h, wastewater and clinical samples with insufficient coverage (<10x at CR
location) are excluded from the analysis.
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