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Abstract

Background: Risk prediction models are used in healthcare settings to tailor
therapies to individuals most likely to benet. Despite appropriate external
validation, dierence in local characteristics (e.g. patient mix) may attenuate
model performance. Prior to any implementation it is therefore advisable to
explore local performance, typically requiring a modest amount of historic data.
Depending on model performance, model adjustments might be necessary which
often require large amounts of data. Here we explore a small sample size
approach approximating de novo derivation, by combining model stacking and
transfer learning, referred to as stacked transfer learning. As an example we focus
on stacking previously trained risk prediction models for cardiovascular disease
(CVD), stroke, (chronic) kidney disease, and diabetes.

Methods: We leverage data from the UK biobank to illustrate the benets of
stacking previously trained risk prediction models, predicting the risk of incident
CVD, chronic kidney disease (CKD) or diabetes. To mimic sample sizes available
in local settings, such as a small to large healthcare trust, we iterated the number
of training cases between 10 and 1000. Model stacking was performed using a
LASSO penalized logistic regression model, and compared performance of a de

novo model estimating the local association of 33 variables used in the
aforementioned risk prediction models.

Results: We found that stacked models require roughly one-tenths of the
training sample size compared to de novo derivation of a prediction model. For
example, predicting CVD the stacked model required 30 cases to reach a area
under the curve (AUC) value (with 95% CI) of 0.732 (0.728, 0.735), while the de

novo model required 300 cases to reach approximately the same performance. As
expected, the absolute performance depended on the predicted outcome, where
for example the dierence between de novo and stacked modelling was smaller
for CKD prediction.

Conclusion: We show that our proposed ”stacked transfer learning” approach
closely approximated the predictive performance of a de novo model, often
requiring only a fraction of the data. As such, this approach should be considered
when tailoring a model to a local setting.

Keywords: Multivariable risk prediction; Machine learning; Cardiovascular
disease; Stacking; Transfer learning; Local optimization
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INTRODUCTION

In clinical settings, risk prediction models are often employed to tailor treatment

to people at risk of future disease or disease progression. For cardiovascular disease

(CVD) (a composite of coronary heart disease (CHD) and stroke), risk-stratied ini-

tiation of treatments is recommended by professional bodies such as the American

College of Cardiology/American Heart Association (ACC/AHA) [1] and the Euro-

pean Society of Cardiology (ESC)[2, 3]. The UK National Institute for Health and

Care Excellence (NICE) suggest using the QRISK2 or QRISK3 algorithms[4, 5, 6, 7]

and recommend pharmaceutical interventions for people with a 10-year predicted

risk of 10% or higher [8].

Because of the importance of these tools for clinical disease management, local

(e.g., such as in a local healthcare trust) model under-performance may have detri-

mental eects, where low-risk people may be over-treated, and high-risk people may

not receive timely treatment. While some of these risk prediction models, including

QRISK3, have been externally validated, local performance may dier substantially.

For example, the SCORE2 model [9] for subsequent CVD events has been exten-

sively validated across Europe, showing variable discriminative ability, where the

area under Receiver Operating Characteristics (ROC) curve (AUC) ranged between

0.67 (in Russia) and 0.83 (in Italy).

As such, and notwithstanding promising performance in external setting, risk pre-

diction models may under-perform in a new settings. Before considering model im-

plementation, it is therefore advisable to rst explore local performance. Depending

on this local performance, a model might need to be tailored to improve its per-

formance, which could be achieved through the principles of transfer learning[10].

For example, calibration (the agreement between predicted and observed risk) can

often be improved through a simple re-calibration step, estimating a new intercept

(reecting the average disease risk) and calibration slope; which is equivalent to

vertically translating and scaling the predicted risk.

More data-intensive calibration steps include adding additional predictor variables

or candidate features, or even de novo derivation of an entire prediction model [11].

Typically these more elaborate re-calibration steps require a sample size unavailable

in even large healthcare trusts. Instead, we propose to leverage the large body of

already available pre-trained prediction models[12], and use the principles of model

stacking [13] and transfer learning [14, 15], to combine a number of already derived

prediction models to jointly predict disease risk. We will show that such stacked

transfer learning will require a fraction of the sample size necessary to train a

de novo model using all available predictors, and as such might be realistically

applied to optimize risk prediction models in local settings. Furthermore, because

such a stacked transfer learning approach often approximates performance of a de

novo modelling strategy (at smaller sample sizes), this provides a bench-mark to

compare alternative modelling steps (e.g., no-updating or updating a small number

of predictors).

As an exemplar, we attempted to predict 10-year CVD risk in the UK biobank

(UKB) by stacking four prediction models derived by QResearch: QRISK3 for CVD

[7], Q-Stroke for stroke [16], Q-Diabetes for type 2 diabetes (T2D) [17], or Q-Kidney
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for chronic kidney disease (Q-CKD). Performance of these stacked models was com-

pared to the original QRISK3 (as well as the four other Q-scores), and to a (de novo)

model (referred to as de novo hereafter) trained to predict CVD using all of the

individual predictors used in at least one of the Q-scores. To mimic the amount of

samples likely available in real-world settings, we performed an empirical simula-

tion study and took random samples from a training split of the UKB to create a

range of cohorts with dierent sample sizes (including 10 to 1000 CVD cases). This

empirical simulation study was repeated for the stacked and the de novo model

attempting to predict the 10-year risk of T2D and the 5-year risk of CKD.

METHODS

Data source

Data were available from UKB participants including information from hospital

episode statistics (HES) and general practitioners (GP). Participants were enrolled

between 2006 and 2010 from across the UK.

To empirically showcase the concept of transfer learning using stacked models we

set out to predict the 10-year risk of incident CVD in people without a history of

CHD, atrial brillation, or heart failure. Incident CVD was dened based on the

ICD-10 codes listed in Appendix Table A1. Similarly we explored the predictive

performance of the 10-year risk of T2DM, and 5-year risk of CKD, in people with-

out a history of these respective diseases at enrolment. Supplementary Table A2

details the candidate features used by the four Q-scores. Briey the following data

were extracted for each UKB participants at the time of enrolment: Female sex,

age (years), body mass index (BMI), high-density lipoprotein cholesterol (HDL-C,

mmol/L), low-density lipoprotein cholesterol (LDL-C, mmol/L), triglycerides (LDL-

C, mmol/L), total cholesterol (mmol/L), systolic blood pressure (SBP, mm Hg),

smoking status (never, former, light, moderate, and heavy), and disease histories.

Prescription data were extracted for the following drugs: statins, corticosteroids,

non-steroidal anti-inammatory drugs (NSAIDs), and atypical antipsychotics.

The limited number of missing observations (Table 1, A6 and A5) were imputed

using multivariate imputation by chained equations (MICE) [18].

Implementation of the Q-scores

The Q-scores were implemented using the publicly available code shared by the

QResearch group. Based on known shared etiology we focused on implementing the

aforementioned scores for CVD (QRISK3), stroke (Q-Stroke), T2D (Q-Diabetes),

and for CKD (Q-CKD). Please see the appendix methods for a full description of

the implementation; also noting some necessary simplication, for example, due to

the lack of repeat SBP measurements, we implemented a version of the QRISK3

which omitted the standard deviation (SD) of SBP measurements.

Stacked transfer learning

In machine learning (ML), transfer learning refers to adapting a pre-trained model

to perform a new but related task[19, 14]. For example, an algorithm that is trained
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to identify and extract left ventricle ejection fraction from medical notes can be

repurposed to extract information on additional measurements sourced for example

from a dierent healthcare trust. By sourcing previously obtained knowledge and

updating it to local settings, transfer learning minimizes the amount of data needed

to obtain a model that is suciently accurate for the new task [15]. Here we propose

a specic type of transfer learning, leveraging and combining information from

previously trained risk prediction models to obtain a locally optimized algorithm.

In the context of transfer learning, combining (or stacking) multiple previously

derived prediction models can be viewed as a weighted sum of the predicted risk of

each individual model that might explain the outcome (Figure 1), where the weights

need to be estimated from a set of historical data. For example, stacked transfer

learning can be implemented as a relatively straightforward logistic regression model

only considering linear terms:

logit(P(CVD = 1|Q-scores)) =β0 + β1 ×QRISK3 + β2 ×Q-Stroke +

β3 ×Q-Diabetes + β4 ×Q-CKD
(1)

Figure 1 Schematic of our proposed stacked transfer learning approach applied to the Q-research
risk equations for the onset of 10-years CVD, 10-years T2D and 5-years CKD.

While the individual Q-scores include 16 to 22 candidate features, the linear

stacked model presented in equation 1 instead contains only four features which

typically can be estimated with data from fewer participants than what is needed

for tting the de novo model with 33 candidate features.

Model performance may be further improved by considering more complex non-

linear terms (e.g. squared terms or product terms). For example a three-way poly-

nomial of the four Q-scores would result in 35 candidate predictors (including the

terms with higher powers), which can be contrasted by a three-way polynomial of

the 33 feature de novo model resulting in 5456 candidate predictors. Given the large
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number of candidate predictors, model selection strategies such as LASSO penal-

ization can be employed to identify the subset of predictors which may optimally

predict the outcome.

Depending on the desired model exibility, the LASSO model can be substituted

by more exible algorithms, for example a random forest [20, 21] or support vector

machines [22, 23]. In the current manuscript we consider the two types of stacked

models (1) a linear model equal to Equation 1 (stacked: linear) and (2) a 3-way

polynomial model (stacked: 3-way poly). Here both models were implemented using

a binomial generalized linear model, with LASSO penalization optimized through

5-fold cross-validation. As a comparison, we used the same generalized linear model

with LASSO regularization to train a de novo model using 33 candidate features;

see Table A2.

Performance across dierent sample sizes

Given that in most local settings a sample size of 300K+ participants is unfeasible,

and to ensure unbiased performance evaluation, we split the UKB into a 85/15%

testing and training set. To empirically simulate model performance across varying

sample size and case number, we iterated from case numbers as low as 10 to 100 in

steps of 10, and further until 1000 in steps of 100. Random draws were taken exclu-

sively from the training data, stratied by case-control status, ensuring a constant

event rate.

Additionally, for the models predicting CVD incidence within a period of 10 years,

we compared the performance of the stacked and de novo models to each individual

Q-score using a representative sample size of 100 cases (resulting in a total sample

size of 1384).

Discrimination measures and calibration estimates

In this study, external performance (using the test data) was evaluated in terms of

discrimination ability (AUC) and calibration (calibration slope and calibration-in-

the-large), with precision indicated using 95% condence intervals (95%CI). Addi-

tionally, using the test data, feature importance was estimated by sequential per-

mutation (25 times) of each individual predictor variable and recording the change

in AUC.

Perfect discrimination is indicated by an AUC of 1.00, where 0.50 reects ran-

dom (or no) discrimination. Calibration indicates how accurate the absolute pre-

dicted risk is, where calibration-in-the-large reects the average dierence between

observed and predicted risk (on the logit scale) and the calibration slope reects

potential deviations in the tails of the distribution [11, 24, 25]. Hence perfect cali-

bration is obtained when calibration-in-the-large is 0 and the calibration slope is 1

[26, 27].

RESULTS

Baseline characteristics

During a 10-year follow-up, 23,389 CVD events were accrued out of 325,654 UKB

participants without a history of CVD at enrolment (Table 1). At the time of
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Table 1 Baseline characteristics of UK biobank participants without CVD at the time of enrolment.

Participant
characteristics

Cases Controls Missing-
ness %

Total sample size (n) 23389 302265
Age (median [IQR]) 63.0 (58.0 , 66.0) 57.0 (50.0 , 63.0) 0.0
Sex (male) (%) 14763.0 (63.12%) 131364.0 (43.46%) 0.0
Systolic blood pressure in mmHg (median [IQR])145.0 (133.0 , 159.0)138.0 (126.0 , 152.0) 0.09
HDL cholesterol in mmol/L (median [IQR]) 1.3 (1.1 , 1.55) 1.42 (1.19 , 1.7) 12.74
LDL cholesterol in mmol/L (median [IQR]) 3.48 (2.84 , 4.13) 3.57 (3.02 , 4.16) 4.83
Triglycerides in mmol/L (median [IQR]) 1.68 (1.19 , 2.41) 1.47 (1.04 , 2.13) 4.73
BMI in kg/m2 (median [IQR]) 27.95 (25.22 , 31.3) 26.53 (23.99 , 29.6) 0.30
Smoking status (%) 0.04
Non-smoker 10375 ( 44.0 %) 169905 (56.0%)
Former smoker 9711 ( 42.0 %) 102393 ( 34.0 %)
Light smoker (< 10 cigarettes/day) 1012 ( 4.0 %) 8359 ( 3.0 %)
Moderate smoker (10-19 cigarettes/day) 925 ( 4.0 %) 7171 ( 2.0 %)
Heavy smoker (> 20 cigarettes/day) 300 ( 1.0 %) 4011 ( 1.0 %)
Diagnosed/ treated hypertension 2505.0 (10.71%) 11579.0 (3.83%) 0.0
History of Type 1 Diabetes 39.0 (0.17%) 401.0 (0.13%) 0.0
History of Type 2 Diabetes 1178.0 (5.04%) 5764.0 (1.91%) 0.0
History of atrial brillation 0.0 (0.0%) 0.0 (0.0%) 0.0
History of peripheral vascular disease 169.0 (0.72%) 496.0 (0.16%) 0.0
History of valvular heart disease 194.0 (0.83%) 403.0 (0.13%) 0.0
History of chronic heart disease 0.0 (0.0%) 0.0 (0.0%) 0.0
History of congestive cardiac failure 0.0 (0.0%) 0.0 (0.0%) 0.0
History of rhematic arthritis 197.0 (0.84%) 1086.0 (0.36%) 0.0
History of Systemic lupus erythematosus 25.0 (0.11%) 146.0 (0.05%) 0.0
History of chronic kidney disease 84.0 (0.36%) 232.0 (0.08%) 0.0
History of end stage kidney disease 84.0 (0.36%) 232.0 (0.08%) 0.0
History of kidney stones 172.0 (0.74%) 1187.0 (0.39%) 0.0
History of migraine 184.0 (0.79%) 2472.0 (0.82%) 0.0
History of severe mental illness 114.0 (0.49%) 1054.0 (0.35%) 0.0
Prescription history of Statins 5465.0 (23.37%) 31850.0 (10.54%) 0.0
Prescription history of atypical antipsychotics 76.0 (0.32%) 800.0 (0.26%) 0.0
Prescription history of corticosteroids 668.0 (2.86%) 4355.0 (1.44%) 0.0
Prescription history of NSAID 8378.0 (35.82%) 73234.0 (24.23%) 0.0

enrolment, participants (both cases and control)) had a median age of 56.6 years

(SD: 8.00), 179,527 (55.12%) were female, and the average BMI was 27.303 (SD:

4.72). Mean LDL-C concentration was 3.606 mmol/L (SD: 0.856), mean HDL-C

concentration was 1.463 mmol/L (SD: 0.381), 37,315 (11.5 %) participants had a

statin prescription, and the average SBP was 140.2 mmHg (SD: 19.643). Please

see Table A6 and Table A5 for the baseline characteristics of the CKD and T2D

cohorts.

Given that the Q-scores partially included the same information (e.g., they all

used age and sex as predictors), we assessed the pairwise correlation of variables.

Aside from a meaningful correlation between Q-CVD and Q-Stroke (Spearman’s

correlation of 0.799), the Q-research scores were only moderately correlated.

Evaluating the inuence of case numbers for CVD incidence

prediction

We rst compared performance of the two transfer learning models to the de novo

model across dierent amounts of training data that one might expect in a reason-

able clinical (non-research) setting (by iterating the number of cases while keeping

the incidence proportion constant) (Figure 2). The stacked transfer learning models

consistently showed a larger AUC than the de novo model for 30 to 400 cases. Fig-

ure 2 also shows that the AUC values of the stacked Q-score models almost overlap
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across the range of case numbers investigated, indicating a lack of non-linear asso-

ciations; Table A3. The calibration (i.e., the agreement between predicted risk and

observed risk) was near acceptable for both stacked model and the de novo model

from a case number of 90 onward; see Figure 3 .

Figure 2 Model performance across a range of training sample sizes possibly encountered in
non-research healthcare settings. Performance of the two stacked models overlap across this given
range. Estimates were derived from an independent test set of 18,849 CVD cases and a total of
276,646 participants. The numerical data underpinning this gure are provided in Table A3.

Comparing the stacked and the de novo models, against indi-

vidual Q-scores

Next we studied the performance of the stacked and de novo models against indi-

vidual Q-scores for a representative example of 100 CVD events (total sample size

= 1384). Figure 4 and Table A4 showed that among the Q-scores, QRISK3 reached

the highest AUC 0.732 (95%CI 0.729; 0.735), followed by Q-CKD 0.692 (95%CI

0.688; 0.695), Q-Stroke 0.689 (95%CI 0.686; 0.693), and Q-Diabetes 0.674 (95%CI

0.671; 0.678). The stacked models showed a slightly improved discriminative ability:

AUC 0.735 (95%CI 0.732; 0.738) for both the linear and 3-way polynomial stacked

models. For this same sample size, the discriminative ability (AUC) of the de novo

model was 0.710 (95% 0.706; 0.713). At this sample size, the stacked model were

better calibrated (calibration-in-the-large of -0.015 (95 % CI -0.029, 0.000)) than

the de novo model(calibration-in-the-large of -0.011 (95% CI -0.026, 0.004)), also
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Figure 3 Plots of the calibration estimates, illustrating the agreement between predicted CVD risk
and observed CVD risks for the stacked Q-risk score models and the de novo model, across a
range of training sample sizes and corresponding case numbers. Estimates were derived from an
independent test set of 18,849 CVD cases and a total of 276,646 participants. The numerical data
underpinning this gure are provided in Table A3.

outperforming the QRISK3 (calibration-in-the-large of -0.308 ( 95% CI -0.323 ,

-0.294)).

Predicting 10-year and 5-year risk of type 2 diabetes and

chronic kidney disease respectively

To further explore the utility of our strategy of stacked transfer learning, we used

these same four Q-scores to predict the incidence of T2D or CKD over a similar

10-year period (for T2D) or 5-year period (for CKD).

In both examples (Figure 5), the stacked models showed comparable performance

with respect to that of the de novo model, even at relatively low case numbers.

In fact at low case numbers (therefore low sample sizes) the stacked models were

generally better calibrated compared to the de novo model, Figure A5 and A6,

Table A7 and A8. Figure A4 and Figure A3 rank the predictors in the denovo

model, and the four Q-scores in the stacked models, in order of their contributions

to these models for the prediction of incident CKD and T2D respectively.
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Figure 4 The discriminative ability of various prediction models to identify people who
experienced a CVD event during a 10-year follow-up period. N.B. Discrimination was estimated as
the AUC with 95% condence intervals (CI). The stacked and de novo models were trained on an
illustrative example dataset of 100 CVD cases (1384 samples in total). Performance was evaluated
in a hold-out test set of 19,849 cases and a total sample size of 276,646. The numerical data
underpinning this gure are provided in Table A4. Please see Figure 2 and 3, and Table A3 for
performance of the entire range of sample sizes.

The general agreement between the stacked and de novo models in terms of dis-

crimination was explored through permuted feature importance, which highlighted

that while for predicting outcome of incident T2D, Q-Diabetes was predominant

with minor contribution from QRISK3, for predicting the outcome of incident CKD,

it was the combined contribution of QRISK3, Q-Diabetes along with Q-CKD. This

suggests benets of stacking multiple phenotypically distinct models.

DISCUSSION

In this paper we demonstrated how the wealth of pre-trained prediction models

can be combined to derive a locally optimized model in small sample size settings

(or equivalently in settings a small number of cases). We refer to this approach as

”stacked transfer learning”. First we used CVD incidence prediction as an empirical

example to show that this approach can approximate the performance of a de novo

model at considerably lower sample size settings (e.g, using only 10% of the number

of cases necessary for the de novo derivation model). Using additional examples in

T2D and CKD prediction, we conrmed similar performance against deriving a de

novo model.

As an illustrative example we considered the 10-year prediction of incident CVD.

Due to the availability of guideline-recommended risk-stratied treatment initiation

and escalation[8], a large number of CVD prediction rules have been derived, and
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Figure 5 Model performance across a range of training sample sizes that could be encountered in
non-research healthcare settings, for predicting the 10-year risk of T2D and the 5-year risk of
CKD. AUC estimates were derived from an independent test set of (a) 10,683 T2D cases from a
total of 279,290 participants, and (b) 4,390 CKD cases from a total of 289,594 participants.The
numerical data underpinning this gure are provided in Table A7 and A8.

while some of these models have been externally validated, it is widely appreciated

that performance will vary between local settings[12]. Conditional on acceptable

performance in independent test data (providing an unbiased estimate of model

performance in the same type of data), dierence in model performance between

distinct local settings may reect changes in ”case-mix”[28]. For example, over time,

one would expect medical care to improve, impacting the patient characteristics

(i.e., presenting with dierent co-morbidities and/or co-prescriptions). Dierence

in country or more general the type of care (i.e., primary or secondary care) will

additionally impact performance, and may require calibrating a model to local set-

tings. Therefore, as an alternative to creating setting-specic algorithm, we propose

that tailoring a ”base-line” model (which has been extensively validated already)

to accommodate setting-specic particularities might provide a more uniform ap-

proach. We show that our approach of stacked transfer learning might be a relatively

straightforward tool for this.

For illustrative purposes we implemented our stacked transfer learning approach

using fairly standard binomial generalized linear models with a LASSO penalization.
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Depending on the desired model complexity (i.e., the need to accommodate non-

linear or interaction eect), alternative supervised models may be used as ”drop-

in-replacements”, for example (regularized) support vector machine [22, 23] might

provide additional modelling exibility without requiring vasts amounts of partici-

pants. It is worth nothing that in our empirical example, including non-linear and

interaction terms did not meaningfully impact performance.

While a great number of CVD risk prediction models have been derived, as we

showed here, our stacked learning approach does not presuppose to only combine

models which were originally trained to predict CVD. Given that the various models

are stacked (i.e., combined) as a weighted average, where the weights are empiri-

cally derived using a supervised method, models which do not meaningfully explain

the outcome risk will simply get a smaller weight (or depending on the type of pe-

nalization, a zero weight). For example, in our analysis, the Q-CKD of the stacked

models had a feature importance close to zero indicating that it contributed little

to the 10-year CVD prediction risk (relative to the other 3 scores). An understand-

able objection to combining predicted risk from multiple pre-trained models is a

subset of the input data (e.g., age, sex, BMI) is shared between the models. How-

ever, unless the predicted risk is highly dependent on this subset of variables, it is

unlikely that this would result in meaningful correlation which might lead to model

instability (as shown in our correlation analysis in Figure A1), and such cases can

be readily identied and addressed analytically (e.g., leave a model out or increase

penalization). This is demonstrated in Figure 4 and A2, which illustrate that even

though among the individual Q-scores, Q-Diabetes had the lowest AUC for pre-

dicting the CVD outcome, the second highest contribution (feature importance)

in both the stacked models comes from Q-Diabetes itself. Conversely, while con-

tribution of Q-CKD to the stacked models is close to zero, the AUC of Q-CKD

for predicting the CVD outcome is second highest after QRISK3. Similarly, while

we focused on stacking predicted risk from pre-trained models, this approach can

readily include additional candidate predictor variables relevant for a local setting

(e.g., the presence or absence of familial hypercholesterolemia carriership).

The following limitations deserve consideration. While the principles of stacked

transfer learning follow directly from rst principle, we have only provided limited

empirical simulations supporting its utility. As such, we hope that the idea described

here along with the detailed discussion of the presented results might entice further

experimentation to promote the scope of this approach. In our empirical example

we have used participants enrolled in the UK Biobank, which due to its UK base,

might partially overlap with the data used by the QResearch group. As such the

observed performance estimates might be (slightly) optimistic. We expect however

that this will impact all models to a similar degree and hence not impact our main

ndings .

CONCLUSION

Here we describe a novel approach referred to as ”stacked transfer learning”, which

combines multiple pre-trained risk prediction models to derive a locally optimized

model. We argue that due to its data-ecient nature, stacked transfer learning
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can allow non-data rich organisations, such as moderately sized healthcare trusts,

to tailor prediction models to their local setting and hence optimize healthcare

decision-making. Further, we show that our proposed ”stacked transfer learning”

trained on one disease outcome could be repurposed in a less data-intensive manner

for related disease.
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