1 2	Timing and Predictors of Loss of Infectivity among Healthcare Workers with Primary and Recurrent COVID-19: a Prospective Observational Cohort Study
3	
4	Stefka Dzieciolowska, MD ¹ ; Hugues Charest, PhD ^{2,3,4} ; Tonya Roy ^{3,4} ; Judith Fafard, MD ^{3,4} ; Sara Carazo, MD,
5	MPH, PhD ^{4,7} , Ines Levade, PhD ^{3,4} ; Jean Longtin, MD ⁵ ; Leighanne Parkes, MD ^{1,9} ; Sylvie Nancy Beaulac,
6	TM ^{3,4} ; Jasmin Villeneuve, MD ⁴ ; Patrice Savard, MD, MSc ^{2,6} ; Jacques Corbeil, PhD ⁷ ; Gaston De Serres, MD,
7	PhD ^{4,7} ; Yves Longtin, MD ^{1,8,9}
8	
9	Affiliations:
10	(1) McGill University Faculty of Medicine, Montreal, Canada
11	(2) Université de Montréal, Faculté de médecine, Montréal, Canada
12	(3) Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
13	(4) Institut National de Santé Publique du Québec, Quebec City, Canada
14	(5) CHU de Québec – Université Laval, Quebec City, Canada
15	(6) Centre Hospitalier de l'Université de Montréal (CHUM) and CHUM Research Center, Montréal,
16	Canada
17	(7) Université Laval, Quebec City, Canada
18	(8) Lady Davis Research Institute, Montreal, Canada
19	(9) Jewish General Hospital Sir Mortimer B. Davis, Montreal, Canada
20	
21	Running Title: Duration of COVID-19 infectivity
22	
23	Keywords: SARS-CoV-2, COVID-19, contagiousness, infectivity, recurrent infection, viral culture
24	

- 25 Word count (text only): 2991, 4 figures, 4 tables, 1 supplementary online content with 1 eMethod and 1
- 26 eFigure
- 27

28 **Corresponding author**:

- 29 Dr. Yves Longtin
- 30 Jewish General Hospital SMBD
- 31 3755 Chemin de la Côte-Sainte-Catherine,
- 32 Montréal (Québec), Canada H3T 1E2
- 33 Tel: (514) 340.8294 ext 3731
- 34 Fax: (514) 340-7546
- 35 Email: <u>yves.longtin@mcgill.ca</u>
- 36
- 37
- 38 **Funding:** Supported by the Ministère de la Santé et des Services Sociaux du Québec. The funding source
- 39 had no role in the design of the study, execution, analyses, interpretation of data, writing of report or
- 40 decision to submit the manuscript.

- 42 **Potential conflicts of interest:** Y. Longtin reports receiving research support from Summit (Oxford). All
- 43 other co-authors report no potential conflicts of interest.
- 44
- 45
- 46

47 Abstract

- Background: There is a need to understand the duration of infectivity of primary and recurrent COVID19 and identify predictors of loss of infectivity.
- 50 Methods: Prospective observational cohort study with serial viral culture, rapid antigen detection test
- 51 (RADT) and RT-PCR on nasopharyngeal specimens of healthcare workers with COVID-19. The primary
- 52 outcome was viral culture positivity as indicative of infectivity. Predictors of loss of infectivity were
- 53 determined using multivariate regression model. The performance of the US CDC criteria (fever
- resolution, symptom improvement and negative RADT) to predict loss of infectivity was also
- 55 investigated.

56

- 57 **Results:** 121 participants (91 female [79.3%]; average age, 40 years) were enrolled. Most (n=107, 88.4%)
- had received ≥3 SARS-CoV-2 vaccine doses, and 20 (16.5%) had COVID-19 previously. Viral culture
- positivity decreased from 71.9% (87/121) on day 5 of infection to 18.2% (22/121) on day 10. Participants
- 60 with recurrent COVID-19 had a lower likelihood of infectivity than those with primary COVID-19 at each
- 61 follow-up (day 5 OR, 0.14; p<0.001]; day 7 OR, 0.04; p=0.003]) and were all non-infective by day 10
- 62 (p=0.02). Independent predictors of infectivity included prior COVID-19 (adjusted OR [aOR] on day 5,
- 63 0.005; p=0.003), a RT-PCR Ct value <23 (aOR on day 5, 22.75; p<0.001), but not symptom improvement

64 or RADT result.

- 65 The CDC criteria would identify 36% (24/67) of all non-infectious individuals on Day 7. However, 17%
- 66 (5/29) of those meeting all the criteria had a positive viral culture.

67 Conclusions: Infectivity of recurrent COVID-19 is shorter than primary infections. Loss of infectivity68 algorithms could be optimized.

69 Word count: 250

71 Introduction

72	Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2
73	(SARS-CoV-2). ¹ The current evidence regarding duration of infectivity rely on viral culture to detect
74	shedding of replication-competent virus (also called viable or infectious virus). These studies suggest
75	that immunocompetent individuals with non-severe COVID-19 can remain infective for up to 10 days. ²⁻⁶
76	
77	While infective, healthcare workers (HCWs) with COVID-19 must refrain from working to prevent
78	nosocomial transmission. ^{7,8} However, the timing of their return to work is complicated by the
79	interindividual variation in the durations of infectivity. Approximately a fifth of individuals may be
80	infective for as little as 5 days, while approximately a quarter can remain infective for 10 days or more. ⁹
81	Determinants of loss of infectivity are largely unknown, but could be useful to optimize the return-to-
82	work of infected HCWs. To limit absenteeism, ¹⁰ the US Centers for Disease Control and Prevention (CDC)
83	and European CDC have provided guidance to allow earlier return to work of eligible HCWs. ^{7,8} These
84	algorithms use readily available information such as symptom improvement and the result of rapid
85	antigen detection tests (RADT) to predict loss of infectivity. ^{7,8} However, whether these criteria can
86	reliably distinguish infective and non-infective individuals remain unclear.
87	
88	Furthermore, many studies that investigated duration of infectivity were conducted early in the
89	pandemic when individuals were infected for the first time, and often were unvaccinated. Few studies
90	have investigated duration of infectivity of recurrent COVID-19. 9 Hence, we sought to evaluate the
91	duration of infectivity of HCWs infected with primary and recurrent COVID-19, and identify predictors of
92	infectivity using viral culture as a marker of infectivity.

93

95 Methods

96 Study population

- 97 We conducted a prospective observational cohort study at the CIUSSS Centre-Ouest-de-Montréal, a
- 98 large healthcare organization employing 12,000 HCWs across 20 institutions. Participants were
- 99 identified through the Occupational Health Service. Inclusion criteria included (1) SARS-CoV-2 infection
- 100 confirmed by reverse transcription polymerase chain reaction (RT-PCR) from a nasopharyngeal
- specimen, and (2) symptom onset <72h prior to enrolment. Exclusion criteria included asymptomatic

102 infections; moderate-to-severe COVID-19 (WHO Ordinal Scale for Clinical Improvement >=3)¹¹;

- 103 contraindication to nasopharyngeal sampling; and use of COVID-19-specific therapies (e.g. antivirals or
- 104 monoclonal antibodies). Participants were followed on the 5th, 7th and 10th day of their infection (with
- the day of onset of symptoms defined as day 1).

106

The study follows the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
guideline,¹² and was approved by local research ethics committees. Written informed consent was
obtained from participants.

110

111 Data collection

112 Clinical data included sociodemographic information, medical history (including prior COVID-19

- 113 infection), COVID-19 vaccination status (including number of doses and manufacturer), and
- symptomatology. We also assessed the use of antipyretics (acetaminophen and non-steroidal anti-
- inflammatory drugs) among afebrile participants as their use can mask fever. Participants reported this

116 information online (LimeSurvey GmbH, Hamburg, Germany).

117

118 *Outcome definitions*

119	SARS-CoV-2 infectivity was defined as evidence of cytopathic effect (CPE) on microscopy of viral culture
120	from a nasopharyngeal specimen, with etiology of the CPE being confirmed as SARS-CoV-2 by RT-PCR on
121	the culture supernatant demonstrating at least 3 cycle threshold (Ct) values lower than the RT-PCR on
122	the original sample. ¹³ Duration of infectivity was defined as the number of days between the onset of
123	symptoms and the last positive culture.
124	
125	Laboratory methods
126	Nasopharyngeal samples using a flocked swab (FLOQSwabs, Copan Italia) were placed in 3ml universal
127	viral transport media (UTM, Copan Italia) and kept at -80 $^\circ$ C. Primary samples and culture supernatants
128	were processed with an in-house RT-PCR targeting the SARS-CoV-2 N gene as previously described. 14
129	Forward, reverse and probe sequences were as follows: AACCAGAATGGAGAACGCAGTG,
130	CGGTGAACCAAGACGCAGTATTAT and CGATCAAAACAACGTCGGCCCCAAGGTTTAC. ¹⁴
131	
132	Viral cultures were performed on Vero E6 cells as previously described. ¹⁴ This cell line is commonly used
133	to cultivate SARS-CoV-2 and has a median tissue culture infectious dose (TCID $_{50}$) ranging between
134	2.0E+04 to 6.3E+06. ¹⁵ A 0.1 ml aliquot of specimen was used as an inoculum. Cultures were kept for 15
135	days.
136	
137	All initial samples were sequenced to determine SARS-CoV-2 lineage using the Illumina technology. Data
138	analysis was performed using the GenPipes Covseq pipeline ¹⁶ and variant identification was performed
139	with Pangolin program (see appendix for details). ¹⁷
140	
141	Lateral-flow RADT were provided for self-administration (COVID-19 Antigen Rapid Test, BTNX, Hannover,

142 Germany). Participants performed the test on a self-sampled midturbinate swab specimen by following

143 the manufacturer's instructions and interpreted the test result as positive, negative, or uncertain.¹⁸

144

145 Sample size estimate

146 Based on studies indicating that 25% of individuals remain infective on the 7th day of their infection,¹⁹ we

- estimated that recruiting 120 participants would provide a precision of +/- 7% at the 95% confidence
- 148 interval (CI).
- 149
- 150 Statistical analyses
- 151 Descriptive statistics reported discrete variables as numbers and proportions, and continuous variables
- as mean ± standard deviation (SD) or median and interquartile ranges (IQR). The primary outcome was
- 153 the proportion of HCWs with evidence of infectivity on the 5th, 7th and 10th day of their infection.
- 154

155 To investigate the capacity of the RT-PCR Ct value (an indicator of viral load that is inversely proportional

to the quantity of nucleic acid in a sample) and RADT to predict infectivity, the Ct values of RT-PCR of

157 samples with positive vs negative viral culture was depicted in the form of boxplots with overlaid jitter

158 plot.

159

160 To investigate factors associated with persistent infectivity, odds ratios (OR) and 95% confidence

161 intervals (CI) were estimated using bivariate and multivariate logistic regression at each follow-up visit.

162 Multivariate models included clinical characteristics (symptom severity, symptom resolution, and fever)

- 163 and results laboratory assays (RADT and RT-PCR) collected at each follow-up, as well as baseline
- 164 individual (age, sex and immunological status) and viral (SARS-CoV-2 lineage) information. These
- 165 variables were pre-defined as potential predictors of duration of infectivity according to literature and
- 166 current practices.^{7,8} Categories were grouped when necessary for model convergence. Variables

167	perfectly predicting the presence of infectivity could not be included in the corresponding multivariate
168	model. Immunologic status was categorized according to vaccination and prior infection as follows:
169	recent vaccination (last dose received <6 months ago) without prior infection; non-recent vaccination
170	(last dose received \geq 6 months ago) without prior infection; and hybrid immunity (vaccination at any
171	time and prior infection).
172	
173	Performance of return-to-work algorithms
174	We estimated the capacity of the CDC algorithm to discriminate infective and non-infective HCWs on
175	day 7 of their infection. ⁷ We also quantified the probability of an infectious HCW returning to work, and
176	estimated the impact of these criteria to limit absenteeism. Finally, we explored the performance of
177	alternative algorithms to predict loss of infectivity that were derived from variables identified in the
178	current study. These evaluations assumed that in the absence of return-to-work criteria, HCWs would
179	return to work 10 days after the onset of their symptoms.
180	
181	All analyses were performed in SAS version 9.4. All tests were 2-tailed and a p-value < 0.05 was
182	considered statistically significant. Adjustment for multiple comparisons were not applied in this
183	exploratory study. ^{20,21}
184	
185	Role of Funding source
186	The study was sponsored by the Ministère de la Santé et des Services Sociaux du Québec. The sponsor
187	had no role in the design, conduct and reporting of the study.
188	
189	
190	Results

191	Between Feb 20 th 2022 and March 6 th , 2023 th , 237 patients were offered to participate, and 121 (51.1%)
192	were included in the analyses (Figure 1). Overall, 714 specimens (360 nasopharyngeal and 354 mid-
193	turbinate swabs) were collected. Baseline characteristics of participants are shown in Table 1 ; 79.3%
194	(96/121) were female, and the average age was 40.2 (SD, 12.0 years). The infections were due to
195	multiple Omicron lineages including BA.1 (11.6%), BA.2 (60.3%), and BA.5 (8.3%), inclusive of
196	sublineages. Virtually all participants (98.3%) were previously immunized with \geq 1 dose of SARS-CoV-2
197	vaccine. Most (84.3%) had received 3 doses, most commonly the Pfizer–BioNTech Comirnaty (89.3% of
198	all received doses). The median elapsed time between the last dose and the current infection was 122
199	days (IQR, 95-175 days). Twenty (20) participants (16.5%) had a prior COVID-19 episode. All these
200	previous episodes were mild (WHO Grade scale ≤2) and occurred a median of 347.5 days prior to the
201	current episode (IQR, 264 to 454 days).
202	
203	Symptoms of current COVID-19
204	Upon enrollment, all participants described their infection as either "very mild" or "mild" (WHO Grade
205	scale of 1 or 2). The most common symptoms were sore throat (77.7%), rhinorrhea and/or nasal
206	congestion (72.7%) and fatigue (66.9%). The clinical evolution was favourable. No participant was
207	hospitalized. A single participant received nirmatrelvir-ritonavir after enrollment. The proportion of
208	participants with markedly improved or resolved symptoms increased from 43.8% on day 5 to 84.3% on
209	day 10 (data not shown). Fever was uncommon: only 14.9% were febrile on enrollment. However,
210	antipyretic use was frequent in afebrile individuals. For example, they were used by 50% and 31% of
211	afebrile individuals on day 5 and 7 of their infection, respectively.
212	
213	Evolution of infectivity and viral shedding

214	The proportion of participants with a positive viral culture was 71.9% (87/121; 95% Cl, 63.0% to 79.7%)
215	on day 5, 46.7% (56/120; 95% Cl, 37.5% to 56.0%) on day 7 and 18.2% (22/121; 95% Cl, 11.8% to 26.2%)
216	on day 10, respectively (Figure 1). The proportion of participants with a positive RT-PCR decreased from
217	93.3% (112/120) on day 5 (median Ct value, 23.4 (IQR, 20.6-27.9)) to 61.2% (74/120) on day 10 (median
218	Ct value, 32.5 (IQR, 28.5 to undetectable)). Similarly, the proportion of RADT tests that were positive
219	decreased progressively from 81.5% (97/119) on day 5, to 34.2% (40/117) on day 10.
220	
221	Factors associated with infectivity
222	In bivariate analysis, multiple variables were associated with a positive viral culture (Table 2). A history
223	of previous COVID-19 was strongly associated with a decreased likelihood of infectivity at each follow-up
224	visit. Only 35% (7/20) of individuals with recurrent COVID-19 were still infective on day 5 compared with
225	79% of those with a primary episode (OR, 0.14; 95% Cl 0.05-0.40; p<0.001). Similarly, only 5% (1/20) of
226	participants with recurrent COVID-19 were still infective on day 7, compared with 55% (55/100) of those
227	with a first episode (OR, 0.04; 95% Cl, 0.01-0.33; p=0.003). Finally, the proportion of participants with
228	primary vs recurrent infection that were still infective on day 10 were 22% vs. 0%, respectively (p=0.02
229	by Fisher's).
230	
231	In terms of lineage, the BA.1 lineage was associated with a higher likelihood of infectivity on each
232	follow-up visit than the BA.2 (p \leq 0.02), while no difference was detected between BA.2 and BA.4/5.
233	
234	In terms of clinical features, a lack of symptom improvement was predictive of ongoing infectivity on day
235	7 (OR, 4.81; p=0.01) but not on day 5 or 10. Also, when compared to afebrile individuals who were not
236	using antipyretics, those who were still using antipyretics were more likely to be infective at each follow
237	up visit (range of OR, 2.97 to 4.26; p≤0.01 for each comparison).

2	2	o
2	3	ð

239	In terms of laboratory assays, a positive RADT result was associated with a higher likelihood of infectivity
240	at day 5 (OR, 6.16; p=0.004) and day 7 (OR, 10.93; p<0.001). A positive RT-PCR was also significantly
241	associated with infectivity at each follow-up, and there was an inverse association between the RT-PCR
242	Ct value and ongoing infectivity (Figure 2). Notably, participants with recurrent COVID-19 differed from
243	those with primary infection in terms of laboratory assays. At each visit, they had significantly higher RT-
244	PCR Ct values (Figure 3) and were significantly more likely to have a negative RADT test result (Table 3).
245	
246	In multivariate analysis (Table 4), the following variables were independently associated ongoing
247	infectivity: A RT-PCR Ct value <23 was independently associated with an increased probability of
248	infectivity on each follow-up visit (adjusted OR [aOR] on day 5, 22.75; p<0.001; aOR on day 7, 182.30;
249	p<0.001; and aOR on day 10; 24.71; p=0.02). A Ct value ranging between 23 and 27 was also predictive
250	of ongoing infectivity at Day 7 and Day 10. A history of previous COVID-19 was independently associated
251	with a decreased probability of infectivity on day 5 (aOR, 0.005; p<0.001). By contrast, there was no
252	significant association between ongoing infectivity and the absence of fever (with or without the use of
253	antipyretics), symptom improvement, or RADT results.
254	
255	Performance of return-to-work algorithms

We applied the US CDC criteria to our cohort to identify non-infectious individuals on day 7 of COVID-19 (Figure 4).⁷ Approximately three quarters (88/117; 75.2%) would be ineligible for return to work because of fever (n=3), the use of antipyretics (n=35), a lack of symptom improvement (n=3) or a positive RADT (n=47). Hence, only 29 HCWs (24.8%) would meet all the return-to-work criteria. Of these, 17.2% (5/29) were infectious by viral culture, and 82.8% (24/29) were non-infectious. Hence, this algorithm could identify a third (35.8%; 24/67) of all non-infectious individuals on day 7. If all 29 HCWs who fulfilled all

criteria returned to work on day 7, this algorithm would decrease absenteeism by	7.4%.
--	-------

264	We applied an alternative algorithm that used a history of previous COVID-19 and a RT-PCR Ct value >27
265	to predict loss of infectivity on day 7. This algorithm would identify 56.4% (66/117) of all HCWs as
266	eligible for return to work and could avoid 198 days of absence (16.9%). Of these, 52 (78.8%) were non-
267	infectious, and 14 (21.2%) were infectious. This algorithm would identify a greater proportion of all non-
268	infectious HCWs than the CDC algorithm (77.6% vs 35.8%; p<0.001). Even though it would return to
269	work a greater absolute number of infectious individuals, it would not significantly increase in the
270	probability of returning to work an infectious HCW (21.2% vs 17.2% of all eligible HCWs, p=0.78).
271	
272	Given that approximately two thirds of individuals with recurrent COVID-19 were non-infectious by day
273	5, we explored various criteria that could accelerate their return-to-work (eFigure 1 in supplementary
274	appendix). Among these, a RT-PCR Ct value >27 could identify most (77%; 10/13) non-infectious
275	individuals on day 5 with low probability (9%; $1/11$) of returning to work an infectious HCW.
276	
277	
278	Discussion
279	Healthcare workers with COVID-19 must be removed from work, but their absence can exacerbate staff
280	shortages. ²² There is a need to identify predictors of loss of infectivity of SARS-CoV-2 to prevent
281	unwarranted prolongation of absence. Most published studies on this topic have relatively low number
282	of participants limiting the identification of predictors of loss of infectivity. ^{6,23,24}
283	
284	In this prospective study, approximately three quarters (71.9%) were still shedding infectious viral
285	particles on 5 th day of infection, half (46.7%) on the 7 th day, and a fifth (18.2%) on the 10 th day. These

results, along with other recent publications,²⁵⁻²⁸ differ from those of earlier studies that estimated the duration of infectivity to 10 days or less.^{6,29} A study of 66 individuals infected with the Omicron variant BA.1 reported that a quarter of participants were still infective on the 10th day of infection.⁹ In another recent study, 8.5% were still shedding viable virus on day 14.³⁰

290

291 However, our study also identifies important nuances regarding durations of infectivity. Nowadays, an 292 increasing proportion of infections occurs in individuals who have hybrid immunity due to vaccination 293 and previous COVID-19. Our study identified that vaccinated individuals with recurrent COVID-19 have a 294 significantly shorter duration of infectivity as well as a distinct viral kinetic as evidenced by lower viral 295 loads and earlier negativisation of RADT. A prepublication study of 1400 professional athletes also 296 reported faster viral clearance by RT-PCR in individuals with recurrent COVID-19 compared with primary 297 infections (4.9 vs 7.2 days, respectively).³¹ A cohort study in Alaska recently reported that individuals 298 with previous COVID-19 infections were less likely to have a positive RADT result by day 5 compared to those with primary COVID-19.²⁵ A similar phenomenon has be described with other *Coronaviridae*. A 299 300 study performed three decades ago among volunteers infected with coronavirus 229E determined that reinfections led to a shorter duration of virus shedding compared with the primary episode.³² Taken 301 302 together, these findings profoundly alter our understanding of the infectivity and viral kinetic of 303 recurrent COVID-19.

304

Our study also identified that a higher RT-PCR Ct value was the strongest independent predictor of loss
of infectivity. This confirms findings from other studies that demonstrated that higher Ct values
correspond with a non-replicative virus^{3,26,33-39}. Hence, RT-PCR Ct values could help determine the timing
of return to work of HCWs. A negative RADT result was also predictive of loss of infectivity by bivariate
analysis.⁴⁰ However, our multivariate analysis indicates that RT-PCR Ct values hold superior predictive

310 capacity.

311

312	Our study also suggests that the guidance provided by the CDC to accelerate the return to work of
313	infected HCWs is relatively stringent as it allows the return to work of only a third of all non-infectious
314	individuals. ^{7,8} Also, they appear to have moderate discriminatory power as up to a sixth of those eligible
315	for return to work are still shedding viable virus. By contrast, an alternative algorithm using RT-PCR Ct
316	values and a history of previous COVID-19 could be able to return to work a greater proportion of HCWs
317	on Day 7 without significantly increasing the probability of returning to work an infectious HCW.
318	Importantly, the performance of these algorithms will be influenced by whether the COVID-19 episode is
319	a first episode or a recurrence. In our opinion, such distinction will be essential when updating these
320	algorithms.
321	
322	Our study has strengths. To our knowledge, this study is the first to demonstrate that individuals with
323	recurrent COVID-19 have significantly shorter durations of infectivity using the gold standard of viral
324	culture. It is among the largest that assessed infectivity using viral culture. Our laboratory technique was
325	sensitive and could detect viable viruses in many individuals 10 days into their infection. It also has
326	limitations. The study enrolled young, healthy, and highly immunized participants with mild COVID-19,
327	so generalizability to other populations is uncertain. Even though culture positivity is the best marker of
328	infectivity, the correlation between culture positivity and transmission remains unclear. ⁹ Additional
329	studies, including validation with an external cohort, would be required to better inform return-to-work
330	policies. ^{20,21}
331	
332	In conclusion, our study detected a higher RT-PCR Ct value and COVID-19 reinfection as independent

predictors of loss of infectivity in a highly vaccinated population, and suggests that return-to-work

334	algorithms could be optimized to limit absenteeism. ¹⁰ Further studies are needed to further characterize
335	the viral kinetics of COVID-19 reinfections as they appear to fundamentally differ from those with
336	primary COVID-19.
337	
338	
339	Acknowledgements
340	
341	Conflict of Interest Disclosures: Dr Longtin reported receiving a grant from Summit (Oxford) outside the
342	submitted work. No other disclosures were reported.
343	
344	Funding/Support: This work was supported by the Ministère de la Santé et des Services Sociaux du
345	Québec. The sponsor was not involved in the design and conduct of the study; collection, management,
346	analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and
347	decision to submit the manuscript for publication.
348	
349	Data Access, Responsibility, and Analysis: Yves Longtin had full access to all the data in the study and
350	takes responsibility for the integrity of the data and the accuracy of the data analysis. Data not publicly
351	available.
352	
353	Author Contribution:
354	Concept and Design: Dzieciolowska, Fafard, Charest, De Serres, J. Longtin, Villeneuve, Y. Longtin
355	Acquisition, analysis, or interpretation of data: Dzieciolowska, Roy, Charest, Fafard, Levade, Beaulac,
356	Parkes, Y. Longtin
357	Drafting of manuscript: Dzieciolowska, Y. Longtin

- 358 Critical revision of the manuscript for important intellectual content: Charest, Roy, Fafard, Carazo,
- 359 Levade, J. Longtin, Parkes, Beaulac, Villeneuve, Savard, Corbeil, De Serres,
- 360 Statistical analyses: Carazo, De Serres, Y. Longtin
- 361 Obtained funding: Y. Longtin, De Serres
- 362 Administrative, technical or material support: Dzieciolowska, Y. Longtin
- 363 Supervision: Y. Longtin, De Serres
- 364
- 365
- 366

367	Legends to	figures
-----	------------	---------

368

- 369 **FIGURE 1.** Flow diagram of participant selection into the study and proportion of infective participants at
- ach follow-up visit.

371

373	FIGURE 2. Box plot with overlaid jitter plot comparing SARS-CoV-2 RT-PCR Cycle threshold, rapid antigen
374	diagnostic test (RADT) result and viral culture positivity at day 5, 7 and 10 of COVID-19 among 121
375	healthcare workers.
376	Footnote: The horizontal line in each box indicates the median, whereas the top and bottom of the
377	boxes represent the 75th and 25th percentile, respectively. Error bars represent 95% confidence
378	intervals. Negative RT-PCR results were attributed a Ct-value of 40 to facilitate data visualization.
379	
380	
381	FIGURE 3. Box plot comparing SARS-CoV-2 RT-PCR Cycle threshold at day 5, 7 and 10 of primary vs.
382	recurrent COVID-19 infection.
383	Footnote: The horizontal line in each box indicates the median, whereas the top and bottom lines
384	represent the 75th and 25th percentile, respectively. Error bars represent 95% confidence intervals.
385	Negative RT-PCR results were attributed a Ct-value of 40 to facilitate data visualization. Comparison
386	between primary vs recurrent infections assessed by Mann-Whitney U test.
387	
388	
389	FIGURE 4. Performance of return-to-work criteria for healthcare workers with COVID-19. Panel A shows
390	the performance of the US Centers for Diseases Control and Prevention (US CDC) Return to Work criteria

- 391 on a cohort of healthcare workers with COVID-19. **Panel B** shows the performance of an alternative set
- 392 of criteria derived from the current study. **Panel C** compares the CDC and alternative criteria.

394 **REFERENCES**

395	1.	Helmy	γYA,	Fawzy	°M,	, Elaswad	ΙA,	, Sobieh A	, Kenne	y SP	, Shehata AA.	The	COVID-	-19
-----	----	-------	------	-------	-----	-----------	-----	------------	---------	------	---------------	-----	--------	-----

- 396 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis,
- 397 Treatment, and Control. J Clin Med. Apr 24 2020;9(4)doi:10.3390/jcm9041225
- 2. Kadire SR, Fabre V, Wenzel RP. Doctor, How Long Should | Isolate? *N Engl J Med*. Mar 25
- 399 2021;384(12):e47. doi:10.1056/NEJMclde2100910
- 400 3. Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2 Infections and
- 401 Transmission in a Skilled Nursing Facility. *N Engl J Med*. May 28 2020;382(22):2081-
- 402 2090. doi:10.1056/NEJMoa2008457
- 403 4. Wolfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized
- 404 patients with COVID-2019. *Nature*. May 2020;581(7809):465-469. doi:10.1038/s41586-
- 405 020-2196-x
- 406 5. Bullard J, Dust K, Funk D, et al. Predicting infectious SARS-CoV-2 from diagnostic
- 407 samples. *Clin Infect Dis*. May 22 2020;doi:10.1093/cid/ciaa638
- 408 6. Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and
- 409 MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a
- 410 systematic review and meta-analysis. *Lancet Microbe*. Jan 2021;2(1):e13-e22.
- 411 doi:10.1016/S2666-5247(20)30172-5
- 412 7. US Centers for Diseases Control and Prevention.Interim Guidance for Managing
- 413 Healthcare Personnel with SARS-CoV-2 Infection or Exposure to SARS-CoV-2 (2022).
- 414 https://www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-risk-assesment-hcp.html.
- 415 Accessed May 10, 2023.

- 416 8. European Centre for Disease Prevention and Control. Guidance on quarantine of close
- 417 contacts to COVID-19 cases and isolation of COVID-19 cases, in the current
- 418 epidemiological situation, 7 January 2022 (2022).
- 419 https://www.ecdc.europa.eu/en/covid-19/prevention-and-control/quarantine-and-
- 420 isolation Accessed May 10, 2023.
- 421 9. Boucau J, Marino C, Regan J, et al. Duration of Shedding of Culturable Virus in SARS-CoV-
- 422 2 Omicron (BA.1) Infection. *N Engl J Med*. Jul 21 2022;387(3):275-277.
- 423 doi:10.1056/NEJMc2202092
- 424 10. Black JRM, Bailey C, Przewrocka J, Dijkstra KK, Swanton C. COVID-19: the case for health-
- 425 care worker screening to prevent hospital transmission. *Lancet*. May 2
- 426 2020;395(10234):1418-1420. doi:10.1016/S0140-6736(20)30917-X
- 427 11. World Health Organization. *WHO R&D Blueprint Novel Coronavirus COVID-19*
- 428 Therapeutic Trial Synopsis. 2020. February 18, 2020.
- 429 https://cdn.who.int/media/docs/default-source/blue-print/covid-19-therapeutic-trial-
- 430 <u>synopsis.pdf?sfvrsn=44b83344</u> 1&download=true
- 431 12. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational
- 432 Studies in Epidemiology (STROBE) statement: guidelines for reporting observational
- 433 studies. *J Clin Epidemiol*. Apr 2008;61(4):344-9. doi:10.1016/j.jclinepi.2007.11.008
- 434 13. Folgueira MD, Luczkowiak J, Lasala F, Perez-Rivilla A, Delgado R. Prolonged SARS-CoV-2
- 435 cell culture replication in respiratory samples from patients with severe COVID-19. *Clin*
- 436 *Microbiol Infect*. Feb 22 2021;doi:10.1016/j.cmi.2021.02.014

- 437 14. Longtin Y, Charest H, Quach C, et al. Infectivity of healthcare workers diagnosed with
- 438 coronavirus disease 2019 (COVID-19) approximately 2 weeks after onset of symptoms: A
- 439 cross-sectional study. *Infect Control Hosp Epidemiol*. Jan 11 2021:1-3.
- 440 doi:10.1017/ice.2020.1420
- 441 15. Wurtz N, Penant G, Jardot P, Duclos N, La Scola B. Culture of SARS-CoV-2 in a panel of
- 442 laboratory cell lines, permissivity, and differences in growth profile. *Eur J Clin Microbiol*
- 443 Infect Dis. Mar 2021;40(3):477-484. doi:10.1007/s10096-020-04106-0
- 444 16. CoV Sequencing Pipeline. <u>https://genpipes.readthedocs.io/en/genpipes-</u>
- 445 v4.1.2/user guide/pipelines/gp_covseq.html, 2019.
- 446 17. O'Toole A, Scher E, Underwood A, et al. Assignment of epidemiological lineages in an
- 447 emerging pandemic using the pangolin tool. *Virus Evol*. 2021;7(2):veab064.
- 448 doi:10.1093/ve/veab064
- 18. Papenburg J, Campbell JR, Caya C, et al. Adequacy of Serial Self-performed SARS-CoV-2
- 450 Rapid Antigen Detection Testing for Longitudinal Mass Screening in the Workplace.
- 451 *JAMA Netw Open*. May 2 2022;5(5):e2210559.
- 452 doi:10.1001/jamanetworkopen.2022.10559
- 453 19. Killingley B, Mann AJ, Kalinova M, et al. Safety, tolerability and viral kinetics during SARS-
- 454 CoV-2 human challenge in young adults. *Nat Med*. May 2022;28(5):1031-1041.
- 455 doi:10.1038/s41591-022-01780-9
- 456 20. Bender R, Lange S. Adjusting for multiple testing--when and how? *J Clin Epidemiol*. Apr
- 457 2001;54(4):343-9. doi:10.1016/s0895-4356(00)00314-0

458	21.	Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiology. Jan
459		1990;1(1):43-6.
460	22.	Poon YR, Lin YP, Griffiths P, Yong KK, Seah B, Liaw SY. A global overview of healthcare
461		workers' turnover intention amid COVID-19 pandemic: a systematic review with future
462		directions. Hum Resour Health. Sep 24 2022;20(1):70. doi:10.1186/s12960-022-00764-7
463	23.	Keske S, Esken GG, Vatansever C, et al. Duration of infectious shedding of SARS-CoV-2
464		omicron variant and its relation with symptoms. Clin Microbiol Infect. Jul 16
465		2022;doi:10.1016/j.cmi.2022.07.009
466	24.	Wu Y, Guo Z, Yuan J, et al. Duration of viable virus shedding and polymerase chain
467		reaction positivity of the SARS-CoV-2 Omicron variant in the upper respiratory tract: a
468		systematic review and meta-analysis. International journal of infectious diseases : IJID :
469		official publication of the International Society for Infectious Diseases. Feb 18
470		2023;129:228-235. doi:10.1016/j.ijid.2023.02.011
471	25.	Lefferts B, Blake I, Bruden D, et al. Antigen Test Positivity After COVID-19 Isolation —
472		Yukon-Kuskokwim Delta Region, Alaska, January–February 2022. MMWR Morbidity and
473		Mortality Weekly Report. 2022;71(8):293-298. doi:10.15585/mmwr.mm7108a3
474	26.	Qi L, Yang Y, Jiang D, et al. Factors associated with the duration of viral shedding in
475		adults with COVID-19 outside of Wuhan, China: a retrospective cohort study. Int J Infect
476		<i>Dis</i> . Jul 2020;96:531-537. doi:10.1016/j.ijid.2020.05.045
477	27.	Landon E, Bartlett AH, Marrs R, Guenette C, Weber SG, Mina MJ. High Rates of Rapid
478		Antigen Test Positivity After 5 days of Isolation for COVID-19. Cold Spring Harbor
479		Laboratory; 2022.

480	28. Stiefel U, Bhullar D	Zabarsky TF, et al. Healthcare	personnel frequently have	e positive
-----	--------------------------	--------------------------------	---------------------------	------------

- 481 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen tests 5 days or
- 482 more after diagnosis of coronavirus disease 2019 (COVID-19). *Infection Control & amp;*
- 483 *Hospital Epidemiology*. 2022:1-2. doi:10.1017/ice.2022.21
- 484 29. Takahashi K, Ishikane M, Ujiie M, et al. Duration of Infectious Virus Shedding by SARS-
- 485 CoV-2 Omicron Variant-Infected Vaccinees. *Emerg Infect Dis*. May 2022;28(5):998-1001.
- 486 doi:10.3201/eid2805.220197
- 487 30. Keske S, Guney-Esken G, Vatansever C, et al. Duration of infectious shedding of SARS-
- 488 CoV-2 Omicron variant and its relation with symptoms. *Clin Microbiol Infect*. Feb
- 489 2023;29(2):221-224. doi:10.1016/j.cmi.2022.07.009
- 490 31. Kissler SM, Hay JA, Fauver JR, et al. Viral kinetics of sequential SARS-CoV-2 infections.
- 491 *medRxiv*. 2023:2023.03.03.23286775. doi:10.1101/2023.03.03.23286775
- 492 32. Callow KA, Parry HF, Sergeant M, Tyrrell DA. The time course of the immune response to
- 493 experimental coronavirus infection of man. *Epidemiol Infect*. Oct 1990;105(2):435-46.
- doi:10.1017/s0950268800048019
- 495 33. Gniazdowski V, Paul Morris C, Wohl S, et al. Repeated Coronavirus Disease 2019
- 496 Molecular Testing: Correlation of Severe Acute Respiratory Syndrome Coronavirus 2
- 497 Culture With Molecular Assays and Cycle Thresholds. *Clin Infect Dis*. Aug 16
- 498 2021;73(4):e860-e869. doi:10.1093/cid/ciaa1616
- 499 34. Kim MC, Cui C, Shin KR, et al. Duration of Culturable SARS-CoV-2 in Hospitalized Patients
- 500 with Covid-19. *N Engl J Med*. Feb 18 2021;384(7):671-673. doi:10.1056/NEJMc2027040

501 3	35.	Longtin Y,	Parkes LO	, Charest H	, et al.	Persistence	of infectivit	y in elderh	y individuals
-------	-----	------------	-----------	-------------	----------	-------------	---------------	-------------	---------------

- 502 diagnosed with severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection 10
- 503 days after onset of symptoms: A cross-sectional study. *Infect Control Hosp Epidemiol*.
- 504 Dec 6 2021:1-4. doi:10.1017/ice.2021.502
- 505 36. Bullard J, Dust K, Funk D, et al. Predicting Infectious Severe Acute Respiratory Syndrome
- 506 Coronavirus 2 From Diagnostic Samples. *Clin Infect Dis*. Dec 17 2020;71(10):2663-2666.
- 507 doi:10.1093/cid/ciaa638
- 508 37. Aranha C, Patel V, Bhor V, Gogoi D. Cycle threshold values in RT-PCR to determine
- 509 dynamics of SARS-CoV-2 viral load: An approach to reduce the isolation period for
- 510 COVID-19 patients. J Med Virol. Dec 2021;93(12):6794-6797. doi:10.1002/jmv.27206
- 511 38. Jefferson T, Spencer EA, Brassey J, Heneghan C. Viral cultures for COVID-19 infectious

512 potential assessment - a systematic review. *Clin Infect Dis*. Dec 3

513 2020;doi:10.1093/cid/ciaa1764

514 39. Gniazdowski V, Morris CP, Wohl S, et al. Repeat COVID-19 Molecular Testing: Correlation

- of SARS-CoV-2 Culture with Molecular Assays and Cycle Thresholds. *Clin Infect Dis*. Oct
- 516 27 2020;doi:10.1093/cid/ciaa1616
- 40. Bouton TC, Atarere J, Turcinovic J, et al. Viral Dynamics of Omicron and Delta Severe
- 518 Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants With Implications for
- 519 Timing of Release from Isolation: A Longitudinal Cohort Study. *Clin Infect Dis*. Feb 8
- 520 2023;76(3):e227-e233. doi:10.1093/cid/ciac510
- 521
- 522

523

524 **Table 1.** Demographic and clinical characteristics of healthcare workers with COVID-19

Characteristic	Overall population (n=121)
Demographic characteristics	
Mean Age – years (SD)	40.2 (12.0)
Female sex (%)	96 (79.3)
Workplace	
Acute care hospital (%)	56 (46.3)
Local Community Services Centers (%)	16 (13.2)
Long term care facilities (%)	15 (12.4)
Rehabilitation center (%)	9 (7.4)
Private clinic, family medicine clinic (%)	7 (5.8)
Other ^a (%)	18 (14.9)
Occupation	
Nurse, nuse practitioner, patient care attendant (%)	45 (37.2)
Physician (%)	20 (16.5)
Administration (%)	13 (10.7)
Physiotherapy, occupational therapy, social worker, radiology technician (%)	22 (18.2)
Other (%)	21 (17.4)
Comorbidities and past medical history	
Immunocopromised condition ^b (%)	4 (3.3)
Previous COVID-19 episode (%)	20 (16.5)
Median elapsed time since last COVID-19 episode – days (IQR)	347.5 (264-454)
COVID-19 Vaccination status	
Not vaccinated (%)	2 (1.7)
1 dose (%)	3 (2.5)
2 doses (%)	9 (7.4)
3 doses (%)	102 (84.3)
4 doses (%)	5 (4.1)
COVID-19 vaccine type (n=347 doses) ^d	
Pfizer-BioNTech Comirnaty (%)	310 (89.3)
Moderna Spikevax (%)	30 (8.6)

AstraZeneca Vaxzevria (%)	7 (2.0)	525 526
Median elapsed time since last COVID-19 vaccine dose – days (IQR)	122 (95-175)	527 528 529 530
Severity of COVID-19 infection ^c		531
Very mild (Ambulatory, no limitation of activities) (%)	97 (80.2)	533
Mild (Ambulatory, with limitation of activities) (%)	24 (19.8)	535
SARS-CoV-2 specific therapy ^e (%)	1 (0.8)	537 538
COVID-19 symptomatology on enrollment		539 540
Median number of symptoms (IQR)	5 (3-6)	541 542
Sore throat (%)	94 (77.7)	543 544
Rhinorrhea and/or nasal congestion (%)	88 (72.7)	545 546
Fatigue (%)	81 (66.9)	547 548
Headache (%)	77 (63.6)	549 550
Myalgia (%)	55 (45.5)	<u>551</u> 552
Chills (%)	50 (41.3)	553 554
Cough (%)	21 (17.4)	<u>555</u> 556
Fever (%)	18 (14.9)	557 558
Dizziness (%)	17 (14.0)	<u> </u>
Diarrhea (%)	14 (11.6)	<u> </u>
Nausea and/or vomiting (%)	10 (8.3)	<u> </u>
Chest pain (%)	10 (8.3)	<u>565</u> 566
Dyspnea (%)	8 (6.6)	<u> </u>
Anosmia (%)	3 (2.5)	<u>569</u> 570
Ageusia (%)	3 (2.5)	571 572
SARS-CoV-2 lineage		<u></u>
BA.1 and sublineages (%)	14 (11.6)	576
BA.2 and sublineages (%)	73 (60.3)	578
BA.4 and sublineages (%)	3 (2.5)	580 581
BA.5 (%)	10 (8.3)	<u> </u>
BQ.1 (%)	9 (7.4)	584
XBB (%)	1 (0.8)	586 587
Recombinants (%)	2 (1.7)	588 589
Unknown (%)	9 (7.4)	590 591 592

Footnotes a. Includes

vaccination center (n=3), research institute (n=5), rehabilitation centers (n=3), health phone services (n=5), cancer wellness center
(n=1) and medical school (n=1)

- b. Includes multiple sclerosis receiving fingolimod (n=1), multiple myeloma post autologous stem cell transplantation (n=1),
- colorectal cancer under chemotherapy (n=1), and Crohn disease receiving anti-tumor necrosis factor (anti-TNF) therapy.
- c. Severity determined by the World Health Organization Ordinal Scale for Clinical Improvement.
 - d. Sum of percentages is greater than 100% because of rounding
 - e. A single patient received nirmatrelvir and ritonavir after enrollment into the study

Abbreviations: SD, standard deviation; IQR, interquartile range

Table 2. Predictors of infectivity on day 5, 7 and 10 of COVID-19 among healthcare workers (bivariate analyses)

			Day 5					Day 7					Day 10)	
Explanatory variable	N ^b	Absence of infectivity	Presence of infectivity	OR (95% CI)	P-value ^c	N ^b	Absence of infectivity	Presence of infectivity	OR (95% CI)	P-value ^c	N ^b	Absence of infectivity	Presence of infectivity	OR (95% CI)	P-value ^c
		n (line %)	n (line %)				n (line %)	n (line %)				n (line %)	n (line %)		
OVERALL	121	34 (28.1)	87 (71.9)			120	64 (53.3)	56 (46.7)			121	99 (81.8)	22 (18.2)		
Demographics															
Median age (IQR)	121	40 (34-53)	38 (30-48)	NE	0.12	120	38.5 (31.5-49)	39.5 (32-48)	NE	0.99	121	38 (31-48)	39.5 (29-51)	NE	0.84
Male sex (%)	25	7 (28.0)	18 (72.0)	Ref		24	13 (20.3)	11 (19.6)	Ref		25	21 (84.0)	4 (16.0)	Ref	
Female sex (%)	96	27 (28.1)	69 (71.9)	0.99 (0.37-2.65)	0.99	96	51 (53.1)	45 (46.9)	1.04 (0.43-2.56)	0.93	96	78 (81.3)	18 (18.8)	1.21 (0.37-3.96)	0.75
Previous infection status															
No previous COVID-19	101	21 (20.8)	80 (79.2)	Ref		100	45 (45.0)	55 (55.0)	Ref		101	79 (78.2)	22 (21.8)	Ref	
Previous COVID-19	20	13 (65.0)	7 (35.0)	0.14 (0.05-0.40)	<0.001	20	19 (95.0)	1 (5.0)	0.04 (0.01-0.33)	0.003	20	20 (100)	0 (0.0)	NE	0.02
Vaccination: number of doses received															
No vaccination or one dose received	5	2 (40.0)	3 (60.0)	Ref		5	2 (40.0)	3 (60.0)	Ref		5	5 (100)	0 (0.0)	Ref	
≥2 doses received	116	32 (27.6)	84 (72.4)	1.75 (0.28-10.96)	0.55	115	62 (53.9)	53 (46.1)	0.57 (0.09-3.54)	0.55	116	94 (81.0)	22 (19.0)	NE	0.58
Immunity status stratified by timing of last vaccine and previous COVID-19															
No previous infection & last vaccine dose ${\geq}6$ months ago	12	2 (16.7)	10 (83.3)	Ref		11	7 (63.6)	4 (36.4)	Ref		12	11 (91.7)	1 (8.3)	Ref	
No previous infection & last vaccine dose <6 months ago	89	19 (21.3)	70 (78.7)	0.74 (0.15-3.65)	0.71	89	38 (42.7)	51 (57.3)	2.35 (0.64-8.60)	0.20	89	68 (76.4)	21 (23.6)	3.40 (0.41- 27.87)	0.26
Previous infection, last vaccine dose > or < 6 months ago^a	20	13 (65.0)	7 (35.0)	0.11 (0.02-0.64)	0.01	20	19 (95.0)	1 (5.0)	0.09 (0.01-0.97)	0.047	20	20 (100)	0 (0.0)	NE	0.38
Rapid antigen detection test (RADT) result															
Negative	13	8 (61.5)	5 (38.5)	Ref		34	29 (85.3)	5 (14.7)	Ref		64	64 (100)	0 (0)	Ref	
Positive	97	20 (20.6)	77 (79.4)	6.16 (1.82-20.88)	0.004	75	26 (34.7)	49 (65.3)	10.93 (3.78- 31.60)	<0.001	40	22 (55.0)	18 (45.0)	NE	0.03
Uncertain	9	6 (66.7)	3 (33.3)	0.80 (0.13-4.75)	0.81	8	7 (87.5)	1 (12.5)	0.83 (0.08-8.27)	0.87	13	11 (84.6)	2 (15.4)	NE	<0.001
SARS-CoV2 RT-PCR															
Median Ct value (IQR)	120	28.5 (25.0-33.4)	21.8 (20.3-25.0)		<0.001	120	31.3 (27.4-35.6)	24.7 (22.9-27.4)		<0.001	120	35.5 (31.4-40.0)	26.7 (24.4-28.3)		0.002
Negative result	8	6 (75.0)	2 (25.0)	Ref		13	13 (100)	0 (0.0)	Ref		46	46 (100)	0 (0.0)	Ref	

Positive result	112	28 (25.0)	84 (75.0)	9.00 (1.72-47.17)	0.01	107	51 (47.7)	56 (52.3)	NE	<0.001	74	52 (70.3)	22 (29.7)	NE	<0.001
RT-PCR cycle threshold (Ct) (reference: negative RT-PCR)															
Ct value: 27 – 34	26	15 (57.7)	11 (42.3)	2.20 (0.37-13.04)	0.39	52	36 (69.2)	16 (30.8)	Ref (CT ≥27)		49	40 (81.6)	9 (18.4)	Ref (CT ≥27)	
Ct value: 23 - <27	27	9 (33.3)	18 (66.7)	6.00 (1.00-35.91)	0.05	39	13 (33.3)	26 (66.7)	6.12 (2.56- 14.66)	<0.001	21	10 (47.6)	11 (52.4)	9.67 (1.21- 77.12)	0.03
Ct value: 20 - <23	38	3 (7.9)	35 (92.1)	35.00 (4.79- 255.47)	0.001	13	2 (15.4)	11 (84.6)	16.84 (3.37- 84.17)	<0.001	4	2 (50.0)	2 (50.0)	10.63 (3.55- 31.86)	<0.001
Ct value: <20	21	1 (4.8)	20 (95.2)	60.00 (4.60- 782.36)	0.002	3	0 (0.0)	3 (100)	NE	0.02	0	0 (0.0)	0 (0.0)	NE	NE
SARS-CoV-2 lineage															
BA.2	73	21 (28.8)	52 (71.2)	Ref		73	39 (53.4)	34 (46.6)	Ref		73	62 (84.9)	11 (15.1)	Ref	
BA.1	14	0 (0.0)	14 (100.0)	NE	0.02	14	1 (7.1)	13 (92.9)	14.91 (1.85- 199.99)	0.01	14	8 (57.1)	6 (42.9)	4.23 (1.23- 14.57)	0.02
BA.4/5	13	3 (23.1)	10 (76.9)	1.35 (0.34-5.38)	0.67	12	8 (66.7)	4 (33.3)	0.57 (0.16-2.07)	0.40	13	10 (76.9)	3 (23.1)	1.69 (0.40-7.14)	0.48
Others (BQ.1, XBB.1, recombinant, unknown)	21	10 (47.6)	11 (52.4)	0.44 (0.16-1.20)	0.11	21	16 (76.2)	5 (23.8)	0.36 (0.12-1.08)	0.07	21	19 (90.5)	2 (9.5)	0.59 (0.12-2.91)	0.52
Severity of symptoms															
Asymptomatic	5	3 (60.0)	2 (40.0)	Ref		19	11 (57.9)	8 (42.1)	Ref		43	38 (88.4)	5 (11.6)	Ref	
Very mild (able to carry out regular activities of daily living)	105	28 (26.7)	77 (73.3)	4.12 (0.65-25.99)	0.13	92	50 (54.3)	42 (45.7)	1.16 (0.43-3.14)	0.78	73	58 (79.5)	15 (20.5)	1.97 (0.66-5.86)	0.23
Mild (Unable to carry out regular activities of daily living)	9	3 (33.3)	6 (66.7)	3.00 (0.31-28.84)	0.34	6	1 (16.7)	5 (83.3)	6.87 (0.67- 70.81)	0.11	1	1 (100)	0 (0.0)	NE	1.000
Evolution of symptoms															
Symptoms are better or entirely gone	92	30 (32.6)	62 (67.4)	Ref		105	61 (58.1)	44 (41.9)	Ref		112	92 (82.1)	20 (17.9)	Ref	
Symptoms are the same or worse than before	27	4 (14.8)	23 (85.2)	2.78 (0.88-8.77)	0.08	12	1 (8.3)	11 (91.7)	4.81 (1.90- 122.49)	0.01	5	5 (100)	0 (0.0)	NE	0.59
Symptomatology															
Fever and antipyretics use (last 24h)															
No fever, without antipyretics use	55	22 (40.0)	33 (60.0)	Ref		79	48 (60.8)	31 (39.2)	Ref		95	83 (87.4)	12 (12.6)	Ref	
No fever, with antipyretics use	55	9 (16.4)	46 (83.6)	3.41 (1.39-8.34)	0.007	35	12 (34.3)	23 (65.7)	2.97 (1.29-6.82)	0.01	21	13 (61.9)	8 (38.1)	4.26 (1.46- 12.39)	0.008
Fever	9	3 (33.3)	6 (66.7)	1.33 (0.30-5.90)	0.71	3	2 (66.7)	1 (33.3)	0.77 (0.07-8.91)	0.84	1	1 (100)	0 (0.0)	NE	1.000
Presence of any symptom (last 48h)	91	22 (24.2)	69 (75.8)	2.35 (0.97-5.72)	0.06	78	38 (48.7)	40 (51.3)	1.68 (0.77-3.69)	0.19	66	52 (78.8)	14 (21.2)	2.02 (0.72-5.69)	0.18
Median Number of symptoms (IQR)	119	3 (42.9)	4 (57.1)	NA	0.14	117	2 (40)	3 (60)	NA	0.07	117	1 (33.3)	2 (66.7)	NA	0.41

medRxiv preprint doi: https://doi.org/10.1101/2023.06.16.23291449; this version posted June 18, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

Chills	15	1 (6.7)	14 (93.3)	6.51 (0.8251.59)	0.08	7	2 (28.6)	5 (71.4)	3.00 (0.56- 16.13)	0.20	4	3 (75.0)	1 (25.0)	1.65 (0.16- 16.72)	0.67
Cough	79	20 (25.3)	59 (74.7)	1.58 (0.70-3.62)	0.27	67	31 (46.3)	36 (53.7)	1.89 (0.90-4.00)	0.09	54	41 (75.9)	13 (24.1)	2.54 (0.93-6.92)	0.07
Fatigue	59	12 (20.3)	47 (79.7)	2.27 (1.00-5.16)	0.051	44	22 (50.0)	22 (50.0)	1.21 (0.57-2.56)	0.62	36	27 (75.0)	9 (25.0)	2.12 (0.79-5.69)	0.14
Myalgia	33	7 (21.2)	26 (78.8)	1.70 (0.66-4.40)	0.27	18	6 (33.3)	12 (66.7)	2.60 (0.90-7.50)	0.08	11	9 (81.8)	2 (18.2)	1.09 (0.22-5.46)	0.92
Sore throat	48	9 (18.8)	39 (81.3)	2.36 (0.98-5.64)	0.06	32	16 (50.0)	16 (50.0)	1.18 (0.52-2.66)	0.69	19	18 (94.7)	1 (5.3)	0.23 (0.03-1.84)	0.17
Headache	44	10 (22.7)	34 (77.3)	1.60 (0.68-3.77)	0.28	26	10 (38.5)	16 (61.5)	2.13 (0.87-5.21)	0.10	16	14 (87.5)	2 (12.5)	0.66 (0.14-3.16)	0.60
Dizziness	12	4 (33.3)	8 (66.7)	0.78 (0.22-2.78)	0.70	15	5 (33.3)	10 (66.7)	2.53 (0.81-7.94)	0.11	11	10 (90.9)	1 (9.1)	0.46 (0.06-3.79)	0.47
Rhinorrhea and/or congestion	82	19 (23.2)	63 (76.8)	2.26 (0.98-5.20)	0.055	65	31 (47.7)	34 (52.3)	1.16 (0.77-3.38)	0.20	47	36 (76.6)	11 (23.4)	2.07 (0.78-5.48)	0.14
Diarrhea	16	4 (25.0)	12 (75.0)	1.23 (0.37-4.13)	0.73	11	4 (36.4)	7 (63.6)	2.11 (0.58-7.66)	0.25	4	2 (50.0)	2 (50.0)	5.28 (0.70- 39.93)	0.11
Loss of appetite	28	8 (28.6)	20 (71.4)	1.00 (0.39-2.55)	1.00	21	7 (33.3)	14 (66.7)	2.68 (0.99-7.24)	0.052	16	11 (68.8)	5 (31.3)	2.61 (0.79-8.57)	0.12

Footnote:

^a Regardless of timing of last vaccine dose

^b Among 121 participants with data on infectivity on day 5, 2 had missing information for RADT result and symptoms and 1 have missing information on RT-PCR CT result; among 120 participants with data on infectivity on day 7, 3 had missing information for RADT result and symptoms; among 121 participants with data on infectivity on day 7, 3 had missing information for RADT result and symptoms; among 121 participants with data on infectivity on day 7, 3 had missing information for RADT result and symptoms; among 121 participants with data on infectivity on day 7, 3 had missing information for RADT result and symptoms and 1 have missing information on RT-PCR CT result. ^c Means were compared using student's t-test, proportions were compared using chi-square or fisher exact test when appropriate

Abbreviations: IQR, interquartile range; Ref, reference category; NE, No estimate could be calculated due to perfect correlation; NA, not applicable; RADT, Rapid antigen detection test; Ct, RT-PCR cycle threshold value

	Day	y 5 of infectio	n	Day	7 of infection		Day 10 of infection				
	Primary COVID-19 N (%)	Recurrent COVID-19 N (%)	P-value	Primary COVID-19 N (%)	Recurrent COVID-19 N (%)	P-value	Primary COVID-19 N (%)	Recurrent COVID-19 N (%)	P-value		
RADT result (n)	100	20		99	19		98	19			
Positive RADT	86 (86.0)	11 (57.9)	0.005	73 (73.7)	3 (15.8)	<0.001	40 (40.8)	0 (0.0)	<0.001		
Negative RADT	7 (7.0)	6 (31.6)		18 (18.2)	16 (84.2)		45 (45.9)	19 (100)			
Uncertain RADT	7 (7.0)	2 (10.5)		8 (8.1)	0 (0.0)		13 (13.3)	0 (0.0)			

Table 3. Comparison of rapid antigen detection test results of healthcare workers with primary vs recurrent COVID-19

Abbreviation: RADT, Rapid antigen detection test

	Day 5 (n=121)			Day 7 (n=117)			Day 10 (n=117)		
	Adjusted OR	95% CI	P- value	Adjusted OR	95% CI	P-value	Adjusted OR	95% CI	P-value
Female sex	0.42	0.09-2.06	0.287	1.28	0.31-5.34	0.73	0.83	0.16-4.18	0.82
Age (years)									
20-39	Ref			Ref			Ref		
40-59	0.50	0.15-1.68	0.26	1.43	0.47-4.34	0.52	1.28	0.36-4.63	0.70
60-77	0.17	0.02-1.63	0.12	0.52	0.06-4.71	0.56	2.54	0.25-26.31	0.43
Immunity status stratified by timing of last vaccine and previous COVID-19									
No previous infection & last vaccine dose ≥6 months ago	Ref			Ref			Ref		
No previous infection & last vaccine dose <6 months ago	0.27	0.03-2.33	0.23	7.50	0.89-62.83	0.06	1.41	0.14-14.15	0.77
Previous infection, last vaccine dose > or < 6 months ago ^a	0.005	0.002-0.16	0.003	0.14	0.003-6.61	0.32	NE		
RADT result									
Negative	Ref			Ref			NE		
Positive	0.69	0.11-4.43	0.70	3.20	0.74-13.91	0.12	NE		
Uncertain	0.14	0.1-1.48	0.10	0.07	0.002-1.82	0.11	NE		
SARS-CoV-2 RT-PCR Ct									
≥27 (including negative)	Ref			Ref			Ref		
23 - <27	1.30	0.29-5.62	0.73	4.81	1.52-15.25	0.008	12.39	3.32-46.20	<0.001
14 - <23	22.75	3.89-133.05	<0.001	182.30	8.83- 3764.36	0.001	24.71	1.53- 398.50	0.02
SARS-CoV-2 lineage ^b									

Table 4. Predictors of infectivity among HCWs with COVID-19 (multivariate analysis)

It is made available under a CC-BY-NC-ND 4.0 Internatio	(which was not certified by peer review) is the author/funder, who has granted medRxiv	medRxiv preprint doi: https://doi.org/10.1101/2023.06.16.23291449; this version posted June
le av	s is t	1/202
ailab	he a	23.06
le un	uthor	16.2
der a	/fund	23291
ဂို	er, w	449;
BY-N	ho ha	this
	as gra	versi
4.0	antec	on po
Inter	mec	sted
natio	Rxiv	June
nalii	alic	18
cens	ense	2023
	to dis	. The
	splay	copy
	the p	/right
	repri	hold
	nt in	er for
	perp	this
	etuity.	preprir
		_

BA.1, BA.2 and subvariants	Ref			Ref			Ref		
BA.4, BA.5, BQ.1, XBB and subvariants	4.14	0.50-33.97	0.19	3.13	0.46-21.43	0.24	2.95	0.52-16.70	0.22
Evolution of symptoms									
Symptoms are better or entirely gone	Ref			Ref			NE		
Symptoms are the same or worse than before	0.52	0.11-2.57	0.42	18.67	0.98-355.49	0.05	NE		
Fever and antipyretic use ^c									
No fever, without antipyretics use	Ref			Ref			Ref		
No fever, with antipyretics use	4.83	1.30-17.98	0.85	1.32	0.40-4.35	0.65	4.16	1.00-16.95	0.047
Fever	1.21	0.18-8.17	0.85	NA			NA		

Footnote:

^aRegardless of timing of last vaccine dose

^b For 9 individuals with missing information, lineage BA.1 / BA.2 or lineage BA.4 / BA.5 / BQ.1 / XBB were assigned based on circulating variants at the date of testing

^c For the analyses of day 7 and day 10, "fever" and "no fever, with antipyretic use" were considered a single category

Abbreviations: CI, confidence interval; NE, not estimable; NA, not applicable; OR, odds ratio; RADT, Rapid antigen detection test; Ref, reference category; RT-PCR Ct, cycle threshold of real-time polymerase chain reaction

FIGURE 1. Flow diagram of participant selection into the study and proportion of infective participants at each follow-up visit.

Day of COVID-19 infection and viral culture result

FIGURE 2. Box plot with overlaid jitter plot comparing SARS-CoV-2 RT-PCR Cycle threshold, rapid antigen diagnostic test (RADT) result and viral culture positivity at day 5, 7 and 10 of COVID-19 infection among 121 healthcare workers.

Footnote: The horizontal line in each box indicates the median, whereas the top and bottom of the boxes represent the 75th and 25th percentile, respectively. Error bars represent 95% confidence intervals. Negative RT-PCR results were attributed a Ct-value of 40 to facilitate data visualization.

FIGURE 3. Box plot comparing SARS-CoV-2 RT-PCR Cycle threshold at day 5, 7 and 10 of primary vs. recurrent COVID-19 infection.

Footnote: The horizontal line in each box indicates the median, whereas the top and bottom lines represent the 75th and 25th percentile, respectively. Error bars represent 95% confidence intervals. Negative RT-PCR results were attributed a Ct-value of 40 to facilitate data visualization. Comparison between primary vs recurrent infections assessed by Mann-Whitney U test.

FIGURE 4. Performance of return-to-work criteria for healthcare workers with COVID-19. Panel A shows the performance of the US Centers for Diseases Control and Prevention (US CDC) Return to Work criteria on a cohort of healthcare workers with COVID-19. Panel B shows the performance of an alternative set of criteria derived from the current study. Panel C compares the CDC and alternative criteria.