1 Title of the article: Anti-SARS-CoV-2 Antibody Kinetics up to 6 months of follow-up: Result

2 from a Nation-wide Population-based, Age Stratified Sero-Epidemiological Prospective

3 Cohort Study in India

4 Puneet Misra¹, Arvind Kumar Singh², Baijayantimala Mishra³, Bijayini Behera², Binod Kumar

5 Patro², Guruprasad R Medigeshi⁴, Hari Shanker Joshi⁵, Mohammad Ahmad⁶, P K Chaturvedi⁷,

6 Palanivel Chinnakali⁸, Partha Haldar¹, Mohan Bairwa¹, Pradeep Kharya⁵, Rahul Dhodapkar⁹,

7 Ramashankar Rath⁵, Randeep Guleria¹⁰, Sanjay K Rai¹, Sitanshu Sekhar Kar⁸, Shashi Kant¹,

8 Sonali Sarkar⁸, Subrata Baidya¹¹, Suneeta Meena¹², Suprakash Mandal¹, Surekha Kishore¹³, Tapan
9 Majumder¹⁴, Vivek Hada¹⁵

10

11 **Contributors*:**

- 12 1. Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi
- 13 110029, India
- 14 2. Department of Community and Family Medicine, All India Institute of Medical Sciences,
- 15 Bhubaneshwar, Odisha- 751019, India
- 16 3. Department Microbiology, All India Institute of Medical Sciences, Bhubaneshwar, Odisha-
- 17 751019, India
- 18 4. Translational Health Science and Technology Institute, Faridabad-121001, India
- 19 5. Department of Community and Family Medicine, All India Institute of Medical Sciences,
- 20 Gorakhpur- 273008, India
- 21 6. WHO Country Office, World Health Organization
- 22 7. Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi
- 23 110029, India
- B. Department of Community Medicine, Jawaharlal Institute of Postgraduate Medical
 Education and Research, Puducherry- 605006, India
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and
 Research, Puducherry- 605006, India
- 28 NOTE: On Discontine Audine Lindie Line that to soft Merchinalies of a construction of the soft and the sof

29	11. Department of Community Medicine, Agartala Government Medical College, Agartala-
30	799006, India
31	12. Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi
32	110029, India
33	13. Director, All India Institute of Medical Sciences, Gorakhpur- 273008, India
34	14. Department of Microbiology, Agartala Government Medical College, Agartala- 799006,
35	India
36	15. Department of Microbiology, All India Institute of Medical Sciences, Gorakhpur, Uttar
37	Pradesh, India
38	*After first and corresponding author, all others authors sequence is arranged alphabetically
39	Corresponding author and guarantor:
40	Dr. Puneet Misra
41	Professor
42	Centre For Community Medicine
43	Room Number: 30 Old OT Block
42	All India Institute of Medical Sciences
45	New Delhi- 110029
46	Telephone: $+91 (11) 26593773 (Direct)$
40	+91(11) 26593233 (Office)
48	Mobile: +91-9810696386
49	Mail: doctormisra@gmail.com
50	Orcid ID: https://orcid.org/0000-0002-2019-1524
51	Biographical Sketch of first author:
52	Dr. Puneet Misra is Professor of Community Medicine at the All India Institute of Medical
53	Sciences having over twenty years of experience as Physician, Researcher, Teacher,
54	Epidemiologist and Public Health professional. His area of specialties are Public Health,
55	Vaccine Trial, Clinical Trials, Epidemiologist, Yoga, chronic disease, life style medicine etc.
56	
57	
58	Total number of pages: 12

59 Total number of photographs: Nil

60	Word count of abstract: 301
61	Word count for text (excluding reference, tables, abstract): 2761
62	Word count for introduction and discussion: 893
63	Conflicts of interest: Nil.
64	Source of funding: This work was supported by a research grant (Ref No: 2020/1085497,
65	Purchase Order: 202630166) from the WHO Country Office, New Delhi 110016, India.
66	Previous presentation/submission: None
67	Acknowledgement
68	We thank the WHO Country Office, India team particularly Mohammad Ahmad (National
69	Professional Officer, WHO) and Anisur Rahman (Health Emergencies and Research Officer,
70	WHO) for continuous support. We are immensely thankful to Meenu Sangral, Research
71	Officer; Shreya Jha, Senior Research Consultant; Priyanka Kardam, Research Officer; Kapil
72	Yadav, Professor; Bratati Pal, Research Officer; Tanushree Roy, Research officer for their
73	support. Special thanks to the participants who allowed us to investigate the extent of infection,
74	as determined by seropositivity in the general population, in which COVID-19 virus infection
75	has been reported.
76	Author statement: All co-authors have read and approved this manuscript. The corresponding
77	author attests that all listed authors meet authorship criteria and that no others meeting the

criteria have been omitted. This manuscript represents the honest work done in this multisite
sero-epidemiological study

- 80
- 81

Contributor	Concept	Design	Literature search	Data acquisition and analysis	Manuscript preparation	Manuscript editing	Manuscript review
Puneet Misra	\checkmark	\checkmark	\checkmark	-		\checkmark	\checkmark

Arvind Kumar				\checkmark			
Singh	v	v	-	v		-	v
Baijayantimala			_	V		_	
Mishra							·
Bijayini	-	-	-	\checkmark	-	_	
Behera							
Binod Kumar	-	-	-	\checkmark	-	-	
Patro,							
Guruprasad R	\checkmark	\checkmark	-	\checkmark	-	-	
Medigeshi							
Hari Shanker	\checkmark	\checkmark	-	-	-	-	\checkmark
Joshi							
Mohammad	\checkmark	\checkmark	-	-	-	-	
Ahmad							
Mohan Bairwa	-	\checkmark	-	-	-	-	
РК	\checkmark	\checkmark	-	\checkmark	-	-	\checkmark
Chaturvedi							
Palanivel	\checkmark		-	\checkmark	-	-	\checkmark
Chinnakali							
Partha Haldar	-	-	-		-	-	
Pradeep	-	-	-	\checkmark	-	-	\checkmark
Kharya	,	,					
Puneet Misra	V	N	V	-	\checkmark	\checkmark	
Rahul	-	-	\checkmark	\checkmark	-	-	\checkmark
Dhodapkar							
Ramashankar	-	-	-	\checkmark	-	-	\checkmark
Rath							

Randeep		2					2
Guleria	v	v	-	-	-	-	v
Sanjay K Rai		\checkmark	-	-	-	-	\checkmark
Shashi Kant	\checkmark		\checkmark	-	\checkmark		\checkmark
Sitanshu	-	-	-		-	-	
Sekhar Kar							
Sonali Sarkar	-	-	-	\checkmark	-	-	\checkmark
Subrata			_		-	_	
Baidya							
Suneeta	-	-	_		-	_	
Meena							
Suprakash	-	-					
Mandal							
Surekha			_	-	-	-	
Kishore							
Tapan	_	_	_	\checkmark	_	_	
Majumder							,
Vivek Hada	-	-	-	\checkmark	-	-	

89	Title: Anti SARS-CoV-2 Antibody Kinetics up to 6 months of follow-up: Result from a
90	Nation-wide Population-based, Age Stratified Sero-Epidemiological Prospective Cohort
91	Study in India
92 93	Abstract:
94	Repeated serological testing tells about the change in the overall infection in a community. This
95	study aimed to evaluate changes in antibody prevalence and kinetics in a closed cohort over six
96	months in different sub-populations in India. The study included 10,000 participants from rural
97	and urban areas in five states and measured SARS-CoV-2 antibodies in serum in three follow-up
98	rounds. The overall seroprevalence increased from 73.9% in round one to 90.7% in round two and
99	92.9% in round three. Among seropositive rural participants in round one, 98.2% remained
100	positive in round two, and this percentage remained stable in urban and tribal areas in round three.
101	The results showed high antibody prevalence that increased over time and was not different based
102	on area, age group, or sex. Vaccinated individuals had higher antibody prevalence, and nearly all
103	participants had antibody positivity for up to six months.
104	Keywords: Serology, Antibody, SARS-CoV-2, longitudinal
105	
106	
107 108 109	
110	
111	
112	
113	
114	
115	

116 INTRODUCTION

117 The COVID-19 pandemic remains an important public health issue since 2019. Since its onset, 118 several waves were seen in different countries throughout the world in different time periods.[1,2] 119 In India, the first wave was seen from March to November 2020. The second wave in the form of 120 the delta variant, from March to June 2021, led to a massive surge of symptomatic COVID, 121 hospitalization, and fatality.[3] There was a subsequent third wave of less virulent omicron variant 122 at the end of 2021. For almost 3 years India experienced this series of the pandemic waves, which 123 had impact on population health. India started the COVID-19 vaccination in January 2021; 124 initially for the health care workers, and frontline workers followed by the elderly population, and finally for all adults.[4] 125 126 India, as well as most parts of the world, has entered the phase of endemicity where a substantial 127 proportion of the population is positive for SARS-CoV-2 antibody.[5] Varying levels of seropositivity were found among the population of different states of India. The seropositivity 128 129 status of a population indicates the extent of past infection, the indirect protection from subsequent 130 infection, the proportion of the susceptible population, etc. Similarly, repeated serological testing 131 tells about the change in the overall infection in a community. There were very few studies in 132 cohort design assessing the antibody kinetics for a longer duration. Therefore, we aimed to assess the change in antibody prevalence and its kinetics in a closed cohort over six months across the 133 134 country in different sub-population in India. 135

136 **METHODOLOGY**

Study Design: This was a population-based, multi-centric, age-stratified prospective cohort study
under WHO (World Health Organisation) Unity protocols for the SARS-CoV-2 sero-surveillance.
[6] A total of three rounds of follow-up were done for the same cohort of the study participants
viz. at baseline, 3rd months, and 6th months.

Study Setting and Patient Selection: The study was conducted at five selected study sites in
India. The study sites were Delhi, Bhubaneswar, Gorakhpur, Pondicherry, and Agartala situated in
the state of Delhi, Odisha, Uttar Pradesh, Pondicherry, and Tripura respectively (Figure 1).

144 **Figure 1.** Geographical distribution of the study sites across India

145

The study population were from both the rural and urban areas of each site except at the Agartala 146 147 site where the tribal population was included in place of the urban population. For Delhi site, an 148 urban resettlement colony consisting mostly of a population from low socio-economic strata in the 149 south Delhi district was chosen to represent urban population. The rural population was selected from Ballabgarh block in the Faridabad district of nearby Haryana state. Faridabad district had 150 151 contiguous border with Delhi state and came under Delhi National Capital Region (Delhi NCR). Ballabgarh block was the rural field practice area of the investigating site spread across 50 square 152 153 kilometres with 28 villages with a population of 102,000 as per 2021 data. The Bhubaneswar site 154 in south-Eastern India included an urban area under the Bhubaneswar Municipal Corporation 155 (BMC) and a rural area at selected villages of adjacent Khordha districts at a distance of 25-40 156 kilometres from the site institute. Gorakhpur was a city situated in Uttar Pradesh, a state in 157 Northern India. The city was a major transit point of surface transport near the India-Nepal 158 international border. The rural area was in the vicinity of the city with an average distance of 16-159 72 kilometres from the city centre whereas the urban area was in the centre of the city in a selected 160 municipality block. In north-eastern India, the Agartala site was situated in the state of Tripura. 161 This site included the rural and tribal population from the selected villages situated at a distance of 162 16-30 km from the city centre. In southern India, the Puducherry site was a Union Territory of an 163 area of 20 square kilometres where selected municipality wards and villages were included for the 164 urban and rural population.

165 Sample Size and Sampling Strategy: In each of the study sites, population both from an urban
166 and rural area (except Agartala: rural and tribal) were included. Individual villages in the rural

167 area and municipality wards in the urban area were considered as a cluster. From each rural and 168 urban area, 25 clusters were selected purposively. From each cluster, 40 participants were selected 169 to finally achieve 1,000. Therefore, each study site had a sample size of 2,000 and the total sample 170 size for the study was 10,000. The recruitment of the participants started from a meeting point of multiple lanes of a cluster preferably at the centre. The rotating pencil method was used to identify 171 172 the first starting lane where ≥ 10 consecutive families were approached. From those houses, at 173 least 40 participants having age more than equal to 1 year were recruited. The rule of the left was 174 adopted to move further at the end of any lane. 175 Outcome Measures: Our main outcome measure was the presence or absence of antibodies against the SARS-CoV-2 virus in serum. It was assessed by standard Enzyme-linked 176 177 Immunoassay (ELISA) (Kit: WANTAI SARS-CoV-2 Ab ELISA kit, Wantai SARS-CoV-2 178 Diagnostics) as per the manufacturer's protocol. The kit captured human serum total antibody 179 (IgM + IgG) against the receptor binding domain of spike protein of the SARS-Cov-2 virus and 180 detected the antibody qualitatively. The sensitivity and specificity of the test kit were 94.4% and 181 100% respectively. [7] Those serum specimens having a ratio of observed absorbance to cut-off 182 $(O/C) \ge 1.0$ was taken as reactive for the antibody.

Biological Specimen Collection and Handling: Three to five millilitre of venous blood sample
was collected by aseptic venepuncture from each participant. The blood sample was centrifuged

185 (at 3000 rpm for 10 minutes) within two hours of collection. Serum was stored at 2-8 degree

186 Celsius for laboratory analysis within seven days, otherwise at -80 degrees Celsius for long-term

187 storage. The standard operating procedure for handling biological samples was followed.

188 **Other Variable:** We interviewed the adult participants and the guardian of the minor participants

189 to obtain basic socio-demographic details like age, sex, residence, educational status, occupation,

any substance use, any clinical symptoms experienced in the past three months, history of SARS-

191 CoV-2 laboratory test, COVID-19 vaccination status, etc.

192 Data Collection Tool and Data Quality Management: We used electronic tablet-based Epi-193 Collect 5 data collection software to enter the data of participants' interviews as well as data of 194 laboratory results. The web portal of Epi-Collect 5 was used to do real-time based monitoring of 195 the progress, identifying any data entry error, incompleteness, and data mismatch simultaneously 196 during the period of data collection. The appropriate prompt action was taken to resolve issues 197 that appeared at any of the study site. Periodic data download and cross-checking were also done 198 to find any discrepancies by a designated data manager. A weekly progress report was obtained 199 and discussed with all the study sites to ensure timely data collection and maintaining quality. 200 Apart from this periodic refresher training and study site review meetings were conducted to 201 address the site-specific issues and ensure timely dissemination of quality data. Standard state-202 specific COVID-appropriate guideline was followed during the data collection. The uploaded data 203 were exported to Microsoft Excel format and merged with the subsequent round of data with the 204 help of unique identification numbers.

Data Analysis: Data data analysis was done by STATA Version 12 (STATA Corporation, Texas,
USA) statistical software. Data cleaning was done with the help of both Microsoft Excel and
STATA by a qualified data manager as well as by the study investigators. Descriptive statistical
analysis was done and the result was expressed by frequency and proportion for categorical
variables and mean (SD), 95% confidence interval (CI) for the continuous variable. The
seroprevalence was presented by percentage and with 95% CI by on the study site, round, urbanrural area, age group, sex, according to symptoms, and vaccination status.

212 Ethical Approval and Consent to Participate: Ethical approval was obtained from all five

213 investigating institutes (Letter No. For AIIMS, New Delhi: IEC-959/04.09.2020, AIIMS

214 Bhubaneswar: T/EMF/CM&FM/20/44, JIPMER Puducherry: JIP/IEC/2020/248, AIIMS

215 Gorakhpur: IHEC/AIIMS-GKP/BMR/01/22, Agartala: F.4(5-234)/AGMC/ACADEMIC/IEC

- 216 **MEETING**). We obtained informed written consent, assent, and consent from the
- 217 parents/guardians of the participants who were under the legal age for giving consent.
- 218

219 RESULTS

- The data collection period was from March 2021 to August 2021 in round one, from May 2021 to 220
- 221 December 2021 in round two, and from August 2021 to January 2022 in round three.

222 (Supplementary Table 1.)

- 223 Supplementary Table 1. The period of the data collection according to the study site and area
- 224

Study Site	Area	Round One	Round Two	Round Three
AIIMS, New	Rural	March 3, 2021 –	May 27, 2021 – Oct	August 26, 2021 –
Delhi		June 10, 2021	18, 2021	Dec 31, 2021
	Urban	March 15, 2021 – July 31, 2021	June 18, 2021 – Oct 26, 2021	Sept 28, 2021 – Dec 11, 2021
AIIMS,	Rural	March 22, 2021 –	July 9, 2021 –	Oct 11, 2021 –
Bhubaneswar		May 7, 2021	August 11, 2021	Dec 19, 2021
	Urban	June 7, 2021 – June 30, 2021	Sept 6, 2021 – Oct 11, 2021	Oct 12, 2021 – Jan 14, 2022
AIIMS,	Rural	April 22, 2021 -	July 24, 2021 – Oct	Oct 12, 2021 –
Gorakhpur		June 29, 2021	4, 2021	Dec 19, 2021
	Urban	July 1, 2021 – August 18, 2021	Oct 5, 2021 – Nov 27, 2021	Dec 18, 2021 – Jan 10, 2022
Agartala	Rural	26 March 2021 –	July 12, 2021 – Dec	Sept 20, 2021 –
Medical		June 1, 2021	10, 2021	Dec 31, 2021
College Tribal		17 June 2021 –	Sept 14, 2021 – Nov	Dec 15, 2021 –
		August 7, 2021	29, 2021	Dec 31, 2021
JIPMER,	Rural	June 9, 2021 –	Sept 1, 2021 – Nov	Oct 12, 2021 –
Pondicherry		July 30, 2021	23, 2021	Dec 27, 2021
	Urban	June 10, 2021 – July 23, 2021	Sept 2, 2021 – Nov 27, 2021	Oct 12, 2021 – Dec 28, 2021

225

226 The total number of participants in round one was 10,110 for all sites clubbed together. In the

subsequent rounds, 6,503 (64.3%) remained in round two and 5,564 (55.0%) in round three. The 227

228 highest proportion of participants who remained in the cohort till round three was at the

229 Bhubaneswar site (73.6%), whereas the minimum was at the Pondicherry site (33.1%).

230 (Supplementary Table 2.)

Supplementary Table 2: Distribution of participants by to the study site, round, and area

		Rour	nd One	Rou	nd Two	Round Three		
Study site	Araa	n	(%)	n	(%)	n	(%)	
Study site	Анса	Total	Area	Total	Area wise	Total	Area wise	
			wise*					
	Urban		1001		741/1001		780/1001	
Dalhi		2060	(47.2%)	1569	(74.0%)	1395	(77.9%)	
Denn	Rural	(100%)	1059	(76.2%)	828/1059	(67.7%)	708/1395	
			(52.8%)		(78.2%)		(66.8%)	
	Urban		1000		820/1000		777/1000	
Dhuhanaawan		2000	(50.0%)	1704	(82.0%)	1473	(77.7%)	
Bnubaneswar	Rural	(100%)	1000	(85.2%)	884/1000	(73.6%)	700/1000	
			(50.0%)		(88.4%)		(70.0%)	
	Urban		1002		553/1002		509/940	
Constations		2010	(49.8%)	1151	(55.2%)	937	(50.8%)	
Goraknpur	Rural	(100%)	1008	(57.3%)	598/1008	(46.6%)	431/1008	
			(50.2%)		(59.3%)		(42.7%)	
	Tribal		1339		489/1339		672/1339	
		2000	(66.9%)	856	(36.5%)	1095	(31.7%)	
Agartala	Rural	(100%)	661	(42.8%)	368/661	(54.7%)	423/639	
			(33.1%)		(55.6%)		(63.9%)	
	Urban		1020		601/1020		322/1020	
ו יו ת		2040	(50.0%)	1222	(49.2%)	664	(31.6%)	
Pondicherry	Rural	(100%)	1020	(59.9%)	621/1020	(33.1%)	352/1020	
			(50.0%)		(60.1%)		(34.5%)	
Total	Urban		4023		2715/4023		2164/4023	
			(39.7%)		(67.5%)		(53.7%)	
	Rural	10110	4748	6503	3229/4748	5564	2728/4748	
		(100%)	(46.9%)	(64.3%)	(69.5%)	(55.0%)	(57.4%)	
	Tribal	1` ´	1339		489/1339		672/1339	
			(13.2%)		(36.5%)		(50.2%)	

233 234 *Column % is given whereas for all other figures, the denominator is the number of round one

235 In round two higher proportion of participants from the rural area remained in the study compared

to the urban participants across all sites. In contrast to this, higher attrition rate was seen in the

rural area in round three across all sites. (Supplementary Table 2.) The overall proportion of

238 males in all three rounds was lower than females. The recruited participants were mostly older

than 10 years and younger than 60 years. This age group formed nearly 70% of all the participants

and remained stable across the three rounds. (Supplementary Table 3.)

Var	iable		Rural n (%))		Urban n (%)	r	Fribal n (%)
		Round	Round	Round	Round	Round	Round	Round	Round	Round
		One	Two	Three	One	Two	Three	One	Two	Three
		(n=4748)	(n=3299)	(n=2728)	(n=4023)	(n=2715)	(n=2164)	(n=1339)	(n=489)	(n=672)
	Male	2060	1349	1057	1906	1240	956	554	178	262
Sov		(43.4)	(40.9)	(38.7)	(47.4)	(45.7)	(44.2)	(41.4)	(36.4)	(38.9)
Sex	Femal	2688	1950	1671	2117	1475	1208	785	311	410
	e	(56.6)	(59.1)	(61.3)	((52.6)	(54.3)	(55.8)	(58.6)	(63.6)	(61.1)
	1-4	35	25	20	10	5	4	0	0	0
	years	(0.7)	(0.7)	(0.7)	(0.3)	(0.2)	(0.2)	0	0	0
	5-9	179 (3.4)	120	101	130	83	64	13	4	6
	years	177 (5.4)	(3.6)	(3.7)	(3.2)	(3.1)	(2.9)	(0.9)	(0.8)	(0.9)
	10-14	386 (8 1)	276	225	283	195	148	50	7	21
	years	360 (8.1)	(8.4)	(8.3)	(7.0)	(7.2)	(6.8)	(3.7)	(1.4)	(3.1)
	15-19	430	291	231	285	180	114	80	13	30
	years	(9.1)	(8.8)	(8.5)	(7.1)	(6.6)	(5.3)	(5.9)	(2.6)	(4.5)
	20-29	747	473	389	581	348 (12.8)	247	242	74	92
Age	years	(15.7)	(14.3)	(14.3)	(14.4)	546 (12.6)	(11.4)	(18.1)	(15.1)	(13.7)
Group	30-39	795	549	450	638	412 (15 2)	353	290	108	173
	years	(16.7)	(16.7)	(16.5)	(15.8)	112 (15.2)	(16.3)	(21.6)	(22.1)	(25.7)
	40-49	784	550	476	748	502 (18 5)	414	261	99	139
	years	(16.5)	(16.7)	(17.5)	(18.6)	502 (10.5)	(19.1)	(19.5)	(20.3)	(20.7)
	50-59	616	428	357	621	442 (163)	353	188	92	96
	years	(12.9)	(12.9)	(13.1)	(15.4)	442 (10.5)	(16.3)	(14.0)	(18.8)	(14.3)
	60-69	475	359	292	492	371 (13.6)	323	129	57	75
	years	(10.0)	(10.8)	(10.7)	(12.2)	5/1 (15.0)	(14.9)	(9.6)	(11.6)	(11.9)
	70+	301	228	187	235	177	144	86	35	40
	years	(6.3)	(6.9)	(6.8)	(5.8)	(6.5)	(6.7)	(6.4)	(7.2)	(5.9)

Supplementary Table 3. Distribution of total participants in urban and rural area by survey round, sex, and age group

243

Of those lost to follow-up in urban areas, 655 (50%) participants in round two and 469 (32.3%)

245 participants in round three were not traceable even after three domiciliary visits. The second most

common reason for attrition was refusal to continue participation in the study (37.2% in urban,

247 47.3% in rural, and 98.9% in tribal areas). In round three, the proportion who refused to

248 participate was higher than those who couldn't be traced. (Supplementary Table 4.)

Supplementary Table 4. Distribution of reasons for loss to follow up participants by roundarea

251

Reasons for loss	Ur	ban	Ru	ıral	Tribal	
to follow up	Round Two n= 1308 (%)	Round Three n= 1859 (%)	Round Two n= 1449 (%)	Round Three n= 2020 (%)	Round Two n= 850 (%)	Round Three n= 667 (%)
Refused	487 (37.2)	873 (46.9)	685 (47.3)	1084 (53.7)	841 (98.9)	665 (99.7)
Deceased	8 (0.6)	13 (0.7)	9 (0.6)	14 (0.7)	2 (0.2)	2 (0.2)

Sick at the time of	158	335 (18.0)	286 (19.7)	379 (18.7))	7 (0.8)	0
visit	(12.1)					
Could not be	655	638 (34.3)	469 (32.3)	543 (26.8)	0	0
found at home	(50.1)					
after three visit						

252

253 The overall seroprevalence was 73.9% (95% CI: 73.1 - 74.8) in round one which increased to

254 90.7% (95% CI: 89.9 – 91.4) in round two and 92.9% (95% CI: 92.2 – 93.6) in round three. The

- highest seroprevalence in round one was at the Gorakhpur site (91.7%, 95% CI: 90.5 92.9)
- whereas the lowest was at the Bhubaneswar site (64.1%, 95% CI: 62.0 66.3) giving a wide range
- 257 of seroprevalence across the study sites. The seroprevalence in round two was similar across all
- 258 the sites ranging from 83.8% (95% CI: 82.0 85.6) to 94.9% (95% CI: 93.5 96.1). The range of
- seroprevalence further narrowed down in round three. (Table 1.)

260 Table 1: Distribution of SARS-CoV-2 seropositive participants by site and round

261

	Rou	ind One	Rou	nd Two	Round Three	
Study site	Sample	Seropositiv	Sample	Seropositiv	Sam	Seropositi
	size	e n (%) 95% CI	size	e n (%) 95% CI	pie size	ve n (%) 95% CI
Delhi	2060	1373 (66.6) (64.6 - 68.7)	1569	1485 (94.7) (93.4 – 95.7)	1395	1336 (95.8) (94.5 – 96.7)
Bhubaneswar	2000	1283 (64.1) (62.0 – 66.3)	1704	1429 (83.8) (82.0 – 85.6)	1473	1284 (87.2) (85.3 – 88.8)
Gorakhpur	2010	1845 (91.7) (90.5 – 92.9)	1151	1093 (94.9) (93.5 – 96.1)	937	903 (96.4) (94.9 – 97.5)
Agartala	2000	1254 (62.7) (60.5 - 64.8)	856	776 (90.7) (88.5 – 92.5)	1095	1020 (93.2) (91.5 – 94.6)
Pondicherry	2040	1719 (84.2) (82.6 – 85.8)	1222	1114 (91.6) (89.4 – 92.6)	664	627 (94.4) (92.4 – 96.1)
Total	10110	7474 (73.9) (73.1 – 74.8)	6503	5897 (90.7) (89.9 – 91.4)	5564	5170 (92.9) (92.2 -93.6)

262

263 In round one the seroprevalence was higher in the urban area across all the sites; the overall

seroprevalence in urban area was 81.5% and rural 69.6% and 66.7% in the tribal area. In round

- two these were 91.1% in urban, 90.4% in rural, and 90.4% in tribal area. Whereas, in round three
- it was 91.8%, 94.1%, and 91.6% in urban, rural, and tribal area respectively. (Supplementary
- 267 **Table 5.**)

Supplementary Table 5. Distribution of SARS-CoV-2 seropositive of participants by site, round and area

270

Sites	Area	und Two	o Round Three				
	Urban	1050	749	1.40.5	721 (97.3)	1000	679
Delhi		13/3	(74.8)	1485		1336	(98.4)
	Rural	(66.6)	624	(94.6)	764 (92 3)	(95.8)	657
			(58.9)		, () =)		(93.2)
	Urban		732		669 (81.6)		566
Rhuhaneswar		1283	(73.2)	1428	007 (01.0)	1284	(80.9)
Diubancswai	Rural	(64.1)	551	(83.0)	750 (85 8)	(87.2)	718
			(55.1)		759 (85.8)		(92.7)
	Urban		948		527 (07 1)		420
		1845	(94.6)	1093	337 (97.1)	903	(97.7)
Goraknpur	Rural	(91.7)	897	(94.9)	55((02.0)	(96.4)	483
			(88.9)		556 (92.9)		(95.3)
	Tribal		893		442 (00.4)		615
		1254	(66.7)	(90.7)	442 (90.4)	1020	(91.6)
Agartala	Rural	(62.7)	361		225 (01.0)	(93.2)	405
			(54.6)		335 (91.0)		(95.5)
	Urban		849		545 (00.0)		323
D		1719	(83.2)	1114	545 (90.6)	627	(93.6)
Pondicherry	Rural	(84.2)	870	(91.2)	5(0,(01,0)	(94.4)	304
			(85.3)		569 (91.6)		(95.3)
Total	Urban		3278		2472		1988
			(81.5)		(91.1)		(91.8)
	Rural	7474	3303	5897	2983	5170	2567
		(73.9)	(69.6)	(90.7)	(90.4)	(92.9)	(94.1)
	Tribal	1 ` ´	893	1` ´		1` ′	615
			(66.7)		442 (90.4)		(91.6)

271

272 Sex-wise seroprevalence in round one was 73.8% among males, and 74.0% among females. In

round two it was 89.4% among males, and 91.7% among females. In round three, the

seroprevalence among males was 91% and among females, it was 94.3%. (Table 2.)

275

276

277

-		Agartala		Bhubaneshwar		De	lhi	Gora	khpur	Pudu	cherry	Total	
		Sampl e size	Sero- positiv e										
		n	n	n	n	n	n	n	n	n	n	N	n
			(%)]	(%)		(%)		(%)		(%)		(%)
	Roun	803	508	026	596	930	588	1035 -	955	834	697	4528	3343
d one	d one		(63.3))20	(64.4)	750	(63.2)		(92.2)	004	(83.6)		(73.8)
Male	Roun	200	268	780	642	697	631	550	530	447	402	2767	2473
d T	d Two		(89.3)	/80	(82.3)	082	(92.5)	550	(95.0)	447	(89.9)		(89.4)
	Roun	397	365	656	553	573	538	423	406	- 226	208	2275	2070
	d Three		(91.9)		(84.3)		(93.9)		(96.0)		(92.0)		(91.0)
	Roun	1107	746	1074	687	1120	785	075	890	120(1022	5582	4131
	d one	1197	(62.3)	1074	(63.9)	1150	(69.5)	975	(91.4)	1206	(84.7)		(74.0)
Femal e	Roun	55(508	024	786	007	854	502	563	775	712	3736	3424
	d Two	556	(91.4)	924	(85.1)	88/	(96.3)	593	(94.9)	115	(91.9)		(91.7)
	Roun	(07	655	017	731	0.05	798		497		422	2200	3101
d Three		697	(93.8)	81/	(89.5)	822	(97.1)	513	(96.7)	440	(95.7)	3289	(94.3)

Table 2: Distribution of SARS-CoV-2 seropositive participants by site, round, and sex

The seroprevalence among participants aged less than 18 years was 67.1%, 82.3%, and 85.1% in rounds one, two, and three, respectively. The seroprevalence among the participants aged 18 years or older was 75.2%, 92.2%, and 94.2% in the three rounds, respectively. (Table 3.)

Table 3: Distribution of SARS-CoV-2 seropositive of participants by site, round and age group (<18 years and ≥18 years)

301

Age ca	tegory	Agartala		Bhubaneshwar		De	Delhi		khpur	Pudu	cherry	Total	
		Sample size	Sero- positive										
		n	n	n	n	n	n	n	n	n	n	N	n
			(%)		(%)		(%)		(%)		(%)		(%)
	Round	230	108	320	175	281	183	339 -	282	372	286	1542	1034
	one	230	(47.0)	320	(54.7)	201	(65.1)		(83.2)		(76.9)	1342	(67.1)
< 18 years	Round	75	58	283	218	223	203	102	164	- 218	173	992	816
	Two	15	(77.3)	205	(77.0)	223	(91.0)	195	(85.4)	210	(79.4)		(82.3)
	Round	111	95	244	198	192	164	165	148	02	73	795	678
	Three	111	(84.8)	244	(81.2)	185	(89.1)		(89.7)		(79.4)		(85.1)
	Round	1770	1146	1690	1108	1770	1190		1563	1669	1433		6440
	one	1770	(64.8)	1080	(66.0)	1779	(66.9)	10/1	(93.5)	1008	(86.0)	8308	(75.2)
≥ 18 years	Round	701	718	1421	1210	1246	1282	050	929	1004	941	5511	5080
	Two	/81	(91.9)	1421	(85.2)	85.2) 1346 (95	(95.3)	959	(96.9)	1004	(93.7)	5511	(92.2)
	Round	002	925	1220	1086	1010	1172	770	755		557		4495
	Three	983	(94.1)	1229	1229 (88.4) 1210		(96.8)	112	(97.8)	5/5	(96.9)	4/69	(94.2)

302

303 The proportion of symptomatic individuals among the seropositive was 26.5% overall in round

304 one. The proportion of symptomatic declined slightly in round two (25.1%) and further declined

305 to 20.1% in round three. (Supplementary Table 6.)

Supplementary Table 6: Distribution of SARS-CoV-2 seropositive of participants by round, symptom status and site

	Sympt	Agartala		Bhub hw	Bhubanes hwar		Delhi		khpu	Pudu ry	cher V	Total		
Rou nd	om status	Sero - posit ive	n (%)	Sero - posit ive	n (%)	Sero - posit ive	n (%)	Sero - posit ive	n (%)	Sero - posit ive	n (%)	Sero - posit ive	n (%)	
Rou	Sympt oms Positi ve	1254	339 (27 .0)	1283 384 (29 .9) 1283 899 (70 .0)	1272	443 (32 .3)	1945	569 (30 .8)	1710	247 (14 .4)	7474	198 2 (26 .5)		
one	Sympt oms Negati ve		915 (72 .9)		899 (70 .0)	1575	930 (67 .7)	1010	127 6 (69 .2)		147 2 (85 .6)	/ 4 / 4	549 2 (73 .5)	
Rou nd	Sympt oms Positi ve		290 (37 .4)	1429	248 (17 .4)	1485	255 (17 .2)	1093	612 (55 .9)	1114	72 (6. 5)	5897	147 7 (25 .1)	
Tw o	Sympt oms Negati ve	//0	486 (62 .6)		118 1 (82 .6)		123 0 (82 .8)		481 (44 .1)		104 2 (93 .5)		442 0 (74 .9)	
Rou nd Thr ee	Sympt oms Positi ve	1020	139 (13 .6)	1204	136 (10 .6)	1336	249 (18 .6)	903	459 (50 .8)	627	54 (8. 6)	5170	103 7 (20 .1)	
	Sympt oms Negati ve		881 (86 .4)	1284	114 8 (89 .4)		108 7 (81 .4)		444 (49 .2)		573 (91 .4)	5170	413 3 (79 .9)	

308

The proportion of vaccinated individuals in round one was 31.5% which increased to 58.8% in round two and 61.0% in round three. The seroprevalence in round one among the vaccinated individuals was 86.5% whereas among unvaccinated it was 68.1%. In subsequent rounds, the prevalence reached nearly 95% among vaccinated and around 85% among unvaccinated. (Table 4.)

Table 4: Distribution of SARS-CoV-2 seropositive of participants by round, vaccination status and site

Roun d		Agartala		Bhubaneshwar		De	elhi	Gora	khpur	Pudu	cherry	Total	
	Vaccinatio n status	Sampl e	Sero- positiv e n (%)	Sampl e	Sero- positiv e n (%)	Sampl e	Sero- positiv e n (%)	Sampl e	Sero- positiv e n (%)	Sampl e	Sero- positiv e n (%)	Sample	Sero- positiv e n (%)
Roup	Yes	728	621 (85.3)	778	582 (74.8)	214	148 (69.2)	727	706 (97.1)	738	699 (94.7)	3186	2756 (86.5)
d one	No	1272	633 (49.8)	1222	701 (57.4)	1844	1224 (66.4)	1275	1132 (88.8)	1301	1019 (78.3)	6915	4709 (68.1)
Roun	Yes	601	570 (94.8)	1072	928 (86.6)	635	614 (96.7)	745	729 (97.9)	769	756 (98.3)	3822	3597 (94.1)
u Two	No	255	206 (80.8)	631	499 (79.1)	933	871 (93.3	401	359 (89.5)	452	358 (79.0)	2672	2293 85.8)
Roun d Three	Yes	763	740 (97.0)	1144	1013 (88.5)	876	856 (97.7)	712	696 (97.7)	505	496 (98.2)	4000	3801 (95.0)
	No	332	280 (84.3)	328	270 (82.3)	510	472 (92.6)	223	205 (91.9)	162	134 (82.7)	1555	1361 (87.5)

*9 participants didn't had idea of their vaccination status across all three rounds

Among the seropositive rural participants in round one, 98.2% remained positive in round 2. This

percentage remained stable in the urban and tribal areas and in round three also. Among the

seronegative participants, 73.5% in rural, 60.5% in the urban area, and 78.2% in the tribal area

were converted to seropositive in round two. In round three, among seropositive, 45.6% in rural,

25.7% in urban, and 33.3% in tribal area seroconverted to positive. (Table 5.)

334	Table 5. Distribution of participants by change in SARS-CoV-2 seropositivity status by round
335	and area

	Rural						Urban						Tribal						
Ba seli ne	Round Two*				Round Three [†]		Ro	Round Two [‡]			Round Three			Round Two [§]			Round Three [¶]		
	n	Pos n (%)	Ne g n (%)	n	Pos n (%)	Ne g n (%)	n	Pos n (%)	Ne g n (%)	n	Pos n (%)	Ne g n (%)	n	Pos n (%)	Ne g n (%)	n	Pos n (%)	Ne g n (%)	
Se ro +v e	2 2 6 2	222 2 (98 .2)	40 (1. 7)	20 95	207 1 (98 .8)	24 (1. 2)	21 97	215 7 (98 .2)	40 (1. 8)	17 15	167 2 (97 .5)	43 (2. 5)	3 1 7	308 (97 .2)	9 (2. 8)	2 9 3	291 (98 .9)	2 (0. 6)	
Se ro - ve	1 0 2 8	756 (73 .5)	272 (26 .5)	21 9	100 (45 .6)	119 (54 .3)	51 2	310 (60 .5)	201 (39 .3)	16 6	43 (25 .7)	123 (73 .6)	1 6 9	133 (78 .2)	36 (21 .2)	2 6	9 (33 .3)	17 (62 .9)	

336 *5 borderline in first round got positive in round 2.

337 † 4 borderline in round 2 got positive in round 3

338 ‡ Out of 6 borderline in round 1, 5 were positive and 1 were negative in round 2

339 § Out of the 2 borderline in first round, 1 got positive and 1 got negative in round 2

340 ¶1 borderline of round 2 got positive in round 3

341

342 **DISCUSSION**

343 This nationwide multicentric population-based seroepidemiological cohort study attempted to find

344 the serum antibody prevalence against SARS-CoV-2 virus among the general population up to 6th

345 month after the initial serological assessment. The data collection period in round one coincided

346 with the before and after the second wave of SARS-CoV-2 infection in India. The round two data

347 were collected during and after the second wave but before the third wave whereas the round three

348 data collection was done before and after the third wave. At the end of three round more than 50%

349 participants remained in the study. The rural area participants remained more in the first follow-up

350 due which may be due to the inherent non-migratory nature and integrity of the area but during the

351 third round lost to follow-up was more compared to the urban area. This may be due to the loss of 352 importance of the pandemic to the rural general population.

353 The overall seroprevalence in round one was 73.9% among which the highest was in the 354 Gorakhpur site. The Gorakhpur site being in a busy international transit point with Nepal and the 355 rapid transmission in the whole state of Uttar Pradesh might be the reason for high seroprevalence. 356 The prevalence was slightly more in an urban area, among the older age (>18 years) group, and 357 among those vaccinated with the SARS-CoV-2 vaccine but was not different between males and 358 females. Our findings were consistent with the fourth nationwide serosurvey where the overall 359 seroprevalence was 67%; and it was not different in urban and rural areas, between male and 360 female but was higher among vaccinated participants.[8] The seroprevalence increased to 90.7% 361 in round two. This time the prevalence in urban areas was closer to the rural area but was slightly 362 higher among the older age group, vaccinated participants. A study done in the similar time 363 period of round two in Delhi reported 89.5% overall seroprevalence among the general population 364 with higher prevalence among the older age group, but little difference between male, female, 365 urban, and rural areas.[9] Another study was done among children and adolescents in Delhi in 366 October 2021, which found 81.8% prevalence among the age group <18 years but no difference 367 between urban and rural areas, male and female participants.[10] In the third round, almost in 368 every category, the seroprevalence was high. However, among the vaccinated individuals still 369 seroprevalence was higher. This indicates that at the time of third wave of SARS-CoV-2 infection 370 in India, almost all individuals had evidence of past infection regardless of age, sex, or area of 371 residence.

We also explored the persistence of the immunity up to 6 months after a baseline seropositive result. Our study found that nearly the whole study cohort remained seropositive at the third month and six months in urban, rural, and tribal areas. This indicates the persistence of humoral immunity against SARS-CoV-2 infection for up to six months. A similar seroepidemiological 376 cohort study done in Spain among already diagnosed cases also found that 99% of the participants
377 had persistent antibodies at six months.[11]

This was a nationwide multicentric seroepidemiological study involving participants from urban, rural, and tribal areas. The study was done in a close cohort across all the sites. Even after six months of follow-up during the challenging pandemic phase, there was a considerable number of participants remained in the cohort, and at the round, three more than 50% of participants were in the study.

383 Though we could assess total antibody against SRBD the neutralizing antibody couldn't be

assessed. Moreover, our follow-up was limited up to six months in this current report. We

385 couldn't assess the adaptive immunity also to have a comprehensive understanding of the total

immunity over time. We could not do RTPCR among those who were found negative in previous

387 rounds therefore the follow-up positive antibody could also be due to reinfection or re-exposure.

388

389 CONCLUSION

This study explored the SARS-CoV-2 antibody prevalence in different sites, groups, and the antibody kinetics up to six months of baseline assessment. The antibody prevalence was high and increased over time. In most of the cases, the seroprevalence was not different based on the area, age group, sex, etc. However the vaccinated individual had a higher antibody prevalence. On the other hand, nearly all the participants had antibody positivity for up to six months. There is a further need for study for longer follow-up and finding actual protection from subsequent infection.

397 DECLARATION

Funding: This work was supported by a research grant (Ref No: **2020/1085497**, Purchase Order:

399 **202630166**) from the WHO Country Office, New Delhi 110016, India.

- 400 Availability of data and materials: The data and materials are not available publicly. It can be
- 401 obtained upon reasonable request to the corresponding author.
- 402 **Consent for publication:** Not applicable
- 403 **Competing Interest:** The authors declare no conflict of interest
- 404 Acknowledgment: We thank the WHO Country Office, India team particularly Dr. Mohammad
- 405 Ahmad (National Professional Officer, WHO) and Dr. Anisur Rahman (Health Emergencies and
- 406 Research Officer, WHO) for their continuous support. Special thanks to the participants who
- 407 allowed us to investigate the extent of infection, as determined by seropositivity in the general
- 408 population, in which COVID-19 virus infection has been reported.
- 409 Author statement: All co-authors have read and approved this manuscript. The corresponding
- 410 author attests that all listed authors meet authorship criteria and that no others meeting the criteria
- 411 have been omitted. This manuscript represents the honest work done in this multisite
- 412 seroepidemiological study

413 Abbreviations

- 414 SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus-2
- 415 WHO: World Health Organization
- 416 COVID: Coronavirus Disease
- 417 ELISA: Enzyme-linked Immunosorbent Assay
- 418 AIIMS: All India Institute of Medical Sciences
- 419 NCR: Delhi National Capital Region
- 420

421 **Reference:**

- 422 1. Wei Y, Guan J, Ning X, Li Y, Wei L, Shen S, et al. Global COVID-19 Pandemic Waves:
- 423 limited lessons learned worldwide over the Past Year. Eng Beijing China 2022;13:91–8.
- 424 2. Mukherjee S, Ray SK. Third Wave of the COVID-19 Pandemic: Prominence of initial public
- 425 health interference. Infect Disord Drug Targets 2022;22:e080222200919.

426	3.	Jain VK, Iyengar KarthikeyanP, Vaishya R. Differences between First wave and Second wave
427		of COVID-19 in India. Diabetes Metab Syndr 2021;15:1047–8.

- 428 4. Rackimuthu S, Hasan MM, Bardhan M, Essar MY. COVID-19 vaccination strategies and
- 429 policies in India: The need for further re-evaluation is a pressing priority. Int J Health Plann
- 430 Manage 2022;37:1847–50.
- 431 5. Lee ACK, Morling JR. Living with endemic COVID-19. Public Health 2022;205:26–7.
- 432 6. Unity Studies: Early Investigation Protocols [Internet]. [cited 2021 Jun 11]; Available from:
- 433 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/early-
- 434 investigations
- 435 7. Wantai : COVID-19 Serology and Molecular Tests [Internet]. Wantai BioPharm [cited 2021
 436 Apr 25];Available from: http://www.ystwt.cn/covid-19/
- 437 8. Murhekar MV, Bhatnagar T, Thangaraj JWV, Saravanakumar V, Santhosh KM, Selvaraju S,
- 438 et al. Seroprevalence of IgG antibodies against SARS-CoV-2 among the general population
- and healthcare workers in India, June–July 2021: A population-based cross-sectional study.
- 440 PLoS Med 2021;18:e1003877.
- 9. Sharma P, Basu S, Mishra S, Gupta E, Agarwal R, Kale P, et al. SARS-CoV-2 Seroprevalence
 in Delhi, India, During September-October 2021: A population-based seroepidemiological
 study. Cureus 14:e27428.
- 10. Sharma P, Basu S, Mishra S, Singh MM. Seroprevalence of immunoglobulin G antibodies
 against SARS-CoV-2 in children and adolescents in Delhi, India, from January to October
 2021: a repeated cross-sectional analysis. Osong Public Health Res Perspect 2022;13:184–90.

- 447 11. Domènech-Montoliu S, Puig-Barberà J, Pac-Sa MR, Vidal-Utrillas P, Latorre-Poveda M, Del
- 448 Rio-González A, et al. Persistence of Anti-SARS-CoV-2 antibodies six months after infection
- in an outbreak with five hundred COVID-19 cases in Borriana (Spain): A prospective cohort
- 450 study. COVID 2021;1:71–82.

Study Sites Map

Figure 1: Geographical location of the study sites in India

Partnering Institutes

- 1. All India Institute of Medical Sciences, New Delhi 110029, India
- 2. All India Institute of Medical Sciences, Bhubaneshwar, Odisha- 751019, India
- 3. All India Institute of Medical Sciences, Gorakhpur- 273008, India
- 4. Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry- 605006, India
- 5. Agartala Government Medical College, Agartala- 799006, India
- Translational Health Science and Technology Institute, Faridabad-121001, India

Figure 1. Geographical distribution of the study sites across India

Figure