- 1 Target temperature management and post-extracorporeal cardiopulmonary
- 2 resuscitation outcome: A post hoc analysis of the SAVE-J II Study
- 3
- 4 **Short title:** Post-ECPR target temperature management
- 5
- 6 Jun Kanda M.D., Ph.D.^{1,2}
- 7 Shinji Nakahara M.D., Ph.D.¹
- 8 Akihiko Inoue M.D., Ph.D.^{2,3}
- 9 Toru Hifumi M.D., Ph.D.^{2,4}
- 10 Tomoya Okazaki M.D., Ph.D. ^{2,5}
- 11 Migaku Kikuchi M.D., Ph.D.^{2,6}
- 12 Shoji Yokobori M.D., Ph.D.^{2,7}
- 13 Yasufumi Miyake M.D., Ph.D.¹
- 14 Naoto Morimura M.D., Ph.D.¹
- 15 Tetsuya Sakamoto M.D., Ph.D.^{1,2}
- 16 Yasuhiro Kuroda M.D., Ph.D.^{2,5}
- 17
- ¹⁸ ¹ Department of Emergency Medicine, Teikyo University school of Medicine, Tokyo, Japan.
- ² SAVE-J II study group
- ²⁰ ³ Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center,
- 21 Kobe, Japan.
- ⁴ Department of Emergency and Critical Care Medicine, St. Luke's International Hospital,
- 23 Tokyo, Japan.
- ⁵ Department of Emergency, Disaster and Critical Care Medicine, Kagawa University
- 25 Hospital, Kagawa, Japan.

- ⁶ Emergency and Critical Care Center, Dokkyo Medical University, Tochigi, Japan
- ²⁷ ⁷ Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo,
- 28 Japan
- 29
- 30 **Corresponding author:** Jun Kanda
- 31 Department of Emergency Medicine, Teikyo University school of Medicine
- 32 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8606, Japan
- 33 Telephone number: +81-3-3964-1211
- 34 Fax number: +81-3-3964-0854
- 35 Email: jkanda-cib@umin.ac.jp
- 36
- 37 Word Count: 6051
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- r)
- 50

51 Abstract

52	Background: The conflicting results of previous analyses about hypothermia management							
53	in patients with out-of-hospital cardiopulmonary arrest have hindered the establishment of a							
54	uniform standard temperature setting for temperature control. This study investigated and							
55	compared the clinical outcomes of hypothermic (target temperature: 32-34°C) and							
56	normothermic (35-36°C) management of out-of-hospital cardiac arrest (OHCA) patients,							
57	treated with extracorporeal cardiopulmonary resuscitation (ECPR).							
58	Methods: This secondary analysis of the SAVE-J II study, a retrospective, multicenter,							
59	registry study involving 36 participating institutions in Japan, was undertaken, and ECPR							
60	patients with a suspected cardiac etiology were included in this cohort. The primary outcome							
61	was survival at hospital discharge. Favorable neurological outcomes (5-point Glasgow-							
62	Pittsburgh Cerebral Performance Categories 1–2) constituted the secondary outcome.							
63	Multivariable logistic analysis, which was adjusted for potential confounders, was performed							
64	for the primary and secondary outcomes.							
65	Results: Of the 949 participants of this study, 57% underwent hypothermic management. A							
66	total favorable neurological outcome at hospital discharge was identified in 164 patients							
67	(17%), and the survival rate was 35%. In multivariable analysis, with the primary and							
68	secondary endpoints as each dependent variable, and gender, age, witness, bystander CPR,							
69	electrocardiogram, low flow time, and causative disease as categorical covariates,							
70	hypothermic management compared to normothermic management in OHCA patients treated							
71	with ECPR, was not significantly associated with a favorable neurological outcome (adjusted							
72	odds ratio (aOR) : 1.22: 95% CI: 0.85–1.74), but was associated with survival (aOR: 1.74:							
73	95% CI: 1.31–2.32).							

- 74 Conclusions: Compared to normothermic management, hypothermic management of OHCA
- 75 patients treated with ECPR was not significantly associated with a favorable neurological
- outcome, but was associated with survival at hospital discharge.

77

- 78 Clinical Perspective
- 79 1) What is new?
- This study showed that hypothermia (32–34°C) management of body temperature
- 81 after ECPR induction resulted in better survival.
- In the secondary analysis, the prognosis of hypothermia management in
- 83 cardiogenicity other than acute coronary syndrome (arrhythmia, myopathy,
- 84 myocarditis, and other cardiac causes) was particularly good.
- 85 2) What are the clinical implications?
- Hypothermic management after cardiopulmonary arrest should be implemented if
- 87 ECMO ensures stable circulatory dynamics.

88

89 Non-standard Abbreviations and Acronyms

- 90 ACS: acute coronary syndrome, CPC: cerebral performance categories, cOR: crude odds
- ⁹¹ ratio, aOR: adjusted odds ratio, CPR: cardiopulmonary resuscitation, ECG:
- 92 electrocardiogram, ECMO: extracorporeal cardiopulmonary resuscitation, OHCA: out-of-
- 93 hospital cardiac arrest, PEA: pulseless electrical activity, VF: ventricular fibrillation, VT:
- 94 ventricular tachycardia.

95 Background

96	Extracorporeal cardiopulmonary resuscitation (ECPR), which combines extracorporeal							
97	membrane oxygenation (ECMO) with conventional cardiopulmonary resuscitation (CPR), is							
98	a more aggressive cardiopulmonary resuscitation technique in patients with cardiopulmonary							
99	arrest, that facilitates early resumption of cerebral blood flow. ¹ Sakamoto et al. reported that							
100	in out-of-hospital cardiac arrest (OHCA) patients with ventricular fibrillation (VF) $/$							
101	ventricular tachycardia (VT) on the initial ECG, a treatment bundle including ECPR,							
102	therapeutic hypothermia, and intra-aortic balloon pumping (IABP) was associated with							
103	improved neurological outcome at 1 and 6 months after OHCA compared to that by							
104	conventional CPR; thus, ECPR may improve neurological outcomes. ² However, the selection							
105	of patients for ECMO and its management have not been adequately studied, and each							
106	institution currently operates following institutional criteria. ³							
107	In contrast, in 2002, the Hypothermia After Cardiac Arrest Study Group and Bernard							
108	SA reported that hypothermia management at 32–34°C and 33°C, respectively, resulted in							
109	better outcomes than did conventional temperature management, in patients with out-of-							
110	hospital cardiopulmonary arrest with prolonged loss of consciousness after resumption of							
111	heartbeat; these studies constituted the basis for various guidelines worldwide. ⁴⁻⁶ However,							
112	additional studies on hypothermia management, such as the Targeted Temperature							
113	Management Trial (TTM)-1 Study in 2013 and the TTM-2 Study in 2021, found no							
114	difference in outcome between normothermic management, which avoids hyperthermia and							
115	maintains a normal temperature, and hypothermic management, which targets temperatures							
116	of 32–34°C, and recommended that there is no need to use hypothermic management. ^{7,8}							
117	However, in the 2019 HYPERION trial of patients with coma, after resuscitation from							
118	cardiac arrest with nonshockable rhythm, the 33°C hypothermic management group had							
119	better 90-day neurological outcomes compared to that of the 37°C normothermia							

120	management group. ⁹ In addition, two reports on temperature management using the Japanese						
121	Association for Acute Medicine Out-of-Hospital Cardiac Arrest (JAAM-OHCA) Registry						
122	reported three severity categories (mild, moderate, and severe), that were calculated from						
123	variables including the electrocardiogram (ECG), witnessed arrest, hypoperfusion time, blood						
124	gas (pH and lactate), and the Glasgow Coma Scale score and averred that hypothermic						
125	management was effective in the moderate, but not mild and severe, categories. ¹⁰ However,						
126	another report of patients on ECMO from the JAAM-OHCA Registry, showed that						
127	hypothermic management was ineffective. ¹¹ Previous analyses by disease severity have been						
128	performed; however, no disease-specific analyses have been conducted. ¹⁰ These conflicting						
129	results have hindered the establishment of a uniform standard temperature setting for						
130	temperature control. ¹²						
131	This study was conducted with an aim to compare the outcome of hypothermic and						
132	normothermic cardiopulmonary resuscitation management under ECMO; thus, contributing						
133	to the development of methods for the management of body temperature after a cardiac						
134	arrest.						
135							
136	Methods						
137	Study design						
138	This study involved a secondary analysis of data that were provided by the SAVE-J II Study						
139	Group – a retrospective, multicenter registry study with 36 participating centers in Japan, that						
140	was based on enrolment in the University Hospital Medical Information Network Clinical						
141	Trials Registry and the Japanese clinical trial registry (registration number:						
142	UMIN000036490). ¹³						
143	The SAVE-J II Study included adult patients (age ≥18 years) who were transported directly						
144	to the emergency department of a participating facility for treatment of out-of-hospital						

145	cardiac arrest (OHCA) and underwent ECPR in the resuscitation room before return of
146	spontaneous circulation (ROSC) between January 1, 2013, and December 31, 2018.
147	Undergoing ECMO in addition to conventional CPR was defined as ECPR. Patients who
148	underwent ECMO after ROSC, patients transferred from other hospitals, those with
149	exogenous diseases, acute aortic dissection/aneurysm other than cardiogenic causes, and
150	primary brain injury were excluded. Cases in which the cause of cardiopulmonary arrest
151	could not be determined to be cardiogenic at the time of the visit, but was presumed to be
152	cardiogenic, were not excluded in order to consider the indication for ECPR. Moreover,
153	patients who declined to participate by proxy, such as family members, were excluded. Of the
154	1,646 patients who were enrolled in the SAVE-J II Study, those who died before ICU
155	admission and were ineligible for temperature control (165 patients), whose temperature
156	control information was unknown (608 patients), and whose target body temperature was not
157	in the target temperature range (32.0–36.5°C; n=7) were excluded. Furthermore, we excluded
158	patients with unknown cerebral performance categories (CPC), age, sex, witnesses, bystander
159	CPR, electrocardiogram (ECG), low flow time, and diagnosis (86 patients), which were the
160	variables used in the analysis (Fig. 1).
161	

162 Data collection

Data were provided by the SAVE-J II Study and included information on age, sex, witnesses, bystander CPR, place of occurrence, ECG at scene and on arrival at the hospital, use of adrenaline and defibrillation, prehospital airway management, heart rate before starting ECMO, treatment-related factors, time course, cause of cardiac arrest, ROSC after hospital arrival, ECMO management information (which included temperature settings), duration of maintenance, and cooling method (use of heat exchangers). Details of the hospital and ICU length of stay, in-hospital mortality, and neurologic outcome (CPC) were also collected. The

170	target temperature was defined as the ECMO set temperature; however, if the temperature						
171	setting was changed during ECMO management, the last set temperature was used as the						
172	target temperature. ROSC was defined as pulse confirmation that lasted for at least 1 minute.						
173	The estimated low-flow time was defined as the time from cardiac arrest to ECMO						
174	establishment, if the location of cardiac arrest was an ambulance, or as the time from calling						
175	an ambulance to ECMO establishment, if the location of cardiac arrest was a non-ambulance						
176	location. Causes of cardiac arrest were categorized as acute coronary syndrome, arrhythmia,						
177	myopathy, myocarditis, other cardiac causes, pulmonary embolism, and other non-cardiac						
178	causes.						
179							
180	Endpoints						
181	The primary endpoint was survival at 28 days. The secondary endpoint was the neurological						
182	outcome at 28 days, as assessed by the CPC (5-point Glasgow-Pittsburgh Cerebral						
183	Performance Categories): CPC1: able to work, CPC2: able to perform daily activities without						
184	assistance, CPC3: conscious but needs assistance in daily activities, CPC4: coma, and CPC5:						
185	death. In this study, CPC1-4 was defined as survival and CPC1-2 was defined as good						
186	neurological outcome for analysis. ¹⁴						
187							
188	Variables						
189	The target body temperature during ECPR was the main independent study variable and was						
190	defined as the final temperature setting of ECMO (the temperature setting of ECMO is						
191	defined as the "target temperature" in 0.5°C increments). The target body temperature was						
192	divided into 32.0–34.5°C (32–34°C group) and 35.0–36.5°C (35–36°C group) to enable an						
193	intergroup comparison. Besides this, each covariate was categorized as follows. Age was						

194 categorized into 64 years or younger and 65 years or older; ECG was categorized into 3

195	categories, VF and Pulseless VT, Asystole, and pulseless electrical activity (PEA) ; low								
196	flow time, defined as the time from the start of chest compressions to the point before ECMO								
197	induction, was categorized into 60 minutes or less and 61 minutes or more; the cause of								
198	cardiac arrest was categorized as acute coronary syndrome (ACS), cardiogenic except ACS								
199	(arrhythmia, myopathy, myocarditis, and other cardiac causes), and non-cardiogenic								
200	(pulmonary embolism and other non-cardiac causes). Patients with serious diseases other than								
201	exogenous and cardiogenic illnesses (such as acute aortic dissection/aneurysm, primary brain								
202	damage, etc.) were excluded from the SAVE-J II Study.								
203									
204	Analysis								
204 205	<i>Analysis</i> With the primary and secondary endpoints as each dependent variable and the target								
	·								
205	With the primary and secondary endpoints as each dependent variable and the target								
205 206	With the primary and secondary endpoints as each dependent variable and the target temperature, sex, age, witnessed arrest, bystander CPR, ECG, low flow time, and causative								
205 206 207	With the primary and secondary endpoints as each dependent variable and the target temperature, sex, age, witnessed arrest, bystander CPR, ECG, low flow time, and causative disease as categorical covariates, a multivariate logistic analysis was performed as the main								
205 206 207 208	With the primary and secondary endpoints as each dependent variable and the target temperature, sex, age, witnessed arrest, bystander CPR, ECG, low flow time, and causative disease as categorical covariates, a multivariate logistic analysis was performed as the main analysis of this study to calculate the adjusted odd ratio (aOR) and 95% confidence intervals								
205 206 207 208 209	With the primary and secondary endpoints as each dependent variable and the target temperature, sex, age, witnessed arrest, bystander CPR, ECG, low flow time, and causative disease as categorical covariates, a multivariate logistic analysis was performed as the main analysis of this study to calculate the adjusted odd ratio (aOR) and 95% confidence intervals (CIs) for each variable. In addition, a model with an interaction term was created by								

that factor.

214

215 Sample size

216 As this study constitutes a multivariate logistic analysis with 7 factors as covariates in the

217 main and secondary analyses, we determined that a sample size of at least 10 cases per factor,

218 for a total of 70 cases, was necessary.

219

220 *Ethics*

221	The SAVE-J II Study was approved by the institutional review board of Kagawa University						
222	(approval number: 2018-110). For all participating centers, the requirement for patient						
223	consent was waived because of the retrospective nature of the study. The study was approved						
224	by the Teikyo University School of Medicine Research Ethics Committee (approval number:						
225	23-005).						
226							
227	Results						
228	Description of participants						
229	In this study, a total of 949 patients were included, which comprised 541 participants in the						
230	32-34°C group and 408 participants in the 35-36°C group. The percentages of good						
231	neurological outcome and survival were 19% and 41%, respectively, for the 32–34°C and 35–						
232	36°C groups, compared to 15% and 27% for the 35–36°C group (Table 1)						
233	In both groups, 60–70% of participants were 64 years old or younger and						
234	approximately 85% were male. Moreover, there were 80% witnessed arrests and						
235	approximately 60% received bystander CPR. Analysis of the ECGs revealed that 70-75%						
236	showed VF and pulseless VT, which are shock-adapted. Target body temperatures of 34.0°C						
237	for 32–34°C and 36.0°C for 35–36°C were attained in greater than 80% of the cohort. In each						
238	group, heat exchangers were used in approximately 80% of cases, with similar deviations of						
239	more than 1°C in approximately 10%, and a small number of equipment problems in less than						
240	3% of cases. In both groups, ACS was the causative disease in approximately 65%,						
241	cardiogenic other than ACS in just under 30%, and noncardiogenic in 5-8% of cases. (Table						
242	1)						
243							

244 Main analysis

245	The aOR for good neurological outcome at 32–34°C versus 35–36°C at target body							
246	temperature was 1.2 (95% CI: 0.8–1.7), and the aOR for survival was 1.7 (95% CI: 1.3–2.3).							
247	Good neurological outcome was associated with female sex, bystander CPR, and ECG (VF							
248	and Pulseless VT). Survival was associated with target body temperature (32–34°C),							
249	witnessed arrest, ECG (VF and Pulseless VT), and low flow time (<60 minutes). (Table 2)							
250	Of the interaction terms between target temperature, ECG, and causative disease, the							
251	only significant interaction with target temperature was identified as non-ACS cardiogenic							
252	cases for ACS in causative disease for good neurological outcome (aOR [95% CI] 2.8 [1.2-							
253	6.6]) and for survival (aOR [95% CI] 2.8 [1.4–5.5]). (Table 2)							
254								
255	Secondary Analysis							
256	Based on the results of interaction, the 949 participants were stratified into two groups of 616							
257	ACS and 269 non-ACS cardiogenic cases for the analysis; in the ACS cases, there was no							
258	intragroup difference in the proportion of patients with a favorable outcome. In the group of							
259	non-ACS cardiogenic cases at 35–36°C and 32–34°C, the favorable outcome rates were							
260	10.3% and 24.2% and the survival rate was 19.8% and 50.3%, respectively (Table 3).							
261	Multivariate analysis in the ACS group showed that temperature control was not associated							
262	with either neurological outcome or survival (Table 4). However, in the group with non-ACS							
263	cardiogenic cases, the aOR for good neurological outcome and survival at 32-34°C versus							
264	35–36°C was 2.9 (95% CI: 1.4–6.0) and 3.9 (95% CI: 2.2–6.9), respectively (Table 5).							
265								
266	Conclusions							
267	In the main analysis, although the target body temperature of 32–34°C (hypothermic							
268	management) was not a significant factor for better neurological outcome as compared to							
269	management at 35–36°C (normothermic control), this was a significant outcome-related							

270 factor for survival. On the other hand, when disease was considered, cardiogenicity due to 271 ACS was not a significant factor for either neurological outcome or survival whereas 272 cardiogenicity other than ACS (arrhythmia, myopathy, myocarditis, and other cardiac causes) 273 was a significant factor for both neurological outcome and survival. 274 Traditionally, hypothermic management has been aimed at a cerebroprotective effect. 275 When cerebral blood flow is disrupted by cardiac arrest, anaerobic glycolysis occurs, inducing structural changes in the Na+/K+ATPase and Ca²⁺-ATPase and triggering glutamate 276 277 release into the extracellular space, which results in a sustained intracellular Ca²⁺ influx. The 278 increase in intracellular Ca²⁺ concentration leads to lipid peroxide and free radical 279 production, which results in cell death.¹⁶ Hypothermic management likely confers a brain 280 protective effect by decreasing brain metabolism, and suppressing oxygen consumption and glutamate release.¹⁷ However, the cerebroprotective effect alone is insufficient to explain why 281 282 hypothermic management constitutes a significant prognostic factor for survival. On the other 283 hand, myocardial injury progresses due to a decrease in the myocardial ATP content, 284 secondary to the progression of anaerobic glycolysis due to the disruption of coronary artery 285 blood flow. This myocardial injury has both reversible and irreversible components, wherein 286 the former comprises stunned myocardium and the latter includes cell death. To improve the 287 outcome after cardiac arrest, it is important to improve the rate of recovery of cardiac 288 function from the state of myocardial stunning.¹⁸ Experimental studies examining the effects 289 of ischemia time and ischemia temperature on the rate of recovery of cardiac function after 290 ischemia and reperfusion, have shown that the rate of recovery of cardiac function and 291 residual ATP content are not reduced with prolonged ischemia time at low temperature, 292 whereas at room temperature, both the rate of cardiac function recovery and residual ATP 293 content are significantly reduced by prolonged ischemia time.¹⁹ This myocardial protective 294 effect of hypothermic control may be related to the fact that hypothermic control was a

295 significant prognostic factor for survival in the present study.

296	In ACS, cell death is often accompanied by impaired cell membrane damage and							
297	deviations in intracellular enzymatic activity. In particular, the ACS patients in this study							
298	were already in a state of cardiac arrest, and even if urgent PCI was performed, many of them							
299	had myocardial cell death; moreover, mechanical complications such as acute mitral							
300	regurgitation due to papillary muscle tear and ventricular septal defect may have been							
301	associated with the outcomes and the hypothermic management of myocardial stunting. The							
302	impact of improved recovery of cardiac function from the condition may have been limited.							
303	However, in myopathy and myocarditis, if the patient survives the acute stage, the disease							
304	will spontaneously alleviate and likely ensure a favorable outcome. This is because in							
305	myopathy and myocarditis, hypoxia due to pump failure worsens and leads to cardiac arrest,							
306	which results in fewer myocardial cells experiencing cell death and more recovery of cardiac							
307	function from the state of myocardial stunting. Therefore, in cardiomyopathies other than							
308	ACS, hypothermic management may have been a significant factor for both neurological							
309	outcome and survival compared to normothermic management.							
310	The results of previous studies on TTM after cardiac arrest are not uniform, and the results							
311	of this study may appear to contradict the findings of some previous studies. First, the							
312	uniqueness of this study is that the analysis was performed with stable circulatory and							
313	temperature management by ECMO, and taking into account the underlying disease; by using							
314	a heat exchanger in the ECMO circuit at 80%, the deviation of more than 1°C was limited to							
315	approximately 10%; therefore, we infer that stable temperature control was achieved. On the							
316	other hand, as hypothermic management suppresses circulatory dynamics, many patients in							
317	previous studies that did not use ECMO may have suffered cardiac arrest again before							
318	recovery from myocardial stunting. The TTM-1 Study, TTM-2 Study, and part of the JAAM-							
319	OHCA Registry reported that hypothermia management was not effective, ^{6,7,10} while the							

320	HYPERION trial and another part of the JAAM-OHCA Registry reported that hypothermia
321	management was effective.9,10 The TTM-1 trial included patients with cardiac arrest of
322	presumed cardiac cause, the TTM-2 trial included patients with cardiac arrest of presumed or
323	unknown cause, regardless of initial rhythm, ^{7,8} and the HYPERION trial included patients
324	resuscitated from non-shocking rhythm cardiac arrest from any cause and does not consider
325	whether the patient has ACS.9 The OHCA Registry report analyzed patients according to
326	whether ECMO was performed and severity of illness, and did not consider causative
327	illness. ¹⁰ Therefore, when the discrepancies in these series of reports on the effectiveness of
328	hypothermia management are examined in light of the results of this study, it is presumed that
329	the composition of causative diseases in each report was different, which may have affected
330	the effectiveness of hypothermia management. Regarding the JAAM-OHCA Registry study
331	that focused on patients who underwent TTM with ECMO, it was reported that hypothermic
332	management was not necessary. However, as in other previous studies, whether the causative
333	disease was ACS was not considered. Although this report does not exclude ROSC cases
334	prior to the introduction of ECMO, which was excluded in this study, and as a simple
335	prognostic comparison cannot be made, the neurological outcome (CPC1-2) at 30 days for
336	both the 32–34°C and 35–36°C groups was 15% and the 30-day survival rate was 35%,
337	which is considered to be the same level as the survival and good outcome rates in the ACS
338	of this study. ¹¹
339	There are three limitations of this study. The first is that because the criteria for ECMO
340	implementation and the method of temperature management are left to the institutional
341	standards, the inclusion and distribution of patients may be arbitrary in such a way that
342	hypothermic management was implemented for patients who have witnessed bystander CPR,
343	and are expected to have a good outcome. Although this study addresses the variables of
344	witnessed arrest, bystander CPR, age, and low perfusion time, there may be other factors that

345 influence the inclusion of hypothermia management.

346	Second, there is no information on the method of temperature management, such as the							
347	time to maintain the target body temperature and the site of temperature measurement.							
348	However, we confirmed that more than 80% of the target body temperatures were 34.0°C for							
349	hypothermic management and 36.0°C for normothermic management, and that there was no							
350	significant difference in maintenance time, use of heat exchangers, or temperature deviation							
351	rates between the two groups of hypothermia and normothermia managements. Thus, we can							
352	assume that differences in measurement and control methods are small.							
353	Third, the degree of myocardial necrosis was not examined quantitatively. The present							
354	study assumes that the degree of myocardial necrosis in ACS is high, and the classification of							
355	the causative disease can be considered to outline the degree of myocardial necrosis.							
356	However, the degree of myocardial necrosis may differ even when inpatients are classified as							
357	having the same ACS, and myocardial necrosis may be advanced in other cardiogenic							
358	conditions besides ACS that lead to cardiac arrest. Quantitative studies would be possible by							
359	measuring myocardial deviation enzymes and other parameters.							
360	As described above, although the influence of limitation cannot be completely eliminated							
361	in the use of registry data, we judged that we were able to minimize its influence so that it did							
362	not detract from the usefulness of the results of this study. However, prospective validation is							
363	needed with a clearly defined plan that includes the criteria for the introduction of ECMO,							
364	methods of temperature control, and validation of the extent of myocardial necrosis.							
365	In temperature management using ECMO after ECPR induction, target body temperature of							
366	32-34°C (hypothermic management) was a significant prognostic determinant for survival as							
367	compared to that of 35–36°C (normothermic management). In addition, neither management							
368	was a significant factor for neurological outcome and survival in cardiogenicity due to ACS,							
369	although both were significant factors for good neurological outcome and survival in							

370	cardiogenicity	other than ACS	(arrhythmia,	myopathy,	myocarditis,	and other	cardiac ca	uses).
-----	----------------	----------------	--------------	-----------	--------------	-----------	------------	--------

- 371 Myocardial protection by hypothermic management may have an effect.
- 372

373 Acknowledgments

- 374 Hirotaka Sawano, M.D., Ph.D. (Osaka Saiseikai Senri Hospital), Yuko Egawa, M.D.,
- 375 Shunichi Kato, M.D. (Saitama Red Cross Hospital), Naofumi Bunya, M.D., Takehiko Kasai,
- 376 M.D. (Sapporo Medical University), Shinichi Ijuin, M.D., Shinichi Nakayama, M.D., Ph.D.
- 377 (Hyogo Emergency Medical Center), Seiya Kanou, M.D. (Teikyo University Hospital), Toru
- 378 Takiguchi, M.D.(Nippon Medical School), Hiroaki Takada, M.D., Kazushige Inoue, M.D.
- 379 (National Hospital Organization Disaster Medical Center), Ichiro Takeuchi, M.D., Ph.D.,
- 380 Hiroshi Honzawa, M.D. (Yokohama City University Medical Center), Makoto Kobayashi,
- 381 M.D., Ph.D., Tomohiro Hamagami, M.D. (Toyooka Public Hospital), Wataru Takayama,
- 382 M.D., Yasuhiro Otomo, M.D., Ph.D. (Tokyo Medical and Dental University Hospital of
- 383 Medicine), Kunihiko Maekawa, M.D. (Hokkaido University Hospital), Takafumi Shimizu,
- 384 M.D., Satoshi Nara, M.D. (Teine Keijinkai Hospital), Michitaka Nasu, M.D., Kuniko
- 385 Takahashi, M.D. (Urasoe General Hospital), Yoshihiro Hagiwara, M.D., M.P.H. (Imperial
- 386 Foundation Saiseikai, Utsunomiya Hospital), Shigeki Kushimoto, M.D., Ph.D. (Tohoku
- 387 University Graduate School of Medicine), Reo Fukuda, M.D. (Nippon Medical School Tama
- 388 Nagayama Hospital), Takayuki Ogura, M.D., Ph.D. (Japan Red Cross Maebashi Hospital),
- 389 Shin-ichiro Shiraishi, M.D. (Aizu Central Hospital), Ryosuke Zushi, M.D. (Osaka Mishima
- 390 Emergency Critical Care Center), Norio Otani, M.D. (St. Luke's International Hospital),
- 391 Kazuhiro Watanabe, M.D. (Nihon University Hospital), Takuo Nakagami, M.D.
- 392 (Omihachiman Community Medical Center), Tomohisa Shoko, M.D., Ph.D. (Tokyo Women's
- 393 Medical University Medical Center East), Nobuya Kitamura, M.D., Ph.D. (Kimitsu Chuo
- 394 Hospital), Takayuki Otani, M.D. (Hiroshima City Hiroshima Citizens Hospital), Yoshinori

	D. (Kobe City Medical Center General Hospital), Makoto Aoki, M	r General Hospital). Mako	v Medical Cen	(Kobe City	. Ph.D.	M.D.,	Matsuoka	395
--	--	---------------------------	---------------	------------	---------	-------	----------	-----

- 396 Ph.D. (Gunma University Graduate School of Medicine), Masaaki Sakuraya, M.D., M.P.H.
- 397 (JA Hiroshima General Hospital Hiroshima), Hideki Arimoto, M.D. (Osaka City General
- 398 Hospital), Koichiro Homma, M.D., Ph.D. (Keio University School of Medicine), Hiromichi
- 399 Naito, M.D., Ph.D. (Okayama University Hospital), Shunichiro Nakao, M.D., Ph.D. (Osaka
- 400 University Graduate School of Medicine), Tomoya Okazaki, M.D., Ph.D. (Kagawa
- 401 University Hospital), Yoshio Tahara, M.D., Ph.D. (National Cerebral and Cardiovascular
- 402 Center), Hiroshi Okamoto, M.D, M.P.H. (St. Luke's International Hospital), Jun Kunikata,
- 403 M.D., Ph.D., Hideto Yokoi, M.D., Ph.D. (Kagawa University Hospital).
- 404

405 **Sources of Funding**

- 406 This work was supported by the Japan Society for the Promotion of Science KAKENHI to
- 407 JK(JP19K18365) and YK (JP19K09419). The funding organization did not play any role in

408 the study; the views expressed in this paper do not reflect the views of the Ministry.

- 409
- 410 **Disclosures**
- 411 None
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- -----
- 419

420

421 **References**

- 422 1 Laussen PC, Guerguerian AM. Establishing and Sustaining an ECPR Program. Frontiers in
- 423 *Pediatrics*. 2018;6:152.
- 424 2 Sakamoto T, Morimura N, Nagao K, Asai Y, Yokota H, Nara S, Hase M, Tahara Y, Atsumi
- 425 T, SAVE-J Study Group. Extracorporeal Cardiopulmonary Resuscitation versus Conventional
- 426 Cardiopulmonary Resuscitation in Adults with Out-of-Hospital Cardiac Arrest: a Prospective
- 427 Observational Study. *Resuscitation*. 2014;85:762–768.
- 428 3 Hifumi T, Inoue A, Takiguchi T, Watanabe K, Ogura T, Okazaki T, Ijuin S, Zushi R,
- 429 Arimoto H, Takada H, et al. Variability of Extracorporeal Cardiopulmonary Resuscitation
- 430 Practice in Patients With Out-of-Hospital Cardiac Arrest From the Emergency Department to
- 431 Intensive Care Unit in Japan. Acute Medicine & Surgery. 2021;8:e647.
- 432 4 Hypothermia after Cardiac Arrest Study Group. Mild Therapeutic Hypothermia to Improve
- 433 the Neurologic Outcome After Cardiac Arrest. New England Journal of Medicine.
- 434 2002;346:549–556.
- 435 5 Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K.
- 436 Treatment of Comatose Survivors of Out-of-Hospital Cardiac Arrest With Induced
- 437 Hypothermia. New England Journal of Medicine. 2002;346:557–563.
- 438 6 Nolan JP, Hazinski MF, Steen PA, Becker LB. Controversial Topics from the 2005
- 439 International Consensus Conference on Cardiopulmonary Resuscitation and Emergency
- 440 Cardiovascular Care Science with Treatment Recommendations. Resuscitation. 2005;67:175-

441 179.

- 442 7 Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J,
- 443 Kjaergaard J, Kuiper M, et al. Targeted Temperature Management at 33°C Versus 36°C After
- 444 Cardiac Arrest. *New England Journal of Medicine*. 2013;369:2197–2206.

- 445 8 Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullén S, Rylander C, Wise MP,
- 446 Oddo M, Cariou A, et al. Hypothermia versus Normothermia after Out-of-Hospital Cardiac
- 447 Arrest. New England Journal of Medicine. 2021;384:2283–2294.
- 448 9 Lascarrou JB, Merdji H, Le Gouge A, Colin G, Grillet G, Girardie P, Coupez E, Dequin PF,
- 449 Cariou A, Boulain T, et al. Targeted Temperature Management for Cardiac Arrest with
- 450 Nonshockable Rhythm. *New England Journal of Medicine*. 2019;381:2327–2337.
- 451 10 Nishikimi M, Ogura T, Nishida K, Hayashida K, Emoto R, Matsui S, Matsuda N, Iwami T.
- 452 Outcome Related to Level of Targeted Temperature Management in Postcardiac Arrest
- 453 Syndrome of Low, Moderate, and High Severities: A Nationwide Multicenter Prospective
- 454 Registry. Critical Care Medicine. 2021;49:e741–e750.
- 455 11 Watanabe M, Matsuyama T, Miyamoto Y, Kitamura T, Komukai S, Ohta B. The Impact of
- 456 Different Targeted Temperatures on Out-of-Hospital Cardiac Arrest Outcomes in Patients
- 457 Receiving Extracorporeal Membrane Oxygenation: A Nationwide Cohort Study. Critical
- 458 *Care*. 2022;26:380.
- 459 12 Inoue A, Hifumi T, Sakamoto T, Okamoto H, Kunikata J, Yokoi H, Sawano H, Egawa Y,
- 460 Kato S, Sugiyama K et al. Extracorporeal Cardiopulmonary Resuscitation in Adult Patients
- 461 with Out-of-Hospital Cardiac Arrest: a Retrospective Large Cohort Multicenter Study in
- 462 Japan. Critical Care. 2022;26:129.
- 463 13 Fuernau G, Beck J, Desch S, Eitel I, Jung C, Erbs S, Mangner N, Lurz P, Fengler K, Jobs
- 464 A *et al.* Mild Hypothermia in Cardiogenic Shock Complicating Myocardial Infarction.
- 465 *Circulation*. 2019;139:448-457.
- 466 14 Berg KM, Soar J, Andersen LW, Böttiger BW, Cacciola S, Callaway CW, Couper K,
- 467 Cronberg T, D'Arrigo S, Deakin CD, et al. Adult Advanced Life Support: 2020 International
- 468 Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science
- 469 With Treatment Recommendations. *Circulation*. 2020;142:S92–S139.

- 470 15 Balouris SA, Raina KD, Rittenberger JC, Callaway CW, Rogers JC, Holm MB.
- 471 Development and Validation of the Cerebral Performance Categories-Extended (CPC-E).
- 472 *Resuscitation*. 2015;94:98-105.
- 473 16 Varon J, Acosta P. Therapeutic Hypothermia: Past, Present, and Future. *Chest*.
- 474 2008;133:1267–1274.
- 475 17 Alzaga AG, Cerdan M, Varon J. Therapeutic Hypothermia. Resuscitation. 2006;70:369-
- 476 380.
- 477 18 Braunwald E, Kloner RA. The Stunned Myocardium: Prolonged, Postischemic Ventricular
- 478 Dysfunction. Circulation. 1982;66:1146–1149.
- 479 19 Hearse DJ. Cardioplegia. Postgraduate Medical Journal. 1983;59;Suppl 2:11-24.

481 Figure Legend

- 482 Figure 1. Flowchart depicting participant selection.
- 483 ICU: intensive care unit, CPC: cerebral performance categories, CPR: cardiopulmonary
- 484 resuscitation, ECG: electrocardiogram

485 Table 1. Description of the participants' characteristics.	
--	--

		35-36°C		32-34°C	
		n=408	(%)	n=541	(%)
Good neurolo	gical prognosis (CPC1-2)	62	(15.2)	102	(18.9)
Survival (CPC	C1-4)	111	(27.2)	224	(41.4)
CPC	1	41	(10.0)	82	(15.2)
	2	21	(5.1)	20	(3.7)
	3	15	(3.7)	33	(6.1)
	4	34	(8.3)	89	(16.5)
	5	297	(72.8)	317	(58.6)
Sex					
	Male	349	(85.5)	457	(84.5)

Age (years)

	-64	244	(59.8)	367	(67.8)
Witnessed arrest		320	(78.4)	438	(81.0)
Bystander CPR		247	(60.5)	312	(57.7)
ECG					
	VF and pulseless VT	282	(69.1)	406	(75.0)
	Asystole	36	(8.8)	26	(4.8)
	PEA	90	(22.1)	109	(20.1)
Low perfusion time	e (minutes)				
	-60	259	(63.5)	385	(71.2)
Cause of cardiac ar	rest				
	ACS	270	(66.2)	346	(64.0)
	Cardiogenic except ACS	116	(28.4)	153	(28.3)
	Arrhythmia	69		77	

	Myocarditis	6		9	
	Myopathy	24		42	
	Other cardiac causes	17		25	
Non-cardiogenic		22	(5.4)	42	(7.8)
	Pulmonary embolism	15		23	
	Other non-cardiac causes	7		19	
Target body temperature (°C)					
32.0		0	(0.0)	22	(4.1)
32.5		0	(0.0)	1	(0.2)
33.0		0	(0.0)	64	(11.8)
33.5		0	(0.0)	7	(1.3)
34.0		0	(0.0)	441	(81.5)
34.5		0	(0.0)	6	(1.1)
35.0		50	(12.3)	0	(0.0)
35.5		6	(1.5)	0	(0.0)

	36.0	339	(83.1)	0	(0.0)
	36.5	13	(3.2)	0	(0.0)
Time to maintain th	ne target body temperature (hours)				
	-23	204	(77.3)	427	(84.4)
	24-48	47	(17.8)	73	(14.4)
	49-	13	(4.9)	6	(1.2)
	Unknown	144		35	
Temperature devia	tion (>1°C)	45	(12.1)	60	(11.4)
	None	326	(87.9)	465	(88.6)
	Unknown	37		16	
Heat exchangers		296	(78.3)	440	(85.6)
	None	82	(21.7)	74	(14.4)
	Unknown	30		27	
Equipment trouble		5	(1.2)	19	(3.5)

None	400	(98.8)	518	(96.5)
Unknown	3		4	

486

487 CPC: cerebral performance categories, CPR: cardiopulmonary resuscitation, ECG: electrocardiogram, VF: ventricular fibrillation, VT:

488 ventricular tachycardia, PEA: pulseless electrical activity, ACS: acute coronary syndrome

490 Table 2. The odds ratio of factors which are likely to influence patient prognoses (ALL	490	Table 2. The odd	ds ratio of factors	which are likely	y to influence	patient prognoses ((ALL)
---	-----	------------------	---------------------	------------------	----------------	---------------------	-------

		Good net (CPC1-2	_	ical progno	osis			1-4)				
	cOR	L	aOR	L	aOR (Interac	with tion term)	cOR		aOR	<u>.</u>	aOR (v Interac	vith tion term
Target body temperature (ref												
35-36°C)												
22.2490	1.2	(0.918-	1.2	(0.849-	0.054	(0.599-	1.8	(1.433-	1.7	(1.307-	1.460	(0.998-
32-34°C	97	1.882)	15	1.740)	0.954	1.522)	91	2.495)	42	2.322)	1.460	2.137)
Sex (ref female)												
	0.5	(0.384-	0.5	(0.329-	0 5 4 7	(0.339-	0.7	(0.552-	0.6	(0.467-	0.700	(0.483-
male	88	0.900)	26	0.841)	0.547	0.882)	94	1.144)	97	1.041)	0.728	1.096)
Age (ref 65-)												
	1.3	(0.950-	1.2	(0.22-	1.226	(0.929-	1.3	(1.052-	1.2	(0.915-	1.250	(0.922-
-64	67	1.969)	06	1.770)	1.226	2.549)	97	1.854)	36	1.670)	1.250	1.695)

Witnessed arrest

	1.7	(1.095-	1.5	(0.955-	1 520	(0.929-	1.4	(1.056-	1.5	(1.049-	1 407	(1.023-
	71	2.862)	78	2.605)	1.539	2.549)	95	2.116)	20	2.202)	1.487	2.163)
Bystander CPR												
	1.9	(1.339-	1.9	(1.297-	1.0(0	(1.331-	1.1	(0.882-	1.1	(0.864-	1 102	(0.888-
	32	2.787)	04	2.795)	1.960	2.886)	58	1.520)	56	1.548)	1.193	1.602)
ECG (ref VF and pulseless												
VT)												
A (1	0.2	(0.097-	0.2	(0.101-	0.200	(0.060-	0.3	(0.186-	0.4	(0.221-	0.476	(0.187-
Asystole	72	0.763)	88	0.820)	0.266	1.171)	56	0.681)	31	0.840)	0.476	1.214)
	0.4	(0.286-	0.3	(0.196-	0.406	(0.179-	0.4	(0.310-	0.4	(0.267-	0 5 5 0	(0.301-
PEA	66	0.760)	42	0.596)	0.406	0.918)	46	0.641)	00	0.599)	0.552	1.011)
Low perfusion time (minutes)												
(ref 61-)												
<u>(</u>)	1.5	(1.074-	1.4	(0.999-	1 5 1 7	(1.018-	1.9	(1.462-	1.8	(1.347-	1 077	(1.370-
-60	80	2.324)	84	2.206)	1.517	2.261)	79	2.679)	40	2.514)	1.877	2.571)

Cause of cardiac arrest (ref

ACS)

Cardiogenic except ACS	1.1	(0.762-	0.9	(0.614-	0.468	(0.232-	1.1	(0.820-	0.9	(0.703-	0.505	(0.293-
Cardiogenie except ACS	09	1.614)	14	1.360)	0.400	0.945)	04	1.486)	66	1.327)	0.505	0.868)
Non condicaconia	1.1	(0.593-	1.4	(0.660-	1 502	(0.480-	0.8	(0.487-	1.1	(0.599-	1.277	(0.451-
Non-cardiogenic	49	2.229)	29	3.094)	1.592	5.397)	48	1.475)	29	2.126)	1.2//	3.614)
Interaction term with the target												
body temperature												
ECG (ref VF and pulseless												
VT)												
A 1					1 215	(0.149-					0.942	(0.220-
Asystole					1.215	9.914)					0.843	3.223)
					0 744	(0.248-					0.594	(0.263-
PEA					0.744	2.230)					0.584	1.299)

Cause of cardiac arrest (ref

ACS)

	Cardiogenic except ACS	2.836	(1.216-	2.818	
	Cardiogenie except ACS	2.050	6.617)	2.010	5.510)
	Non-cardiogenic	0.892	(0.191-	0.906	(0.252-
	Non-cardiogenic	0.892	4.174)	0.900	3.264)
491					
492	CPC: cerebral performance categories, cOR: crude odds ratio, aOR	adjusted	odds ratio, CPR: cardiopulmonary resuscitation	n, ECG:	
493	electrocardiogram, VF: ventricular fibrillation, VT: ventricular tach	nycardia, I	PEA: pulseless electrical activity, ACS: acute co	oronary s	yndrome
494					
495					
496					
497					
498					
499					

		A	С			Cardiogenic ex	cept	
		S				ACS		
	35-		32-		35-		32-	
	36°C		34°C		36°C		34°C	
	n=270	(%)	n=346	(%)	n=116	(%)	n=153	(%)
Good neurological prognosis	45	(16.	58	(16.	12	(10.	37	(24.
(CPC1-2)	45	7)	58	8)	12	3)	37	2)
Survival (CPC1-4)	81	(30.	134	(38.	23	(19.	77	(50.
Survival (CrC1-4)	61	0)	154	7)	23	8)	11	3)
CPC 1	30	(11.	44	(12.	7	(6.0)	33	(21
	50	1)		7)	7	(0.0)	55	6)
2	15	(5.6)	14	(4.0)	5	(4.3)	4	(2.6

500 Table 3. Description of participant characteristics in the ACS and cardiogenic shock (except ACS) groups.

	3	10	(3.7)	25	(7,2)	3	(2.6)	6	(3.9)
	4	26	(9.6)	51	(14.	8	(6.9)	34	(22.
		_ •	(,,,,)	• -	7)	-			2)
	5	189	(70.	212	(61.	93	(80.	78	(49.
		109	0)	212	3)	<i>y</i> y y y	2)	10	7)
Sex									
Ser			(90.		(90.		(82.		(75.
	Male	245	7)	314	8)	96	8)	116	8)
			')		8)		0)		8)
Age, years									
	(4	150	(55.	217	(62.	01	(69.	116	(75.
	-64	150	6)	217	7)	81	8)	116	8)
Witnessed a	arrest	215	(70.	271	(78.	89	(76.	131	(85.
			0)		3)	09	7)	131	6)

Bystander	Bystander CPR	156	(57.	195	(56.	75	(64.	87	(56.
			8)		4)		7)		9)
ECG									
	VF and pulseless VT	192	(71.	269	(77.	86	(74.	128	(83.
		172	1)	20)	7)	00	1)	120	7)
	Asystole	21	(7.8)	15	(4.3)	11	(9.5)	6	(3.9)
	PEA	57	(21.	62	(17.	19	(16.	19	(12.
		51	1)	02	9)	17	4)	.,	4)
Low perfus	sion time (minutes) (ref								
61-)									
	-60	169	(62.	252	(72.	77	(66.	107	(69.
-60	-00	102	6)	252	8)	//	4)	107	9)

Target body temperature

(°C)

32.0	0	(0.0)	18	(5.2)	0	(0.0)	2	(1.3)
32.5	0	(0.0)	1	(0.3)	0	(0.0)	0	(0.0)
33.0	0	(0.0)	44	(12. 7)	0	(0.0)	18	(11. 8)
33.5	0	(0.0)	3	(0.9)	0	(0.0)	4	(2.6)
34.0	0	(0.0)	274	(79. 2)	0	(0.0)	129	(84. 3)
34.5	0	(0.0)	6	(1.7)	0	(0.0)	0	(0.0)
35.0	35	(13. 0)	0	(0.0)	14	(12. 1)	0	(0.0)
35.5	4	(1.5)	0	(0.0)	2	(1.7)	0	(0.0)
36.0	221	(81. 9)	0	(0.0)	88	(84. 5)	0	(0.0)
36.5	10	(3.7)	0	(0.0)	2	(1.7)	0	(0.0)

Time to maintain the target body

temperature (hours)

	-23	132	(77.	281	(85.	60	(76.	114	(80.
	-25	132	2)	201	7)	00	9)	114	9)
	24-48	31	(18.	4.4	(13.	15	(19.	24	(17.
	24-46	51	1)	44	4)	15	2)	24	0)
	49-	8	(4.7)	3	(0.9)	3	(3.8)	3	(2.1)
	Unknown	99		18		38		12	
PCI		217	(81.	282	(81.				
			0)		7)				
	None	51	(19.	63	(18.				
			0)		3)				
	Unknown	2		1					
Temperatur	re deviation	20	(11.	39	(11.	17	(16.	15	(10.
(>1°C)		28	4)	37	5)	17	5)	15	3)

	None	218	(88.	300	(88.	86	(83.	131	(89.
	None	218	6)	300	5)	80	5)	151	7)
	Unknown	19		16		13			
			(77.		(84.		(78.		(88.
Heat exchar	ngers	195	7)	280	8)	82	1)	126	1)
	None	56	(22.	50	(15.	23	(21.	17	(11.
	None	50	3)	50	2)	23	9)	17	9)
	Unknown	19		16		11		10	
Equipment	trouble	4	(1.5)	11	(3.2)	1	(0.9)	7	(4.6)
	N	264	(98.	224	(96.	114	(99.	1.4.4	(95.
	None	264	5)	334	8)	114	1)	144	4)
	Unknown	2		1		1		2	

501

502 ACS: acute coronary syndrome, CPC: cerebral performance categories, cOR: crude odds ratio, aOR: adjusted odds ratio, CPR: cardiopulmonary

503 resuscitation, ECG: electrocardiogram, VF: ventricular fibrillation, VT: ventricular tachycardia, PEA: pulseless electrical activity

Table 4. Odds ratio of factors that are likely to influence patient prognoses (ACS).

	Good neurolo (CPC1-2)	Good neurological prognosis				Survival (CPC1-4)			
	cOR	aOR		cOR		aOR			
Target body temperature (re	f 35-								
6°C)									
22.24%	1.00) 0.007	(0.581-	1.00	(0.657-	1.33	(0.940-		
32-34°C	(0.657-1.543) 7	43) 0.907	1.415)	7	1.543)	8	1.905)		
Sex (ref female)									
	0.58	0.452	(0.228-	0.58	(0.305-	0.51	(0.286-		
Male	(0.305-1.108)) 0.453	0.899)	2	1108)	5	0.925)		
Age (ref 65-)									
64	1.46) 1 002	(0.809-	1.45	(0.937-	1.16	(0.814-		
-64 (0.816-2.503) 4) 1.293	2.066)	4	2.288)	7	1.675)			

Witnessed arrest

	0	(1.707-2.327)	1.000	2.670)	0	2.324)	8	3.037)
-60	1.58	(1.704-2.324)	1.608	(0.968-	1.58	(1.074-	2.04	(1.381-
61-)								
Low perfusion time (minutes) (ref								
I EA	8	(0.165-0.751)	0.317	0.645)	8	0.731)	5	0.573)
PEA	0.36	(0.185-0.731)	0.317	(0.155-	0.36	(0.185-	0.34	(0.207-
Asystole	5	(1.0/-2.32-)	0.110	0.870)	5	0.847)	2	1.146)
Asystole	0.11	(1.074-2.324)	0.116	(0.016-	0.11	(0.015-	0.50	(0.219-
ECG (ref VF and pulseless VT)								
	8	(1.255 5.672)	1.907	3.162)	8	3.072)	1	1.847)
	1.94	(1.235-3.072)	1.967	(1.223-	1.94	(1.235-	1.29	(0.902-
Bystander CPR								
	9		1.550	2.435)	9	2.503)	0	2.251)
	1.42	(0.816-2.503)	1.350	(0.749-	1.42	(0.816-	1.44	(0.922-

506 ACS: acute coronary syndrome, CPC: cerebral performance categories, cOR: crude odds ratio, aOR: adjusted odds ratio, CPR: cardiopulmonary

507 resuscitation, ECG: electrocardiogram, VF: ventricular fibrillation, VT: ventricular tachycardia, PEA: pulseless electrical activity

		Good neurological p	rognosis		Survival (CPC1-4)			
		(CPC1-2)				Survival (C	CI CI -+)	
	cOR		aOR		cOR		aOR	
Target body temperature (ref 35-								
36°C)								
22.2490	2.76	(1.2(0.5.592)	2 970	(1.362-	4.09	(2.350-	3.86	(2.161-
32-34°C	4	(1.369-5.583)	2.870	6.049)	7	7.141)	7	6.919)
Sex (ref female)								
1	0.53		0.550	(0.264-	0.84	(0.463-	0.92	(0.479-
male	5	(0.267-1.071)	0.558	1.179)	3	1.534)	3	1.776)
Age (ref 65-)								
64	1.32	(0, (27, 2, 750))	1 104	(0.537-	1.49	(0.837-	1.35	(0.717-
-64	5	(0.637-2.759)	1.194	2.655)	0	2.653)	8	2.569)
Witnessed arrest								

508 Table 5. Odds ratio of factors that are likely to influence patient prognoses (cardiogenic shock, except ACS).

	1	(0.70 + 0.111)	1.107	3.169)	7	3.714)	9	3.767)
-60	1.53	(0.754-3.111)	1.487	(0.698-	2.10	(1.196-	2.04	(1.114-
61-)								
Low perfusion time (minutes) (ref								
PEA	1	(0.097-1.127)	0.283	1.008)	5	3.714)	7	0.957)
	0.33	(0.007, 1.127)	0 282	(0.080-	0.37	(0.164-	0.39	(0.164-
Asystole	5	(0.114-2.337)	0.005	3.199)	1	1.078)	0	1.615)
Asystole	0.51	(0.114-2.337)	0.665	(0.138-	0.30	(0.084-	0.42	(0.109-
ECG (ref VF and pulseless VT)								
	4	(1.2))-5.500)	2.090	6.925)	3	1.747)	2	2.070)
	2.67	(1.299-5.506)	2.890	(1.327-	1.05	(0.635-	1.16	(0.652-
Bystander CPR								
	9	(0.010-2.505)	2.029	9.932)	9	2.503)	2	4.082)
	1.42	(0.816-2.503)	2.829	(0.806-	1.42	(0.816-	1.87	(0.858-

510 ACS: acute coronary syndrome, CPC: cerebral performance categories, cOR: crude odds ratio, aOR: adjusted odds ratio, CPR: cardiopulmonary

511 resuscitation, ECG: electrocardiogram, VF: ventricular fibrillation, VT: ventricular tachycardia, PEA: pulseless electrical activity

SAVE-J II Study subjects 1,646		
	Died before ICU admission	165
	Unknown target body temperature	608
	Target body temperature not covered	7
	<32.0	0
	>36.5	7
	Unknown other facters	86
	(There is duplication)	0
	CPC	11
	Sex	0
	Age	0
	Witness	2
	Bystander CPR	8
	ECG	5
	Low perfusion time	32
	diagnosis	39
Analysis subjects 949		