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Abstract 

Context: Breast cancer is one of the most common cancers in women. With early diagnosis, some breast 
cancers are highly curable. However, the concordance rate of breast cancer diagnosis from histology 
slides by pathologists is unacceptably low. Classifying normal versus tumor breast tissues from 
microscopy images of breast histology is an ideal case to use for deep learning and could help to more 
reproducibly diagnose breast cancer. Since data preprocessing and hyperparameter configurations have 
impacts on breast cancer classification accuracies of deep learning models, training a deep learning 
classifier with appropriate data preprocessing approaches and optimized hyperparameter configurations 
could improve breast cancer classification accuracy. 

Methods and Material: Using 12 combinations of deep learning model architectures (i.e., including 5 
non-specialized and 7 digital pathology-specialized model architectures), image data preprocessing, and 
hyperparameter configurations, the validation accuracy of tumor versus normal classification were 
calculated using the BreAst Cancer Histology (BACH) dataset. 

Results: The DenseNet201, a non-specialized model architecture, with transfer learning approach 
achieved 98.61% validation accuracy compared to only 64.00% for the digital pathology-specialized 
model architecture.  

Conclusions: The combination of image data preprocessing approaches and hyperparameter 
configurations have a profound impact on the performance of deep neural networks for image 
classification. To identify a well-performing deep neural network to classify tumor versus normal breast 
histology, researchers should not only focus on developing new models specifically for digital pathology, 
since hyperparameter tuning for existing deep neural networks in the computer vision field could also 
achieve a high (often better) prediction accuracy.   
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1. Introduction 

Breast cancer is one of the leading cancer-related causes of death in women.1 Early-diagnosis for breast 
cancer can reduce the mortality rate for breast cancer patients given that 70-80% of patients with early-
diagnosis of non-metastatic breast cancer are curable.2 

Breast biopsy is the definitive way to diagnose breast cancer,3 however, the concordance rate between 
different pathologists in interpreting breast biopsies is relatively low (overall concordance rate is 75.3% 
with 48% concordance rate for atypia).4 To improve agreement, deep learning has shown success in 
solving broader computer vision problems,5 particularly in the medical image analysis field.6  

The advent of whole slide imaging7 has heralded a new era in pathology research, enabling the detailed 
analysis of histological images through deep learning methodologies.8 This is highlighted in the work of 
Iizuka et al.,9 who successfully employed deep learning algorithms to identify gastric and colonic 
epithelial tumors within histological slide preparations. Their approach achieved remarkable levels of 
accuracy, as demonstrated by Area Under the Curve (AUC) values of 97% and 99% for the prediction of 
gastric adenocarcinoma and adenoma, respectively. Likewise, colonic adenocarcinoma and adenoma 
prediction achieved AUC values of 96% and 99%, respectively. These findings underscore the potential 
of deep learning-based image classifiers to enhance diagnostic precision, positioning it as a promising 
approach for distinguishing normal tissues from malignant neoplasms. 

Differentiation of malignant tumors and normal tissues on histology slides can be achieved by two deep 
learning-based image classification approaches. First, non-specialized deep neural networks have been 
applied to group different classes of histology from microscopy images. Transfer learning10 is a popular 
non-specialized approach, which uses either the last layer or all layers of the pre-trained networks, 
including InceptionV3,11 DenseNet201,12 ResNet152,13 and VGG1914 models for image classification. 
One-shot learning,15 a distance-based classification model, is another non-specialized approach to predict 
the object categories from a few training samples. Koch, et al.16 adopted the one-shot learning model for 
image classification17 achieving near-state-of-the-art classification accuracy. Aside from general use 
networks, specialized deep neural networks have also been developed for microscopy images. The 
clustering-constrained attention multiple instance learning (CLAM) model18 is a digital pathology-
specialized multi-class image classifier. CLAM is an attention-based weakly-supervised learning model 
that does not require large amounts of well-annotated training samples. CLAM is a unique approach in 
digital pathology, that ranks the patch-level feature importance by attention scores, then ranks information 
to train the final classifier.  

Different deep learning models could affect the classification performance. However, hyper-parameter 
configurations19 and data preprocessing20 also have impacts on the performance of image classifiers. Zhou 
et al.21 proposed a comparative experiment to study the impacts of hyperparameters on deep learning 
model performance. They found the classification precision scores varied from 84.8% to 99.5% for a 
number of 36 combinations of deep convolutional neural networks (DCNN)-based a roadway crack 
classification problem. They tested various hyperparameter configurations, including learning rate, 
dropout, and batch size on 10,000 test images from laser-scanned roadway range image dataset (LRRD).22 
In addition, Heidari et al.23 proposed a study to compare the performance of VGG16-based transfer 
learning approach with or without image preprocessing in classifying COVID-19, non-COVID-19 
pneumonia, and non-pneumonia cases from 8,504 2D X-ray images. The authors yielded a 7.4% increase 
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in overall classification accuracy of the VGG16-based classifier with image preprocessing compared with 
the model without pre-processing steps. This indicates that the image preprocessing could also alter the 
deep learning model performance. Therefore, the standard deep neural networks could achieve a better 
classification performance by hyperparameter tuning and selecting appropriate data pre-processing 
techniques. What is not known is how much of a difference hyperparameters, model architectures, or 
general versus domain specific architecture make on medically relevant images like those in digital 
pathology.  

The BreAst Cancer Histology (BACH) dataset24 is a publicly available dataset of Hematoxylin and Eosin 
(H&E)-stained microscopy images of breast histology labeled into four classes (i.e., “normal”, “benign”, 
“in situ carcinoma” and “invasive carcinoma”). An ensemble network-based image classifier proposed by 
Marami et al.25 was the best performing model on the BACH dataset with the highest prediction accuracy. 
Their model was able to achieve an 84% accuracy for the four-class classification required by the BACH 
Challenge, but also achieved a 91.7% accuracy in classifying carcinoma versus non-carcinoma breast 
histology. The carcinoma versus non-carcinoma classification was made possible by using a binary 
classification model in which the images from “normal” and “benign” classes were reassigned into a 
single “non-carcinoma” class and images from “in situ carcinoma” and “invasive” carcinoma classes were 
reassigned into a single “carcinoma” class. However, the proposed approach by Marami et al. was to 
build a de novo algorithm using an ensemble of convolutional neural networks rather than fine tuning the 
conventional deep neural networks (i.e., ResNet,13 and InceptionResNet26). Therefore, the proposed study 
compared the performance of models with different combinations of hyperparameters and data pre-
processing techniques, including custom versus purpose-built models. 

2. Subjects and Methods 

2.1. Data Preparation 

Four hundred microscopy images of breast histology in ‘.tif’ format were downloaded from the BACH 
dataset. Out of the 400 images, there are 100 microscopy images from each of the “benign”, “normal”, “in 
situ carcinoma” and “invasive carcinoma” classes. To reorganize the images from the BACH dataset for 
binary carcinoma versus non-carcinoma classification, images in the “benign” or “normal” BACH classes 
are labeled the “non-carcinoma” class (i.e., class 0) and images within the “in situ carcinoma” or 
“invasive carcinoma” BACH classes are labeled the “carcinoma” class (i.e., class 1).  

To create a 5-fold cross validation dataset, all 400 images were first randomly shuffled and divided into 
five groups. To maintain a balanced dataset in each of the five groups, each group ended up with 80 
images, including 40 images each from the carcinoma and non-carcinoma classes. For each of the 5-folds, 
one of the five groups is selected as the validation set, while the remaining four groups are selected as the 
training set. The 5-fold cross validation dataset preparation was implemented using the Scikit-Learn 
Python package.27 Therefore, in each of the 5-folds, there are 320 images with 160 images from each of 
the carcinoma and non-carcinoma classes used for training, and 80 images with 40 images each from the 
carcinoma and non-carcinoma classes used for validation. Patches from 400 microscopy images were 
extracted and saved in the TFRecords file format with each TFRecords file including the image patch 
array, file name, width, and height of the image patch.28 
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CLAM required image patch-level feature vectors as the model training input data -rather than images - 
while the pre-trained InceptionV3, DenseNet201,12 ResNet152, VGG19, and one-shot learning model 
only required pixel data as input. Sections 2.1.3 - 2.1.4 details the image feature extraction and 
normalization, specific for CLAM, while the sections 2.1.1 - 2.1.2 describe patch extraction, image 
standardization, and scaling - all of which are identical for all deep neural networks. 

Of note, it was also necessary to re-implement CLAM as it did not support the BACH files and some of 
the standardized profiling that are needed to perform. Comparing the re-implemented CLAM with the 
original source code confirmed there was no difference in classification outcomes. To make the 
comparison, A number of 40 H&E-stained malignant breast histology WSIs were downloaded from the 
Cancer Genome Atlas (TCGA) database.29 These 40 WSIs include 20 BRAF mutated and 20 wild-type 
malignant breast histology WSIs. Then, 10 cross-validation sets were created by randomly selecting 35 
out of the total 40 WSIs for each of the 10 folds, and split into training, validation, and testing sets. In 
each cross-validation set, there were 15 WSIs in the training set, 10 WSIs in the validation set, and 10 
other WSIs in the testing set. The extracted image patches were used to create the image feature vectors 
for all the WSIs in each of the 10 cross-validation sets without any image preprocessing.  

2.1.1. Image Patch Preparation 

Each microscopy image from the BACH dataset has 2,048 x 1,536 x 3 pixels with a pixel scale of 0.42 
𝜇𝑚 x 0.42 𝜇𝑚.24 JPEG format images (n=19,200) of 256 x 256 x 3 pixels in were split into 5-fold cross-
validation sets, with 15,360 image patches in the training (Class0: n=7,680; Class1=n=7,680) and 3,840 
patches (Class0: n=1,920; Class1: n=1,920) in the validation (Figure 1). 

2.1.2. Image Standardization 

Image standardization is an image rescaling technique that linearly scales each of the 3 RGB-channel (i.e., 
red, green, blue) image patches to a mean of 0 and variance of 1. The formula of this technique to 
compute the standardized image patch array 𝑥$ is: 

𝑥$ = (𝑥 − 𝑥̅)	/max /𝜎, 21.0	/	𝑠𝑞𝑟𝑡(𝑁)9: 

where,  

𝑥̅ = ;𝑥!

"

!#1

	 , 𝜎 = 𝑠𝑞𝑟𝑡((;(𝑥! − 𝑥̅)2)	
"

!#1

/	𝑁) 

and 𝑁 is denoted as the number of elements in each of the image patch 𝑥.  

An additional image rescaling technique is also applied in one of the experiments in this study. The 
formula used to compute the rescaled image patch array 𝑥$ from the original image patch array 𝑥	is: 

𝑥$ = 𝑎𝑏𝑠(𝑥! 	/	255) ∈ [0,1], 𝑖	 = 1,2,3, … , 𝑁 

where 𝑁 is denoted as the number of elements in each image patch 𝑥. 
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Details of the combinations of different image scaling methods and experiments were listed in the 
Supplementary Table 1.  

2.1.3. Image Feature Extraction 

The pre-trained ResNet50 model on ImageNet30 was employed to extract image feature vectors for the 
preparation of CLAM model training. RGB channel image patches with dimensions of 256 x 256 x 3 
were fed into this pre-trained ResNet50 model. Following processing through the third residual block of 
the pre-trained ResNet50 model, a 1,024-dimensional patch-level image feature vector was obtained 
(Figure 1). 

2.1.4. Image Feature Normalization 

Image patch-level feature vectors are the required input for CLAM training. The L2 normalization31 was 
applied on the extracted 1,024-dimensional patch-level image feature vectors to generate the normalized 
patch-level image feature vectors.  

Each of the L2 normalized patch-level 1,024-dimensional image feature vectors 𝑥$ was computed from 
each of the original patch-level 1,024-dimensional image feature vectors 𝑥 by the following, 

        𝑥$ = 𝑥	/	𝑠𝑞𝑟𝑡2max2∑ 𝑥2"
!#1 , 𝜀99 

where 𝜀 has a default value of 1E-12, and 𝑁 is denoted as the number of elements in each of the patch-
level 1,024-dimensional image feature vectors 𝑥. 

2.2. Model Training  

2.2.1. Transfer Learning with Pre-trained Deep Learning Models  

Transfer learning was applied with different non-specialized model architectures, including InceptionV3, 
DenseNet201, ResNet152, and VGG19. These models were first pre-trained on ImageNet, then the last 
layer of these pre-trained models was trained on the H&E microscopy images from the BACH dataset. 
Training details of these models with the corresponding combinations of data preprocessing (i.e., image 
standardization, and image feature normalization), and hyperparameter configurations (i.e., learning rate, 
dropout rate, optimizers, loss functions, number of epochs, and batch size) are listed in Supplementary 
Table 1. 

2.2.2. One-Shot Learning  

One-shot learning was applied to learn the domain features from microscopy images from the normal and 
tumor classes reorganized from the BACH dataset. This would have allowed the model to classify the 
normal versus tumor breast histology from microscopy images.  

Training details of the combination of the one-shot learning model, image data preprocessing (i.e., image 
standardization, and image feature normalization), and hyperparameter configurations (i.e., learning rate, 
dropout rate, optimizers, loss functions, number of epochs, and batch size) are listed in Supplementary 
Table 1.  
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2.2.3. Clustering-Constrained Attention Multiple Instance Learning (CLAM) 

Microscopy images of breast histology from the BACH dataset are in ‘.tif’ format, which is not supported 
by the original CLAM implementation. A TensorFlow-version28 CLAM was re-implemented with three 
jointly trained neural networks (i.e., attention network,32 instance classifier, and bag classifier33). To 
ensure the re-implemented CLAM achieves a similar classification performance as the original CLAM, 
both the original and re-implemented CLAM were evaluated on 10 validation WSIs from each of the 10 
cross-validation sets to compute the validation accuracy. Then a Student’s t-test ran on the AUC of the 
original and re-implemented CLAM on 10 validation WSIs from each of the 10 cross-validation sets to 
determine whether the re-implemented CLAM achieves a similar binary classification accuracy as the 
original CLAM.  

Then, similar to the experiments that have been performed using the non-specialized classifiers as 
discussed on section 2.2.1 - 2.2.2, the validation accuracy of CLAM with 7 different combinations of data 
preprocessing (i.e., image standardization, and image feature normalization), and hyperparameter 
configurations (i.e., learning rate, dropout rate, optimizers, loss functions, number of epochs, and batch 
size) are listed in Supplementary Table 1.  

All code, including the implementations of non-specialized and digital pathology-specialized model 
architectures, is publicly available at https://github.com/quincy-125/DP_BACH.  

3. Results & Discussion 

3.1. CLAM Reimplementation Results on TCGA Data 

The AUC scores returned from both the original and re-implemented CLAM on 10 validation TCGA 
WSIs from each of the 10 cross-validation sets are shown in Figure 2. There was no significant difference 
between the performance of the original and re-implemented CLAM (p-value=0.67).  

3.2. Model Performance Comparison on the BACH Dataset 

The validation accuracies of both the non-specialized classification models using DenseNet201, 
InceptionV3, One-Shot Learning, ResNet152, and VGG19 with each of their corresponding image 
preprocessing applied and optimized hyperparameter configurations, and the digital pathology-specialized 
CLAM models with seven different combinations of image preprocessing and hyperparameter 
configurations are listed in Table 1. Among the results returned by the experiments, the DenseNet201 
model (indexed as D1 in Supplementary Table 1), was the best performing model in classifying normal 
versus tumor breast tissues from the BACH dataset with a 98.16% validation accuracy. The optimal 
image standardization and hyperparameter configurations included the Adam optimizer, 
BinaryCrossEntropy as the loss function, learning rate=1E-05, batch size=20, and number of epochs=20. 

3.3. Hyperparameter Tuning in Breast Cancer Classification Model Development 

Hyperparameter tuning is critical to boost the classification performance, in addition to the model 
architecture. The results shown in Table 1 indicated that with the optimal hyperparameter configurations, 
the non-specialized image classifiers, including the DenseNet201, ResNet152, InceptionV3, VGG19 with 
the transfer learning approach, and the One-Shot Learning approach, could outperform the digital 
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pathology specialized model architecture, CLAM. This suggests that computational pathologists may 
need to focus more on hyperparameter tuning, rather than designing more complex digital pathology 
specialized model architectures. The learning rate has a higher impact on both the non-specialized and 
digital pathology-specialized classifiers performance compared with the rest of the hyperparameters (i.e., 
options of optimizers and loss functions, dropout rate, batch size, and number of epochs), and thus should 
be the first parameter to augment when optimizing models.  

In addition to manual hyperparameter tuning, the automated hyperparameter searching algorithm is 
another option in selecting the optimal hyperparameter configurations. Therefore, future work could adopt 
automated hyperparameter tuning, which could improve the efficiency of the process to identify the 
optimal hyperparameter configurations. 

3.4. Impacts of Dataset Differences on CLAM Performance 

Dataset difference could affect the classification model performance, in addition to model architecture, 
and hyperparameter configurations. The unique architecture of the CLAM model led to the performance 
gap of CLAM on the BACH and TCGA dataset. CLAM is an attention-based multiple-instance learning 
image classifier, the attention module in the CLAM architecture first assigns attention scores to each of 
the patches from a certain WSI, then use the top- and least- k patches sorted from their corresponding 
attention scores as the positive- and negative- examples of the slide-level label. Since all patches in the 
BACH dataset are only informative tissue, each contributes equally to the slide-level label. This deviation 
violates the expectation of the CLAM model, that weights informative and non-informative patches - 
inherently assuming that some of the images are non-informative. Therefore, CLAM should only be used 
when slides contain both informative and non-informative features.  

DenseNet201, a non-specialized image classification model, had the highest validation accuracy (98.16%) 
in the breast cancer classification in this cohort. This study also indicates the impacts of hyperparameter 
configurations, and dataset differences, have a significant impact on image classification model 
performance. This suggests that digital pathology researchers must be careful to understand the strengths 
and limitations of choosing a model that is suited to the task at hand. 
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Figures 

Figure 1. Pipeline Diagram for Digital Pathology-Specialized and Non-Specialized Image Classifiers. 
A). Whole Slide Image Tissue Detection and Patch Extraction; B). Digital Pathology-Specialized Image 
Classifier (CLAM) Pipeline; C). Non-Specialized Conventional Image Classifiers (i.e., DenseNet201, 
InceptionV3, One-Shot Learning, ResNet152, and VGG19) Pipeline. 
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Figure 2. CLAM comparison box plot for the TCGA dataset. Each black dot represents the validation 
classification AUC scores from each of the 10-fold cross-validation sets. Left). Box plot for the original 
Pytorch-Version CLAM; Right). Box plot for the Tensorflow-Version re-implemented CLAM.  
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Tables 

Table 1.  Results table including the validation accuracy of the non-specialized and digital pathology-
specialized model architectures with different hyperparameter configurations. 

Model Index Model Name Model Category Validation Accuracy 
(mean ± std) 

D1 DenseNet201 Non-Specialized 98.61% ± 1.13% 

R1 ResNet152 Non-Specialized 97.08% ± 0.78% 

I1 InceptionV3 Non-Specialized 95.29% ± 0.23% 

V1 VGG19 Non-Specialized 89.48% ± 0.66% 

O1 One-Shot Learning Non-Specialized 82.40% ± 9.31% 

C1 CLAM DP- Specialized 60.00% ± 6.80% 

C2 CLAM DP- Specialized 64.00% ± 4.87% 

C3 CLAM DP- Specialized 64.00% ± 9.74% 

C4 CLAM DP- Specialized 63.00% ± 3.54% 

C5 CLAM DP- Specialized 50.00% ± 0.00% 

C6 CLAM DP- Specialized 51.00% ± 1.73% 

C7 CLAM DP- Specialized 56.00% ± 5.12% 
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