
1 

 Neural network-derived electrocardiographic features have prognostic 

significance and important phenotypic and genotypic associations 

 

Arunashis Sau1,2
, Anto�nio H. Ribeiro3, Kathryn A. McGurk1,11, Libor Pastika1, 

Nikesh Bajaj1, Maddalena Ardissino1, Jun Yu Chen1, Huiyi Wu1, Xili Shi1, Katerina 

Hnatkova1, Sean Zheng1, Annie Britton4, Martin Shipley4, Irena Andršová5, Tomáš 

Novotný5, Ester Sabino6, Luana Giatti7, Sandhi M Barreto7, Jonathan W. Waks8, 

Daniel B. Kramer1,9, Danilo Mandic10, Nicholas S. Peters1,2, Declan P. O’Regan11
,
 

Marek Malik1,5, James S. Ware1,11,12, Antonio Luiz P. Ribeiro13, Fu Siong Ng1,2 

 

Affiliations  

1. National Heart and Lung Institute, Imperial College London, United Kingdom  

2. Department of Cardiology, Imperial College Healthcare NHS Trust, London, 

United Kingdom  

3. Department of Information Technology, Uppsala University, Uppsala, Sweden 

4. Research Department of Epidemiology and Public Health, University College 

London, United Kingdom  

5. Department of Internal Medicine and Cardiology, University Hospital Brno and 

Masaryk University, Brno, Czech Republic 

6. Department of Infectious Diseases, School of Medicine and Institute of 

Tropical Medicine, University of São Paulo, São Paulo, Brazil 

7. Department of Preventive Medicine, School of Medicine, and Hospital 

das Clínicas/EBSERH, Universidade Federal de Minas Gerais  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2023. ; https://doi.org/10.1101/2023.06.15.23291428doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.06.15.23291428
http://creativecommons.org/licenses/by/4.0/


2 

8. Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical 

Center, Harvard Medical School, Boston, MA, USA. 

9. Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, 

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 

USA 

10. Department of Electrical and Electronic Engineering, Imperial College London, 

United Kingdom 

11. MRC London Institute of Medical Sciences, Imperial College London, London, 

UK.  

12. Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS 

Foundation Trust, London, UK. 

13. Department of Internal Medicine, Faculdade de Medicina, and Telehealth 

Center and Cardiology Service, Hospital das Clínicas, Universidade Federal 

de Minas Gerais, Belo Horizonte, Brazil  

Conflicts: None 

Correspondence: 
Fu Siong Ng  
Clinical Senior Lecturer in Cardiac Electrophysiology  
National Heart and Lung Institute, Imperial College London 
Hammersmith Campus  
Du Cane Road 
London W12 0NN 
e-mail:  f.ng@imperial.ac.uk 
 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2023. ; https://doi.org/10.1101/2023.06.15.23291428doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291428
http://creativecommons.org/licenses/by/4.0/


3 

Abstract  

Background  

Subtle prognostically-important ECG features may not be apparent to physicians. In 

the course of supervised machine learning (ML), many thousands of ECG features 

are identified. These are not limited to conventional ECG parameters and 

morphology. 

 

Hypothesis  

Novel neural network (NN)-derived ECG features can predict future cardiovascular 

disease and mortality 

 

Methods and Results  

We extracted 5120 NN-derived ECG features from an AI-ECG model trained for six 

simple diagnoses and applied unsupervised machine learning to identify three 

phenogroups. In the derivation cohort (CODE, 1,558,421 subjects), the three 

phenogroups had significantly different mortality profiles. After adjusting for known 

covariates, phenogroup B had a 20% increase in long-term mortality compared to 

phenogroup A (HR 1.20, 95% CI 1.17-1.23, p < 0.0001). The predictive ability of the 

phenogroups was retained in a group with physician confirmed normal ECGs. We 

externally validated our findings in five diverse cohorts (Figure) and found 

phenogroup B had a significantly greater risk of mortality in all cohorts. Phenome-

wide association study (PheWAS) showed phenogroup B had a higher rate of future 

AF, ischaemic heart disease, AV block, heart failure, VT, and cardiac arrest. 
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Phenogroup B had increased cardiac chamber volumes and decreased cardiac 

output. A single-trait GWAS yielded four loci. SCN10A, SCN5A and CAV1 have roles 

in cardiac conduction and arrhythmia. ARHGAP24 does not have a clear cardiac role 

and may be a novel target. Gradient-weighted Class Activation Mapping (Grad-CAM) 

identified the terminal QRS and terminal T wave as important regions of the ECG for 

identification of phenogroup B. 

 

Conclusion NN-derived ECG features can be used to predict all-cause mortality and 

future cardiovascular diseases. We have identified biologically plausible and novel 

phenotypic and genotypic associations that describe mechanisms for the increased 

risk identified. 

 

Keywords: machine learning, neural network, phenogroup, risk prediction, 

electrocardiogram
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Introduction 

The electrocardiogram (ECG) is a widely used investigation for the assessment of 

cardiovascular disease. The ECG captures information relating to a wide range of 

cardiac pathology, from cardiomyopathy and channelopathies to conduction system 

disease. Several specific ECG features have been associated with adverse long-term 

prognosis, including left bundle branch block (LBBB) (1), prolongation of QRS 

duration (2), and ECG changes consistent with left ventricular hypertrophy (3). 

However, these crude ECG features are based on physician interpretation or ECG 

measurements and there may be other ECG features, not easily discernible by 

humans, that may be as clinically and prognostically meaningful. 

 

Recently, there has been a rapid increase in applications of artificial intelligence (AI) 

to the analysis of the ECG (4, 5, 6). Supervised machine learning (ML) is the most 

common form of machine learning applied to ECGs, where a model is trained to 

predict a label e.g., future atrial fibrillation or impaired left ventricular function (5, 6). 

AI-ECG models often use a convolutional neural network (CNN) architecture and 

have generally performed well (4, 5, 6). Although the classification task is often 

specific and singular, the CNN identifies many thousands of ECG features over the 

course of model training, which are not limited to conventional ECG parameters and 

morphology, and applies these features to make the label prediction (7). These novel 

neural network (NN)-derived ECG features have not been extensively studied. There 

is the potential that they may be universal, transferable, and applicable to a range of 

clinically useful tasks. 
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We hypothesised that the ECG features learned by a neural network may have 

implications beyond the original task for which it was trained and may have important 

clinical, phenotypic, and genotypic associations. We applied an existing AI-ECG 

model trained to classify six common ECG diagnoses relating to rhythm and 

conduction disease (8). We extracted the NN-derived ECG features from the 

penultimate layer of the CNN and applied unsupervised machine learning to identify 

clinically distinct phenogroups with prognostic significance. Given the critical role of 

external validation (9), we validated our analysis in four external datasets across two 

continents with diverse ancestral backgrounds. Furthermore, our model was 

evaluated across diverse cohorts including volunteers, primary care patients and 

patients with established cardiomyopathy. We subsequently explored potential 

biological mechanisms underlying the associations of the ECG phenogroups with 

survival by evaluating their associations with a wide range of phenotypes and 

genetics. Finally, we performed Mendelian randomisation (MR) to explore 

bidirectional associations of the genetically predicted ECG phenogroups with 

cardiovascular traits and outcomes. 
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Methods 

Ethical approvals 

This study complies with all relevant ethical regulations. The Clinical Outcomes in 

Digital Electrocardiography (CODE) study was approved by the Research Ethics 

Committee of the Universidade Federal de Minas Gerais, protocol 

49368496317.7.0000.5149. The Whitehall II study was approved by the Joint 

University College London/University College London Hospitals Committees on the 

Ethics of Human Research. The UK Biobank has approval from the North West Multi-

Centre Research Ethics Committee as a Research Tissue Bank (application ID 

48666). The Longitudinal Study of Adult Health (ELSA-Brasil) was approved by the 

Research Ethics Committees of the participating institutions and by the National 

Committee for Research Ethics (CONEP 976/2006) of the Ministry of Health. The 

São Paulo-Minas Gerais Tropical Medicine Research Center (SaMi-Trop) study was 

approved by the Brazilian National Institutional Review Board (CONEP), No. 

179.685/2012. For the Beth Israel Deaconess Medical Center (BIDMC) cohort ethics 

review and approval was provided by the Beth Israel Deaconess Medical Center 

Committee on Clinical Investigations, IRB protocol # 2023P000042. 

 

ECG datasets 

(i) The CODE Cohort 

The CODE cohort is a database of 2,322,513 ECG records from 1,676,384 different 

patients of 811 counties in the state of Minas Gerais/Brazil from the Telehealth 

Network of Minas Gerais (TNMG). The cohort is linked to public mortality databases. 
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Patients over 16 years old with a valid ECG performed from 2010 to 2017 were 

included. Clinical data were self-reported. In a 15% stratified sample of the original 

cohort (CODE-15) an ECG was labelled “normal” according to conventional clinical 

reporting and based on automated interval measurements (10).  

 

(ii) ELSA-Brasil Cohort 

ELSA-Brasil is a cohort study of 15,105 Brazilian public servants, aged 35 to 74 at 

enrolment. All active or retired employees of six participating institutions were eligible 

for the study. The full inclusion criteria and protocol have been previously described 

(11). 13,739 subjects had ECG and outcome data available for analysis.  

(iii) The SaMi-Trop Cohort 

The SaMi-Trop cohort is a prospective cohort of 1,631 patients with chronic Chagas 

cardiomyopathy and has been previously described in detail (12). Briefly, the 

inclusion criteria were: (1) self-reported Chagas disease; (2) aged 19 years or more. 

Digital ECGs were performed in 2011-2012 by TNMG. 83% of this cohort had 

abnormal ECGs (13).  

(iv) The UK Biobank Cohort 

The UK Biobank is longitudinal study of over 500,000 volunteers aged 40-69 at the 

time of enrolment in 2006-2010 (14). At baseline assessment participants provided 

information on health and lifestyle via questionnaire, had physical measures taken 

(including height, weight, and blood pressure) and donated samples of blood urine 

and saliva. A subgroup of participants were invited back for subsequent visits for 
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additional investigations, including for detailed studies including cardiac magnetic 

resonance imaging (MRI), brain MRI and digital ECGs. 42,386 subjects with digital 

ECGs taken at the instance 2 visit were available for analysis. There is evidence of 

healthy volunteer selection bias (15). Outcomes were linked to cancer and death 

registry data, hospital admissions and primary care records. Major adverse 

cardiovascular events (MACE) was selected as the primary endpoint for this dataset 

given the low mortality rate in this healthy population and the additional data 

available. MACE was defined as: heart attack, stroke, heart failure diagnosis and all 

cause death. Detailed phenotyping using the cardiac MRI data has been previously 

described (16, 17) .  

(v) The Whitehall II Cohort 

The Whitehall II cohort has been previously described (18). Briefly, British civil 

servants were enrolled into this cohort and had repeated calls for medical 

investigations. Between 2007 and 2009 participants (n=5,066) had digital 12-lead 

ECGs performed, for 5 minutes. The first 10s of this recording was considered in our 

analysis. Causes of death were ascertained based on the information contained in 

the death certificate. The novel ECG parameters micro-QRS fragmentation and 

QRS-T angle have been previous applied to this cohort, the same values were used 

in our analysis (19).   

 

(vi) The BIDMC cohort 

The BIDMC cohort is a dataset comprised of routinely collected data from Beth Israel 

Deaconess Medical Center, Boston, USA. Subject over 16 years old with a valid 
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ECG performed from 2000 to 2023 were included. ECGs were linked to mortality 

records. The first ECG recorded per subject was used in this analysis. 188,972 

subjects were available for analysis.  

ECG pre-processing 

12-lead ECGs were pre-processed by removing the baseline drift and re-sampling to 

400hz. Zero padding resulted in a signal with 4096 samples for each lead for a 10s 

recording, that is used as input to the neural network model. 

Neural network-derived ECG features from CODE dataset 

The CODE dataset was previously used to train a CNN to detect six common ECG 

abnormalities (first-degree AV block, right bundle branch block (RBBB), LBBB, sinus 

bradycardia, atrial fibrillation (AF) and sinus tachycardia), as previously described (8). 

This model is referred to as CODE-CNN. The Keras framework with a TensorFlow 

backend was used for neural network training and inference (20, 21).  

 

Transfer learning can be used to repurpose a machine learning model trained for one 

task to another. We hypothesised the ECG features learned by the CODE-CNN 

could be used to cluster subjects into clinically meaningful phenogroups. In order to 

extract features of the CODE-CNN, the final classification layer of the model was 

removed (Figure 1) and the output of 5120 NN-derived ECG features is used to 

cluster the subjects.  
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Unsupervised machine learning for clustering into phenogroups 

In order to derive phenogroups using the 5120 features extracted using the CODE-

CNN model, K-means clustering was applied in the CODE dataset. k = 3 was 

selected using the elbow method (22). The sklearn package in Python was used to 

perform K-means clustering (23). In order to determine cluster assignment in the 

external validation cohorts, the 5120 features were extracted using CODE-CNN as 

described above for each ECG. The K-means model (trained on the NN-derived ECG 

features from the CODE dataset) was then used to identify the nearest cluster centre 

and therefore determine the cluster assignment for each ECG. There was no 

retraining or calibration performed when applying the CODE-CNN and K-means 

models to the external validation datasets.  

Survival analysis in derivation and external validation cohorts 

Survival analysis for the three phenogroups was first performed for the CODE 

dataset, and then in the four external validation datasets (UK Biobank, Whitehall II, 

ELSA Brasil, and SaMi-Trop). Survival analysis was repeated after excluding 

subjects with the six diagnoses identified by the CODE-CNN and also considering 

only physician-adjudicated normal ECGs in the CODE dataset. Descriptive statistics 

are displayed as medians (interquartile ranges) for continuous variables and 

numbers (percentages) for categorical variables. Kaplan-Meier plots were used to 

display cumulative mortality. The log rank test was used to compare survival curves.  

Cox proportional hazards regression modelling was used to estimate hazard ratios 

for mortality while correcting for other known variables. Recent work suggests 

virtually all real-world clinical datasets will violate the proportional hazards 
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assumptions if sufficiently powered and that statistical tests for the proportional 

hazards assumption may be unnecessary (24). In line with these recommendations, 

the proportional hazards assumption was not evaluated and the hazard ratio from our 

Cox models should be interpreted as a weighted average of the true hazard ratios 

over the follow-up period. The adjusted variables differed in each dataset depending 

on the data available. Statistical analyses were performed with R 4.0.0 statistical 

package (R Core Team, Vienna, Austria) or Python (version 3.9). 

Phenome-wide association study  

To explore more detailed phenogroup associations, we performed phenome-wide 

association studies (PheWAS).  We used two PheWAS approaches, firstly we used a 

Disease PheWAS to explore the association of ECG phenogroup with incident 

diseases and treatments. Using the BIDMC dataset we converted International 

Classification of Diseases (ICD) 9 and 10 codes into Phecodes as previously 

described (25). In order to remove prevalent disease, we removed any incident 

codes if ICD codes prior to the ECG also existed. Phecodes with under 20 cases 

were excluded. Logistic regression was performed to investigate the association 

between ECG phenogroup and incident disease. The second approach, Biobank 

PheWAS, used the UK Biobank that contains data from over 3000 phenotypes 

derived from patient measurements, surveys, and investigations. Univariate 

correlation was performed to investigate the association between ECG phenogroup 

and phenotypes. Highly correlated features (>95%), features with >90% missing data 

or with >95% of exactly the same value were discarded. We adjusted for multiple 

testing using Bonferroni correction. Given the very small number of subjects in 
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phenogroup C, subjects in phenogroup C were excluded from these analyses. 

Effects of age and sex were regressed out of the ECG phenogroup variable. 

PheWAS analyses were performed in Python (version 3.9). 
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Genome-wide association study 

To identify genetic associations with the ECG phenogroups, we performed a 

genome-wide association study (GWAS). Subjects in phenogroup C were excluded 

from this analysis, due to the small number of subjects, as described above for 

PheWAS. Using linear regression, a binary phenogroup variable was adjusted for the 

following covariates: age at imaging visit, sex, height, body mass index (BMI), 

imaging assessment centre, the first 10 genetic principal components, and 

genotyping array batch. Standard quality control was undertaken. Included single 

nucleotide polymorphisms (SNPs) had a minor allele frequency (MAF) >0.1% and an 

imputation INFO score of >0.4. Unrelated individuals of genetically-determined 

European ancestry were included as previously described (26). The GWAS was 

undertaken using FastGWA mixed linear model association analysis through the 

Genome-wide Complex Trait Analysis software using a genetic relationship matrix 

(GRM) to adjust for population structure (27). The Manhattan plots depict the nearest 

gene. Top SNPs were identified that had a P-value <5x10-8. Associations of the 

detected SNPs were evaluated using the NHGRI-EBI GWAS Catalog, 

PhenoScanner, GTEx, and GeneAtlas UK Biobank PheWAS browser. 

Model explainability 

In order to understand the elements of the ECG contributing most significantly to 

phenogroup determination we modified a commonly used technique in computer 

vision, Gradient-weighted Class Activation Mapping (Grad-CAM) (28). A signal 

importance map for a given input of a 12-lead ECG signal was computed. First, the 

final layer of the original trained CNN is removed, and a new layer with a fixed 
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operation is added. This layer takes the 5120 features from the trained CNN and 

computes its Euclidean distance to the centre of three phenogroup clusters, which 

results in three distance scores. Using softmin, these distance scores are mapped to 

probability scores. Using Grad-CAM, for a given input, we compute the gradient of 

weights of the first convolution layer with respect to the probability score for a 

specified phenogroup (e.g., phenogroup A). The output of the first layer for a given 

input is then multiplied by an average gradient of respective channels, and finally, the 

positive values are taken as the importance score for the saliency map. To extract 

the generalised saliency map for each phenogroup, 1000 ECGs from the centre of 

the three phenogroup clusters (approximately equidistant from all three cluster 

centroids) were taken. After computing saliency maps, each 10s ECG was averaged 

to one beat per lead by aligning beats with R-peaks. Similarly, the respective saliency 

map of each 10s was averaged to a single beat. A generalised saliency map for a 

cluster was computed by averaging (median) all the 1000 saliency maps. While 

plotting the generalised saliency map, single beats of all the 1000 ECGs were also 

averaged (mean) to one beat per lead.
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Results 

An overview of the analysis pipeline is provided in Figure 1. 

 

Derivation cohort 

Using the first recorded ECG per patient, 1,558,421 ECGs in the CODE dataset were 

available. Patients were followed up for a mean of 3.68±1.87 years. 52,127 (3.3%) 

subjects died during the follow-up period. Using a hybrid ML pipeline (Figure 1), 

three phenogroups were identified.  

Survival analysis  

Our survival analysis demonstrated the 3 phenogroups had different mortality profiles 

(Figure 2A). Phenogroup B had a 2.57-fold higher risk of mortality compared to 

phenogroup A, while phenogroup C had a 15% lower risk (phenogroup B vs A, 

hazard ratio (HR) 2.57, 95% CI 2.51-2.63, p<0.001; phenogroup C vs A, HR 0.85, 

95% CI 0.82-0.87, p<0.001). The prognostic significance of the phenogroups was 

retained, after adjusting for known covariates (age, gender, known cardiovascular 

comorbidities and the six ECG diagnoses on which the neural network was trained). 

In these adjusted analyses, phenogroup B (highest mortality) had a 1.2-fold increase 

in long-term mortality compared to phenogroup A (HR 1.20, 95% CI 1.17-1.23, p < 

0.0001). 

 

We then evaluated the performance of the phenogroups in the group of patients 

without any of the six diagnoses for which CODE-CNN was originally trained. 
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Importantly, the predictive ability of the phenogroups was retained in this group 

(n=1,412,285, Figure 2B). We also analysed a subgroup of patients with physician-

adjudicated normal ECGs (n = 92,138). In this analysis, phenogroup B retained 

prognostic significance (phenogroup B vs A, HR 1.65, 95% CI 1.43-1.92, p < 0.0001) 

(Figure 2C). 

External validation 

We then externally validated our findings in five diverse cohorts. There were 5,066 

subjects available for analysis in the Whitehall II study. For this analysis events were 

censored at 5 years of follow-up. 163 (3.22%) subjects died during this period. In the 

UK Biobank, there were 42,386 subjects available for analysis. Patients were 

censored at the time of their first event and 411 (0.97%) subjects died during the 

follow-up period of 3.73±1.57 years. Given the comparatively significantly lower 

mortality rate and the additional data available in the UK Biobank, the primary 

endpoint for this dataset was specified as MACE (definition described methods). 967 

(2.3%) of subjects had a MACE event during follow-up. The ELSA-Brasil cohort had 

13,739 subjects available for analysis. Mean follow-up was 9.35±1.28 years and 599 

(4.4%) subjects died during follow up. The SaMi-Trop cohort had 1,631 subjects 

available for analysis. Mean follow-up period was 2.08±0.39 years and 104 (6.38%) 

subjects died during the follow-up period. Lastly, the BIDMC cohort consists of a 

secondary care population. 188,972 subjects were available for analysis. Mean 

follow-up period was 5.46±5.81 years and 34,851 (18.4%) subjects died during 

follow-up.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2023. ; https://doi.org/10.1101/2023.06.15.23291428doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291428
http://creativecommons.org/licenses/by/4.0/


18 

The prognostic significance of the phenogroups was demonstrated in all of the 

external cohorts (Figure 3). In the volunteer cohorts (Whitehall II, UK Biobank and 

ELSA-Brasil), phenogroup C had very limited representation and therefore was 

excluded from analysis. This may be due to the relatively selected population 

enrolled into these cohorts. Cox regression models adjusted for known covariates 

showed the Phenogroup B retained its prognostic significance in the CODE, UK 

Biobank, Whitehall II and BIDMC cohorts, but not ELSA-Brasil. Importantly, this 

included adjustment for standard ECG parameters in the UK Biobank and Whitehall II 

cohorts.  

To investigate the prognostic significance of the phenogroups in a more specific 

disease context, the SaMi-Trop cohort was analysed. In contrast to the volunteer 

cohorts described above (who would be expected to largely have relatively normal 

ECGs), most patients in the SaMi-Trop cohort had abnormal ECGs (13). In this 

cohort of patients with chronic Chagas cardiomyopathy, the three phenogroups had 

marked prognostic significance (Figure 3D). 

 

We went on to perform survival analysis on the subset of ECGs without any of the 

original rhythm/conduction diagnoses for which CODE-CNN was trained. 

Phenogroup B had a statistically significant higher mortality in the UK Biobank, 

Whitehall II and BIDMC cohorts. Phenogroup B trended towards higher mortality but 

was non-significant for SaMi-Trop (p = 0.05) and ELSA-Brasil (p = 0.11).  
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Phenome-wide association study 

In order to evaluate phenotypic associations with the ECG phenogroups, we 

performed PheWAS using two approaches. Firstly, we evaluated incident disease in 

the BIDMC cohort (Figure 4A). We found the high-risk phenogroup (Phenogroup B) 

was associated with a significantly higher rate of future atrial fibrillation (OR 2.89, p < 

0.00001), ischaemic heart disease (OR 1.44, p < 0.00001), atrioventricular block (OR 

4.88, p < 0.00001), cardiomyopathy (OR 2.04, p < 0.00001), ventricular tachycardia 

(OR 2.00, p < 0.00001) and cardiac arrest (OR 6.68, p < 0.00001). Secondly we 

investigated phenotypes in the UK Biobank. The non-ECG phenotypes included 

broad categories of blood biomarkers, cardiac MRI features, family history, 

geographical factors, health outcomes, imaging parameters, lifestyle factors, physical 

measures, reproductive factors, and socioeconomic factors. Figure 4B shows the 

Manhattan plot of the univariate correlation P-values and correlation coefficients 

between ECG phenogroup and non-ECG phenotypes. 512 of 3142 comparisons 

reached the Bonferroni threshold for significance. The most significant PheWAS 

associations were in the cardiac MRI and physical measures categories. These 

include left ventricular (LV) and right ventricular (RV) end-systolic volume (ESV) and 

end diastolic volume (EDV), right atrial volume and LV stroke volume (SV) which 

positively correlated with phenogroup B (higher MACE event rate). Left ventricular 

ejection fraction (LVEF), right ventricular ejection fraction (RVEF) and measures of 

left ventricular strain were negatively correlated. Significant physical measures that 

were negatively correlated with phenogroup B: heart rate and arterial stiffness 

measures, systolic and diastolic blood pressure (BP), and maximum heart rate during 

a fitness test. Significant non-cardiac phenotypes included measures of bone mineral 
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content (BMC), snoring and alcohol intake and carotid intima-media thickness (IMT), 

which were positively correlated with phenogroup B. The findings were similar when 

analysing only ECGs without any of the original rhythm/conduction diagnoses for 

which the neural network was trained (n=38,759). 

 

ECG parameters also significantly correlated with phenogroup. Increased QRS 

duration, PR interval and QT interval, positively correlated with phenogroup B. 

Genome-wide association study 

To identify genotypic associations with the phenogroups, a single-trait GWAS was 

conducted using 12.7 million variants in 31,119 subjects from the UK Biobank. The 

GWAS yielded four loci (Figure 5) which were confirmed through expression 

quantitative trait loci (eQTLs) for Sodium Voltage-Gated Channel Alpha Subunit 10 

(SCN10A), Sodium Voltage-Gated Channel Alpha Subunit 5 (SCN5A), Caveolin 1 

(CAV1), and Rho GTPase Activating Protein 24 (ARHGAP24). The lead variant for 

SCN10A has been previously significantly associated with atrial fibrillation and flutter, 

and cardiac conduction (29). CAV1 has been previously associated with QRS 

duration, PR interval and QT interval while SCN5A and SCN10A have previously 

well-described roles in cardiac rhythm and conduction phenotypes (29, 30, 31, 32). 

ARHGAP24 has been previously associated with ECG parameters including PR 

interval, QRS duration and QT interval (33, 34, 35), however, our analysis has 

identified for the first time ARHGAP24 as a gene associated with a prognostically 

significant phenogroup. The findings were similar when analysing only ECGs without 
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any of the original rhythm/conduction diagnoses for which the neural network was 

trained. 

Model explainability 

In order to better understand the reasons for phenogroup classification by the hybrid 

ML model, we used a modified Grad-CAM approach (28). Figure 6 shows the 

average saliency map for 1000 ECGs from the centre of the three phenogroup 

cluster centroids. The terminal part of the QRS complex and T wave were most 

important for identification of the high risk phenogroup (Phenogroup B).

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2023. ; https://doi.org/10.1101/2023.06.15.23291428doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291428
http://creativecommons.org/licenses/by/4.0/


22 

Discussion 

In this study, we explored NN-derived ECG features to identify ECG phenogroups 

with prognostic significance and explored their phenotypic and genetic associations. 

We undertook extensive external validation across a wide range of subjects from four 

datasets - healthy volunteers to patients with cardiomyopathy, normal to abnormal 

ECGs, North and South American to European – and showed that the prognostic 

significance of the phenogroups was consistent across all datasets. Our analysis 

covers, to our knowledge, the largest ever mortality-linked analysis of a total of 

1,810,215 subjects with robust and diverse external validation. Using PheWAS, we 

provide insight into the cardiac and non-cardiac phenotypes associated with the 

phenogroups. GWAS identified genetic associations primarily related to cardiac 

conduction and arrhythmia. MR analysis identified bidirectional pathways between 

the phenogroups and cardiovascular traits and outcomes. We have shown the 

significant potential of NN-derived ECG features, as a highly transferable and 

potentially universal risk marker that may be applied to a wide range of clinical 

contexts.  

Prognostic significance  

We demonstrated that NN-derived ECG features can be used to derive phenogroups 

with clear prognostic significance. Although our model may in part be using existing 

ECG markers such as QRS duration, QRS micro-fragmentation and bundle branch 

block morphology (1, 2, 19), in adjusted analyses, we have shown the ECG 

phenogroups provide additive prognostic information beyond these. 
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When applied to the three volunteer cohorts (UK Biobank, Whitehall II, and ELSA-

Brasil), and secondary care cohort (BIDMC) phenogroup B retained its prognostic 

significance despite the fact that these cohorts were demographically markedly 

different to the derivation cohort. In contrast to these volunteer groups, the SaMi-Trop 

cohort provides an insight into the prognostic significance of the ECG phenogroups in 

a very different context, in established disease in the form of Chagas 

Cardiomyopathy, where the three phenogroups show marked separation in mortality 

curves. This analysis shows the potential for these NN-derived features and 

phenogroups to be applied to a diverse range of disease specific cohorts and clinical 

problems, such as a broader cardiomyopathy cohort or inherited cardiac conditions 

such as hypertrophic cardiomyopathy.  

Biological insights 

First, a Disease PheWAS in the BIDMC dataset highlighted several important 

incident diseases that may mediate the increased mortality seen in Phenogroup B, 

including arrhythmia, conduction disease, heart failure and ischaemic heart disease. 

Targeting screening and treatment towards these diseases is one potential strategy 

for reducing risk in Phenogroup B.  

 

Second, by leveraging the extremely deep phenotyping performed in the UK 

Biobank, we explored the potential biological mechanisms underlying the 

associations of the ECG phenogroups with survival.  Our Biobank PheWAS analysis 

has identified reduced right and left ventricular ejection fraction and abnormalities in 

cardiac conduction/repolarisation as potential biological mechanisms underlying the 
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differences in prognosis of the ECG phenogroups. We report several cardiac MRI 

associations with the higher risk phenogroup, including lower LVEF, RVEF and left 

ventricular strain that have been previously associated with higher mortality (36, 37, 

38) and support the association with increased heart failure and cardiomyopathy 

seen in the Disease PheWAS. Similarly, increased carotid IMT reflects 

atherosclerotic burden which supports the association with increased atherosclerosis 

and ischaemic heart disease seen in the Disease PheWAS (39). In contrast, higher 

heart rate was negatively correlated with the higher risk phenogroup, this may be due 

to the U-shaped relationship where both low and high heart rates are associated with 

increased mortality (40).  

 

The higher risk phenogroup was associated with increased PR interval, QRS 

duration and QT interval. Increased QRS duration and QT interval have been 

previously associated with higher morality (41, 42) however increased PR interval 

was not previously found to be associated with increased mortality (43). Importantly, 

our analyses in the UK Biobank and Whitehall II cohorts have shown that ECG 

phenogroup adds prognostic significance beyond basic ECG parameters.  

 

Grad-CAM highlighted the terminal QRS complex, which may represent conduction 

slowing, and the terminal T wave, which may represent repolarisation heterogeneity 

as important factors in identifying the high risk phenogroup. These factors have been 

previously related to adverse prognosis, which provides further reassurance to the 

biological relevance of our findings (44, 45).  
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Genome wide-association study 

Phenogroups identified from NN-derived ECG features had significant genetic 

correlates that provide a plausible mechanistic pathway for the difference in 

prognosis between phenogroups. The lead variants identified here are in genes with 

established roles in cardiac electrophysiology: SCN5A, SCN10A and CAV1 (29, 30, 

31, 32). SCN5A and SCN10A encode the sodium channels Nav1.5 and Nav1.8 

respectively. Nav1.5 is responsible for the initiation of the cardiac action potential via 

the inward sodium current. Mutations in SCN5A and SCN10A have been identified as 

a cause of inherited syndromes such as Brugada syndrome (46, 47) and dilated 

cardiomyopathy (48). A role in heart failure and sudden death in ischaemic heart 

disease has also been described (48, 49).  CAV1 encodes caveolin-1 which is a 

cytoplasmic membrane-anchored scaffolding protein that co-localises to the atria and 

has been linked to atrial fibrillation, ECG parameters and ventricular arrhythmias (32, 

50, 51). ARHGAP24 encodes Rho-GTPase-activating protein 24 which is a key 

regulator of angiogenesis and is involved in cell polarity, cell morphology and 

cytoskeletal organization, but does not have an established role in the heart (52). The 

association between ARHGAP24 and ECG parameters has been previously 

described, however the mechanism is unclear (33, 34, 35). In our study, we have 

shown a novel association between ARHGAP24 and a prognostically significant ECG 

phenogroup. Our findings suggest that propensity to conduction system disease and 

arrhythmia may lie on the causal pathway between these variants and the increased 

mortality seen in phenogroup B.  
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Comparison to previous machine learning approaches for ECGs 

Other studies have used supervised machine learning to predict mortality (53, 54). 

This approach broadly involves mortality labels being provided to the machine 

learning model, which can then ‘learn’ the important features predictive of mortality. 

In contrast, an unsupervised approach involves the machine learning model 

clustering subjects based on features without knowledge of the mortality label. Given 

the ability of unsupervised or self-supervised models to ‘learn’ from massive amounts 

of data without knowledge of outcome labels, there is significant potential to apply 

these methods to clinical data, where outcome labels may be lacking.  

 

Unsupervised machine learning has also previously been applied to ECGs for 

various applications. Recent studies have used a variational auto-encoder to 

evaluate a median ECG signal and compress it to 32 factors, these were then used 

to perform classification tasks using a supervised machine learning model or 

traditional statistics (55, 56). In this case, unsupervised machine learning was used 

only for feature extraction compared to our novel approach that successfully 

identifies clinically relevant phenogroups with no mortality labels used in model 

training. In contrast, Feeny et al applied unsupervised machine learning to the QRS 

waveforms themselves in patients who had cardiac resynchronisation therapy (CRT) 

devices implanted for heart failure and identified two prognostically important 

subgroups, with significance beyond the commonly used parameters of QRS 

duration and left bundle branch block. Their method of feature extraction used 

principal component analysis, compared to the deep learning approach used in our 
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study. Our deep learning approach has the potential to identify more complex, non-

linear, relationships between elements of the ECG.  

Potential clinical applications of NN-derived ECG features 

Using a hybrid machine learning approach, we have described for the first time a 

novel method to identify high-risk subjects from the ECG alone. Through robust and 

diverse external validation, we have demonstrated the relevance of the ECG 

phenogroups in a wide range of clinical contexts. The addition of ECG phenogroup 

may significantly improve the performance of risk prediction algorithms, and therefore 

aid management decisions.  

 

NN-derived ECG features could potentially be applied to risk stratification of a 

general population to identify high-risk individuals for more intensive investigation 

and follow-up and lower risk individuals who may be reassured. In disease-specific 

cohorts such as heart failure and cardiomyopathy, NN-derived ECG features may be 

applied to assess risk and guide more intensive medical therapy, implantable 

devices, or transplantation consideration. These potential applications however 

require further evaluation in the appropriate populations, in prospective studies.  

Limitations 

We have described the novel application of NN-derived ECG features for risk 

prediction, and externally validated our findings in a diverse population. The 

volunteer cohorts of the UK Biobank, Whitehall II and ELSA-Brasil are selected 

populations. This may explain the absence of phenogroup C in these cohorts. This 
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however does not detract from the phenogroup performance in these cohorts and in 

fact strengthens the findings given the diverse groups in which they were tested. 

Detailed explainability for deep learning models is challenging. Although some 

information can be obtained through importance maps, we are unable to provide 

detailed understanding into the reasons for phenogroup classification. The Biobank 

PheWAS and GWAS analyses were performed in a population with predominantly 

European ancestry (UK Biobank) and findings therefore may not be generalisable 

globally.  

Conclusion 

We describe the use of NN-derived ECG features, derived from an established AI-

ECG model trained to identify 6 common diagnoses, to identify prognostically-

significant phenogroups from the 12-lead ECG. We explored the biological basis 

underlying the difference in prognosis between the phenogroups, and identified 

phenotypic and genotypic associations through PheWAS and GWAS. We validated 

our findings in five external datasets across two continents and diverse patient 

populations. NN-derived ECG features have important applications beyond the 

original model from which they are derived and may be transferable and applicable 

for risk prediction in a wide range of settings, in addition to mortality prediction. 
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Data availability 

SaMi-Trop cohort was made openly available 

(https://doi.org/10.5281/zenodo.4905618). The CODE-15% cohort was also made 

openly available (https://doi.org/10.5281/ zenodo.4916206). Restrictions apply to 

additional clinical information on the CODE-15% and SaMi-Trop cohorts; to the full 

CODE cohort, the ELSA-Brasil cohort, and the Whitehall II cohort. UK Biobank data 

are available upon application (http://www.ukbiobank.ac.uk/). The BIDMC dataset is 

restricted due to ethical limitations. Researchers affiliated to educational, or research 

institutions may make requests to access the datasets. Requests should be made to 

the corresponding author of this paper. They will be forwarded to the relevant 

steering committee.  
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Figure 1 
Data analysis pipeline: (A) Hybrid machine learning approach with combination of 
supervised and unsupervised machine learning to use NN-derived ECG features to 
identify phenogroups from the 12-lead ECG. 5120 NN-derived ECG features was 
extracted from the penultimate layer of the supervised model. K-means clustering 
was then applied to identify 3 phenogroups. (B) Flow of data and analyses performed 
in this study. AF: atrial fibrillation, AVB: atrioventricular block, LBBB: left bundle 
branch block, RBBB: right bundle branch block, ECG: electrocardiogram, ML: 
machine learning, Grad-CAM: Gradient-weighted Class Activation Mapping, 
PheWAS: phenome-wide association study, GWAS: genome-wide association study, 
MR: mendelian randomisation, CODE: Clinical Outcomes in Digital 
Electrocardiography, ELSA-Brasil: Brazilian Longitudinal Study of Adult Health, SaMi-
TROP: São Paulo-Minas Gerais Tropical Medicine Research Center, BIDMC: Beth 
Israel Deaconess Medical Center.   
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Figure 2  
Survival analysis in the derivation dataset: The 3 phenogroups have prognostic 
significance, with phenogroup B having a markedly worse prognosis. Data are shown 
for: (A) whole Clinical Outcomes in Digital Electrocardiography (CODE) cohort, (B) 
CODE cohort with removal of subjects with any of the following diagnoses on the 
ECG: 1st degree atrioventricular block, right bundle branch block, left bundle branch 
block, sinus tachycardia, sinus bradycardia and atrial fibrillation. (C) Subset of the 
CODE cohort with normal ECGs.  
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Figure 3 
Survival analysis in the five external validation datasets: In the volunteer 
populations (Whitehall II, UK Biobank and Brazilian Longitudinal Study of Adult 
Health (ELSA-Brasil)) phenogroup C has very few subjects and therefore is 
excluded. Phenogroup B has a significantly higher event rate. (A) Whitehall II cohort 
(B) UK Biobank, survival free of major adverse cardiovascular events is depicted (C) 
ELSA-Brasil cohort, (D) São Paulo-Minas Gerais Tropical Medicine Research Center 
(SaMi-TROP) cohort, (E) Beth Israel Deaconess Medical Center (BIDMC) cohort.  
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Figure 4 
Phenome-wide association study: Manhattan plot showing negative logarithm of 
the univariate correlation P-value between phenotypes for BIDMC disease 
Phecodes, Disease PheWAS (A) and correlation coefficient for UK Biobank 
phenotypes, Biobank PheWAS (B). Small points depict associations not reaching 
statistical significance, while large points crossed the Bonferroni threshold for 
statistical significance. MRI: magnetic resonance imaging, EDV: end-diastolic 
volume, ESV: end-systolic volume, RV: right ventricle, LV: left ventricle, RAV: right 
atrial volume, SV: stroke volume, BMC: bone mineral content, IMT: intima-media 
thickness 
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Caveolin-1 – AF, ventricular arrhythmias

Rho-GTPase-activating protein 24 – involved in angiogenesis, cardiac role unclear

Figure 5 
Genome-wide association study: Manhattan plots of genomic loci associated with ECG phenogroup. Nearest genes are annotated on the plot. 
The red line depicts the genome-wide significant threshold (P<5 x 10-8). DCM: dilated cardiomyopathy, SCD: sudden cardiac death, AF: atrial 
fibrillation 
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Figure 6 
Model explainability: Gradient-weighted Class Activation Mapping (Grad-CAM) is used to generate importance maps showing the sections of 
the ECG signal deemed most important for phenogroup determination. Average saliency of 1000 ECGs from the centre of each cluster is shown. 
Areas marked with green show the terminal QRS and terminal T wave are important for identification of the high-risk phenogroup (phenogroup 
B).  
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