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 2

ABSTRACT 27 
  28 
Genome-wide association studies (GWAS) have been remarkably successful in identifying 29 

associations between genetic variation and imaging-derived phenotypes. To date, the main 30 

focus of these analyses has been established, clinically-used imaging features. Here, we 31 

sought to investigate if deep learning approaches can help detect more nuanced patterns of 32 

image variability. To this end, we used an autoencoder to represent retinal optical coherence 33 

tomography (OCT) images from 31,135 UK Biobank participants. For each study subject, we 34 

obtained a 64-dimensional vector representing features of retinal structure. GWAS of these 35 

autoencoder-derived imaging parameters identified 118 statistically significant loci; 17 of 36 

these associations also reached genome-wide significance in a replication analysis that 37 

included 10,409 UK Biobank volunteers. These loci encompassed variants previously linked 38 

with retinal thickness measurements, ophthalmic disorders and/or neurodegenerative 39 

conditions (including dementia). Notably, the generated retinal phenotypes were found to 40 

contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we 41 

demonstrate that self-supervised phenotyping of OCT images enhances the discoverability 42 

of genetic factors influencing retinal morphology and provides epidemiologically informative 43 

biomarkers. 44 

 45 

KEYWORDS: autoencoder, U-Net, retinal imaging, optical coherence tomography, imaging-46 

derived phenotypes 47 
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MAIN TEXT 49 

 50 

INTRODUCTION 51 
  52 
Imaging technologies have greatly enhanced the scope and precision of phenotype 53 

discovery. A wide range of imaging-derived phenotypes are easily amenable to human 54 

identification and are routinely used in biomedical contexts, including in clinical practice 55 

(Oren 2020). However, to capture the complexity of human biology, there is a need to go 56 

beyond traditional clinically-focused and/or expert-curated imaging features (Gong 2022). 57 
  58 
Artificial neural networks (ANN) are machine-learning models inspired by information 59 

processing in biological neural networks (LeCun 2015; Hinton 2018; Hasson 2020). ANNs 60 

can be used to extract granular information from images without introducing certain biases 61 

associated with human curation. An autoencoder is a type of ANN that is designed to 62 

transform an input set of data into a lower-dimensional code (i.e. a set of latent space 63 

variables or ‘embeddings’) and then to recreate the input from the encoded representation 64 

(Hinton 2006; Michelucci 2022). Broadly, autoencoders can be used to efficiently compress 65 

an image by identifying the key features that lead to optimal reconstruction performance.  66 
  67 
The most optically accessible part of the central nervous system is the retina, the 68 

multilayered tissue that lines the back of the eyes. The retina is particularly vulnerable to 69 

disease, and disruption of its normal architecture (e.g. in conditions like age-related macular 70 

degeneration or glaucoma) can lead to visual disability (Sheffield 2011; Zhao 2023). 71 

Examination of the retina relies, to a great extent, on imaging, especially the use of optical 72 

coherence tomography (OCT). OCT is a non-invasive, non-contact method for cross-73 

sectional imaging that has a resolution approaching that of histopathology (Bouma 2022). 74 

Application of ANN-based algorithms in OCT image processing is attracting increasing 75 

attention with key advantages including the rapid speed, high consistency and quantitative 76 

nature of the analyses (De Fauw 2018; Yim 2020; Keenan 2021; Diaz-Pinto 2022). 77 
  78 
To date, genetic studies of imaging phenotypes have mostly focused on features associated 79 

with long-established clinical diagnostic processes (Xie 2022). In our own previous work, we 80 

used standardised OCT-derived thickness measurements of the inner (Currant 2021) and 81 

outer (Currant 2023) retinal layers to good effect, discovering new genetic associations and 82 

exploring relationships with disease. Here we performed genomic analyses on OCT imaging 83 

phenotypes extracted using a self-supervised autoencoder-based approach. We highlight 84 

the autoencoder’s ability to derive biologically meaningful phenotypes (with association to 85 
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genetic variants not seen in previous studies), and to contribute to predictive models for 86 

health outcomes such as glaucoma and cardiovascular conditions. 87 

  88 
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RESULTS 89 

 90 

Obtaining autoencoder-derived phenotypes from OCT images 91 
  92 
We used OCT images from the UK Biobank, a biomedical resource containing genomic and 93 

health information from >500,000 individuals (Bycroft 2018). After applying standard genetic 94 

and OCT quality control filters (Patel 2016; Currant 2021), we defined a subset of the UK 95 

Biobank population that (i) can be considered genetically well-mixed (i.e. includes 96 

participants that were assigned by genotype principal component analysis (PCA) to a cluster 97 

with subjects of mostly European-like ancestries) and (ii) only contains individuals with high-98 

quality OCT images. This cohort included 31,135 individuals and had a similar sex and age 99 

profile to the overall UK Biobank population (Currant 2023) (Supplementary Fig.1). Most 100 

study subjects were female (54%) and self-identified as White British (91%). The mean age 101 

at OCT imaging was 56 years (standard deviation: 8 years). 102 
  103 
Study subjects had an OCT ‘volume scan’ of the central retina in each eye. Each volume 104 

scan contained 128 cross-sectional images and was generated using a horizontal raster 105 

scanning protocol. To extract thickness information and to compress these 128 images into 106 

a single retinal ‘thickness map’, we developed an ANN algorithm involving a U-Net 107 

architecture (Ronneberger 2015) (Fig.1; Methods). 108 
  109 
The 31,135 left eye retinal thickness maps that we generated were then used as input to an 110 

autoencoder. This was trained end-to-end for 150 epochs utilising 2500 training and 500 test 111 

images. We explored various embedding dimensionalities and opted for a 64-dimensional 112 

vector (i.e. the latent space or ‘bottleneck layer’ contained 64 features) (Fig.1; Methods). It 113 

has been previously shown that this autoencoder architecture can sufficiently represent 114 

datasets of similar complexity (Schroff 2015; Song 2015). A reconstruction error of 0.0037 115 

was obtained (Supplementary Fig.2). 116 
  117 
The univariate distributions of the 64 embeddings are shown in Supplementary Fig.3. 118 

Mostly unimodal or bimodal distributions were observed.  119 
 120 
To create an alternative representation allowing information to be combined across different 121 

variables within the latent space, we used the 64 embeddings as input to a PCA. The first 25 122 

principal components, representing 98.5% of the variance within the embeddings, were 123 

studied further and used for genetic association tests. 124 

 125 

 126 

 127 
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 128 

 129 

 

Figure 1. Outline of the experimental approach. OCT images from the central retinae of 67,321 UK Biobank 
participants were analysed. After applying quality control (QC) filters considering genetic information and 
image quality, a cohort of 31,135 study subjects was identified. Aiming to generate retinal ‘thickness maps’ for 
these individuals, OCT image segmentation was performed using an artificial neural network (U-Net) 
approach. In brief, 100 OCT images were manually segmented and the generated segmentation masks 
(examples shown in yellow) were used as input to the U-Net which subsequently segmented all other images. 
This allowed conversion of the 128 cross-sectional images obtained from each tested eye into a single 
thickness map image. The thickness maps of the left eyes were then used as input to an autoencoder. This 
was trained utilising 2500 training and 500 test images. The output of the embedding network was designed to 
be a 64-dimensional vector (i.e. 64 variables were obtained for each study subject). These 64 autoencoder-
derived embeddings were then used for genetic association studies, correlation analyses and predictive 
modelling. 

 130 
  131 
Genetic association studies of autoencoder-derived OCT phenotypes 132 
  133 
To look for genetic factors associated with the obtained autoencoder-derived embedded 134 

features (i.e. the 64 embeddings and the first 25 embedding-related principal components), 135 

we performed common-variant genome-wide association studies (GWAS). We used 136 

REGENIE (Mbatchou 2021) and incorporated the following set of covariates into the model: 137 

age at recruitment, sex, height, weight, refractive error and genetic principal components 1 138 

to 20. Notably, each embedded feature was inverse rank normalised prior to performing 139 

genetic association testing. As we anticipated a degree of correlation between autoencoder-140 

derived phenotypes, we also conducted a multi-trait meta-analysis using MTAG (Turley 141 
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2018). This involved identifying genetically correlated embeddings and leveraging these 142 

relationships to obtain adjusted GWAS results for each of the 64 embeddings (Methods). 143 
  144 
Overall, 418,312 association signals from 17,022 common variants reached the genome-145 

wide significance threshold (p-value < 5 x 10-8) (Table 1; Fig.2). These merged into 239 lead 146 

loci following analysis with GCTA-COJO (conditional and joint multiple-variant analysis) 147 

(Yang 2012) (Supplementary Table 1); 118 of these remained significant when a 148 

conservative/higher (“study-wide”) threshold was used to account for all the different 149 

association routes that were utilised (p-value < 3.2 x 10-10 following Bonferroni correction for 150 

153 tests).  151 
 152 
A replication study was conducted using OCT scans from 10,409 UK Biobank participants 153 

that were not included in the primary analysis. There was a high level of concordance in the 154 

findings of the two association studies (Supplementary Fig.4). A total of 17 loci passed both 155 

the conservative study-wide threshold (p-value < 3.2 x 10-10) in the primary analysis and the 156 

conventional genome-wide threshold (p-value < 5 x 10-8) in the replication study. Most of 157 

these loci encompass variants previously linked to retinal layer thickness parameters 158 

(including around LINC00461, TSPAN10 and COBL (Gao 2019; Currant 2021; Currant 159 

2023) while a subset of them has also been linked to monogenic retinal disorders (including 160 

RDH5 [retinal dystrophy], TYR [albinism] and GNB3 [congenital stationary night blindness]) 161 

(Table 2; Supplementary Table 1).  162 
  163 
For each of the 118 lead loci that were found to be significant in the primary analysis (p-164 

value < 3.2 x 10-10), we compared the retinal thickness maps of heterozygotes for the key 165 

variant to that of homozygotes. Interestingly, some genetic alterations appeared to have 166 

recessive effects (e.g. rs62075722) while others appeared to have dominant effects (e.g. 167 

rs11051131); topographical variation was also noted (Supplementary File 1).    168 
  169 
Our primary analysis identified notable associations between multiple embeddings and a 170 

locus encompassing the MAPT (microtubule-associated protein tau) gene. The detected 171 

signal appears to be driven by a common ancestral genomic inversion at 17q21.31 (Fig.3A) 172 

(Stefansson 2005; Espinosa 2023). Using the pattern of alternative alleles across this 173 

genomic region, we were able to classify 487,409 UK Biobank participants as either 174 

reference:reference (no inversion), reference:inversion (heterozygous inversion) or 175 

inversion:inversion (homozygous inversion) (Fig.3B). Similarly to previous studies (Steinberg 176 

2013), we found that the 17q21.31 inversion is common in individuals of European-like 177 

ancestries, rare in individuals of African-like ancestries and very rare in Asian-like 178 

populations (allele frequency of 0.22, 0.01 and 0.004 respectively). When we compared the 179 

retinal thickness profiles between study subjects that carry heterozygous and homozygous 180 
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inversion genotypes, we found that the 17q21.31 inversion appears to affect retinal thickness 181 

in an apparently recessive pattern (Fig.3C). We then performed a phenome-wide 182 

association study (PheWAS) of the 17q21.31 inversion using disease-related ICD10 codes. 183 

After Bonferroni correction, we found six statistically significant signals for ICD10 codes, 184 

including one for Parkinson disease (G20; p-value = 5.3 x 10-7; beta -0.61) (Fig.3D). 185 

 186 

 

Figure 2. Genome-wide association studies of autoencoder-derived retinal OCT phenotypes (primary 
analysis). 
[A] Manhattan plot showing the p-values obtained from common-variant GWAS of embedded features (64 
embeddings and first 25 embedding-related principal components). Signals that reached genome-wide 
significance (p-value < 5 x 10-8) only in embedding variable analyses are highlighted with dark blue. Signals 
that reached genome-wide significance only in analyses of embedding-related principal components are 
highlighted with orange. Signals that reach genome-wide significance only in MTAG of embedding variables 
are highlighted with green. All other genome-wide significant signals are highlighted with cyan. 
[B] Venn diagram showing the overlap of lead signals among: conventional GWAS of the 64 embeddings 
(“encoder” group in light blue); MTAG of the 64 embeddings (“MTAG” group in light green) and conventional 
GWAS of the first 25 embedding-related principal components (“PCA” group in light orange). 
[C] Genomic inflation factor lamda (λ) for 64 embedding-, 64 MTAG- and 25 PCA-GWAS (median λGC = 
1.016). 

 187 

 188 
 189 
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Table 1. Comparative analyses of conventional and MTAG GWAS results (primary analysis) 

 GWAS 
64 embeddings 

MTAG 
64 embeddings 
 

GWAS 
25 PCAs 

Total genetic variants  (p-value < 5 x 10-8) 14,885 9,520 11,075 

Lead genetic variants  (p-value < 5 x 10-8) 443 99 157 

GWAS, genome-wide association study; MTAG, multi-trait analysis of GWAS; PCA, principal component 
analysis. 

 190 

Table 2. Summary of the 10 top-ranking loci associated with autoencoder-derived retinal OCT 
phenotypes  

top-ranking 
common 
variant in 
locus  

chr: 
position 
(GRCh37) 

key 
gene(s) 
 

allele 
freq 
(UKB) 

minimum 
p-value 

embeddin
gs with 
significant 
result for 
the locus 

selected previous 
association(s) with the 
detected significant 
variants in the locus 
GWAS catalog; (PanelApp) 

rs17421627 5:87847586     LINC00461 0.07 4 x 10-68  
 

83 retinal thickness 
measurements, retinal 
vascular fractal density 
 

rs62075722    17:79611271    TSPAN10 
/NPLOC4 
/PDE6G 

0.65 1 x 10-62 83 retinal thickness 
measurements, refractive 
error, eye colour, hair colour 
 
 

rs3138142 12:56115585 RDH5 
/CD63 
 

0.24 1 x 10-56 91 retinal thickness 
measurements, refractive 
error, retinal vascular fractal 
density; (retinal dystrophy) 
 

rs13171669  5:148601243 AFAP1L1 
/ABLIM3 
 

0.43 1 x 10-36  

 
84 retinal thickness 

measurements, height, 
waste-hip ratio, lung function 
 

rs12719025 7:51100190 COBL 0.46 1 x 10-36 113 retinal thickness 
measurements, refractive 
error 
 

rs33912345 14:60976537 SIX6 
/C14orf39 
/PPPM1A 
 

0.61 4 x 10-28 6 retinal thickness 
measurements, glaucoma, 
height; (ocular 
malformations) 
 

rs887595 14:74666641 VSX2/ 
LIN52 

0.82 6 x 10-27 85 retinal thickness 
measurements; 
(microphthalmia) 
 

rs17279437 3:45814094 SLC6A20 0.11 8 x 10-24 33 retinal thickness 
measurements, macular 
telangiectasia, brain 
measurements, metabolite 
measurements; 
(hyperglicynuria) 
 

rs1042602 11:88911696    TYR 0.37 5 x 10-22 29 retinal thickness 
measurements, brain 
measurements, skin colour, 
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hair colour; (albinism)  
 

rs62175360 2:218520035 DIRC3 0.07 9 x 10-22 21 retinal thickness 
measurements, optic disc 
measurements, brain 
measurements, metabolite 
measurements, height 
cancer 
 

The above loci were identified after selecting fine mapped variants that had a p-value < 3.2 x 10-10 in the 
primary analysis and a p-value < 5 x 10-8 in the replication study. Manual inspection of linkage disequilibrium 
patterns was subsequently performed to further refine the signals and the 10 loci with the lowest p-value were 
selected. UKB, UK Biobank. 

 191 

 

Figure 3. Analysis of the chromosome 17q21.31 inversion association signal. 
[A] Genetic association study result highlighting a group of 2,936 common variants that passed the genome-
wide significance threshold for MTAG of embedding no.21. The genetic alterations are coloured based on their 
linkage disequilibrium (LD; R2) relationship to the inversion genotype.  
[B] Classification of the inversion status based on the pattern of alternative alleles across the 17q21.31 region 
for 487,409 UK Biobank participants.  
[C] Left eye retinal thickness maps showing the difference in retinal structure between individuals with different 
inversion-related alleles. Left: mean depth (thickness) representation for reference:reference (no inversion) 
alleles. Middle: difference between image mean for reference:reference and image mean for 
reference:inversion (heterozygous inversion) genotypes. Right: difference between image mean for 
reference:reference and image mean for inversion:inversion (homozygous inversion) genotypes. A paracentral 
area of differential retinal thickness can only be visualised in the reference-to-homozygous difference map (in 
keeping with a recessive effect).  
[D] Phenome-wide associations for the inversion genotype against 454 ICD10 disease codes for which there 
were >1000 cases in the UK Biobank cohort (when only data obtained after the date of OCT image acquisition 
were considered); six codes (M16, G20, I84, M20, K60, J84) remained significant after Bonferroni correction; -
log10 p-values are shown grouped by high-level ICD10 category. 
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 192 
 193 
Investigating how autoencoder-derived OCT phenotypes are related between them 194 

and with other retinal traits and diseases 195 
  196 
To gain insights into the nature of the autoencoder-derived embedded features, we 197 

performed correlation and logistic regression analyses. First, we examined the direct 198 

pairwise correlation between the 64 embeddings; a few prominent clusters were noted 199 

(Fig.4A - upper triangle). Then we looked at genetic correlation (Fig.4A - lower triangle); a 200 

notable observation was the discrepancy between the degree of direct and genetic 201 

correlation for many groups of embeddings. This suggests that although the latent space is 202 

complex and includes (linearly) correlated features, the different embeddings are able to 203 

represent discrete factors related to different aspects of retinal morphology genetics.  204 
 205 
We subsequently investigated the relationship between the 64 embedded features and a set 206 

of traits and disease codes (ICD10) that are available in the UK Biobank dataset. 207 

Unsurprisingly, most embeddings correlated with retinal layer thickness parameters 208 

(Supplementary Fig.5). We then used a logistic regression approach (with sex, age, height 209 

and weight as covariates) and detected significant associations between specific 210 

embeddings and the following conditions: non-insulin-dependent diabetes, epilepsy, 211 

glaucoma and chronic ischaemic heart disease (Fig.4B). Two of these lead signals (epilespy 212 

and chronic ischaemic heart disease) are associated very specifically to only one embedding 213 

each (embedding no.1 and no.26 respectively). In contrast, glaucoma is associated with two 214 

different embeddings (no.39 and no.47) and diabetes to three sequential embeddings 215 

(no.36-38) (Fig.4C). Reassuringly, GWAS analysis of embeddings no.36-38 revealed 216 

statistically significant signals linked to ADCY5 (Supplementary Table 1), a gene that 217 

influences glucose metabolism and has been previously linked to non-insulin-dependent 218 

diabetes by multiple association studies (Roman 2017).  219 
 220 
To understand which aspects of retinal morphology drove the association between the 221 

embedded features and the lead disease codes (non-insulin-dependent diabetes, epilepsy, 222 

glaucoma and chronic ischaemic heart disease) we inspected a set of retinal thickness 223 

difference maps. These compared retinal thickness in UK Biobank participants that had been 224 

assigned the relevant ICD10 code (after OCT imaging) to those that have not (Fig.4D). In 225 

keeping with previous observations: (i) the main areas of difference for diabetes were the 226 

paracentral region and the areas temporal to the optic disc (corresponding to the major 227 

retinal vessels) (Li 2021); (ii) the main area of difference for glaucoma corresponded to what 228 

is described in the glaucoma literature as the “macular vulnerability zone” (Hood 2017). 229 
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Figure 4. Correlation and logistic regression analyses of autoencoder-derived retinal OCT phenotypes. [A] 
Direct (upper triangle) and genetic (lower triangle) correlations among embedded features (64 embeddings). 
[B] Logistic regression analysis of the 64 embeddings against high-level ICD10 disease codes; only data 
obtained after the date of OCT image acquisition were included and only ICD10 codes for which there were 
>1000 cases in the UK Biobank cohort were considered; sex, age, height and weight were factored in as 
covariates. A total of 8 signals for 5 distinct ICD10 codes remained significant after Bonferroni correction: E11 
(3), G40 (1), H40 (2), I25 (1), F10 (1). [C] Graph showing which specific embeddings were significantly 
correlated with the lead signals of the logistic regression analysis, i.e. non-insulin-dependent diabetes (E11), 
epilepsy (G40), glaucoma (H40) and chronic ischaemic heart disease (I25); -log10 p-values are shown for all 
64 embedded features. [D] Left eye retinal thickness maps showing the difference in retinal structure between 
UK Biobank participants who were diagnosed with non-insulin-dependent diabetes (E11; first row), epilepsy 
(G40; second row), glaucoma (H40; third row) and chronic ischaemic heart disease (I25; fourth row) after 
having an OCT scan against the groups of individuals that have not been assigned the relevant ICD10 codes.  

 230 
 231 
 Using autoencoder-derived OCT phenotypes to gain insights into disease risk 232 
  233 
We investigated if autoencoder-derived embedded features from an individual’s OCT scan 234 

can help predict the occurrence of certain diseases, including glaucoma and cardiovascular 235 

disorders. We used survival analysis (Cox proportional hazard regression) and found 236 

significant links between specific embeddings and the occurrence of disease (after the OCT 237 

scan date) (Fig.5A). High risk cohorts identified based on the embedded features showed a 238 

higher chance of being affected by glaucoma or cardiovascular conditions compared to the 239 

sex-stratified baseline rate of disease occurrence. In other words, the embedded features 240 

could help identify high-risk cohorts (Fig.5B). It is highlighted that a few embeddings appear 241 

to be linked to multiple diseases (e.g. no.28), while others have no effect on any disease or 242 

are specific to single disease codes (e.g. embedding no.18 for chronic ischaemic heart 243 

disease). A notable observation is the link between multiple embeddings and essential 244 

hypertension. This is often in the presence of signals from other cardiovascular disease 245 

codes suggesting that changes in blood pressure can lead to alterations in OCT-evaluated 246 
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retinal structure which may in turn be a marker for the development of cardiovascular 247 

complications (Fig.5C).  248 

 249 

 

Figure 5. Survival analysis investigating the contribution of embedded features upon the time-to-diagnosis for 
four ICD10 disease codes. [A] Concordance index evaluating the embedding-incorporating model's ability to 
discriminate sex-stratified disease occurrence; the distribution across 20 repetitions of five-fold cross-validation 
are shown (n = 100 for each box plot); all box plots demarcate quartiles and median values, while whiskers 
extend to 1.5x the interquartile range. [B] Kaplan-Meier plots showing sex-stratified risk of disease occurrence 
for the overall population as well as for high-risk cohorts determined by the embedding-incorporating model 
(top 25% based on Cox regression). [C] Graph highlighting which embedded features have a significant 
relationship with the selected diseases in male and female cohorts; -log10 hazard ratios are shown. 
 

 250 

 251 

 252 
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DISCUSSION 255 

 256 

Phenotypes are abstract entities that can be thought of as simplified maps carved from 257 

higher dimension spaces (Cortese 2021). These maps are generally influenced by a 258 

combination of genetic, environmental and stochastic factors. Discovering phenotypes that 259 

represent distinct biological pathways and/or have pragmatic medical significance is of 260 

particular interest (Dahl & Zaitlen 2020). Here, we show that a computational, autoencoder-261 

based approach can be used to efficiently extract informative phenotypes from retinal OCT 262 

images. 263 
  264 
Analysis of the genetic basis of autoencoder-derived embedded features revealed 118 265 

statistically significant (p-value < 3.2 x 10-10) association signals. Notably, three recent 266 

studies that used a similar analytical approach but focused on different imaging modalities — 267 

fundus photography (Kirchler 2022; Xie 2023) and cardiac magnetic resonance images 268 

(Bonazzola 2023) — identified a slightly smaller number of genetic associations 269 

(Supplementary Table 2). Whilst most of the loci detected here have prior links to retinal 270 

phenotypes, a subset of them have no such prior associations. One example is the locus 271 

around LPHN2/ADGRL2, a gene encoding a synaptic adhesion molecule implicated in 272 

guiding neural circuit connectivity (Donahue 2021) (lead marker: rs1492258; association with 273 

7 autoencoder-derived embedded features; minimum p-value 1.4 x 10-15). Although this gene 274 

is expressed in the retina, especially in the bipolar cells (Karlsson 2021), it has not been 275 

previously associated with a retinal phenotype. 276 
  277 
Reassuringly, there was a significant overlap between the findings of the present study and 278 

the results of previous analyses that investigated the genetic architecture of traditional OCT-279 

derived retinal phenotypes. These include three UK Biobank studies: (i) one that looked at 280 

macular (i.e total central retinal) thickness and reported 139 loci (Gao 2019), and (ii) two 281 

from our group that investigated OCT-derived measurements of inner and outer retinal 282 

layers, and reported 46 and 111 loci respectively (Currant 2021; Currant 2023). Overall, 36% 283 

(98/273) of the combined lead loci from these studies also reached genome-wide 284 

significance in the present analysis (58%, 33% and 41% for Currant 2021, Currant 2023 and 285 

Gao 2019 respectively). Interestingly, the two signals with the highest statistical significance 286 

in the macular thickness GWAS conducted by Gao and colleagues (Gao 2019) were also the 287 

most significant hits in this study (Fig.2). The marker with the highest statistical significance 288 

was within the LINC00461 locus. LINC00461 is a long noncoding RNA that is the primary 289 

transcript of miR-9-2. LINC00461 is highly expressed in neural stem cells and a decrease in 290 

its expression has been shown to alter the timing of retinal neurogenesis (Thomas 2022). 291 

The locus with the second highest statistical significance encompassed the TSPAN10 gene. 292 
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In the eye, TSPAN10 is predominantly expressed in melanin-containing cells (retinal pigment 293 

epithelia [RPE] and uveal melanocytes), and the corresponding protein is thought to have a 294 

role in regulating retinal cell fate and development (Dornier 2012; Haining 2012; Orozco 295 

2020). Further functional genomic analyses of these two key loci are expected to provide 296 

important insights into developmental processes shaping human retinal morphology.  297 
 298 
An intriguing association that we detected was that between certain autoencoder-derived 299 

retinal phenotypes and a common 17q21.31 inversion encompassing the MAPT gene. 300 

MAPT is primarily expressed in brain neurons, and genetic alterations impacting the MAPT 301 

locus have been linked to several neurodegenerative disorders including Alzheimer disease, 302 

frontotemporal dementia and parkinsonism (Wang 2016; Shi 2021). Recently, inner retinal 303 

layer thickness parameters and glaucoma have been added to the growing list of 304 

phenotypes associated with the MAPT locus (Gharahkhani 2021; Diaz-Torres 2023). Further 305 

work is required to pinpoint which (and how many) genes within the MAPT region are 306 

causally associated with retinal and brain phenotypes (Diaz-Torres 2023). More broadly, the 307 

extent to which the overlap between neurodegenerative disorders, retinal morphology and 308 

glaucoma reflects pleiotropy rather than causal relationships remains to be determined. Of 309 

note, causal genetic effects in both directions have been previously suggested between 310 

retinal imaging traits and Alzheimer disease (Zhao 2023) while little support has been found 311 

for a causal relationship between glaucoma and Alzheimer disease (Budu-Aggrey 2020).  312 
 313 
Deep learning approaches have been shown to be able to detect imaging patterns that are 314 

not amenable to human identification and which can assist with prediction tasks 315 

(Radhakrishnan 2023). For example, neural networks can predict sex and age with good 316 

accuracy from retinal OCT images (Chueh 2022; Le Goallec 2022) whereas human experts 317 

find these tasks impossible. Here, we investigated if autoencoders can identify OCT 318 

parameters that can be used to predict health outcomes (glaucoma and cardiovascular 319 

disease). Although the overall predictive ability of the generated models was moderate, the 320 

autoencoder-derived features were shown to enhance risk stratification. These observations 321 

suggest that it is not inconceivable that purpose-built autoencoders will play a role in 322 

improving the efficiency of medical screening programs in the future.  323 
 324 
This study has a number of limitations. First, the autoencoder input was retinal thickness 325 

maps generated using a U-Net approach which made our framework semi-automated (as a 326 

small amount of manual labelling was required). Using three-dimensional autoencoders to 327 

extract features directly from OCT volume scans could fully automate the pipeline, 328 

minimising any subjective aspects and reducing the burden of data curation (Diaz-Pinto 329 

2022). Second, we only performed common-variant genetic association analyses of the 330 
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obtained embedded features. The increasing availability of genome sequencing data in UK 331 

Biobank participants will allow us to more comprehensively look for genetic associations, 332 

including with rare variants and with copy number alterations in the future. Third, the fact that 333 

relationships were detected between embeddings and certain health outcomes does not 334 

necessarily imply causation. The main aim of this study was to assess if autoencoders can 335 

be utilised to produce biologically and clinically relevant phenotypes. In-depth confounder 336 

adjustment and causal inference studies were therefore not performed. Furthermore, the 337 

predictive models described here have a proof-of-concept nature and are not intended for 338 

implementation (especially as the data used for training and evaluation were highly 339 

homogeneous). 340 
 341 
In summary, this study proposes a framework for retinal phenotyping based on a self-342 

supervised deep learning approach. Our findings highlight that autoencoder-based 343 

techniques can be used to extract knowledge about the genetic factors determining retinal 344 

morphology. The outlined approach is flexible and can be adapted and extended to other 345 

organs and imaging modalities.  346 
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ONLINE METHODS   347 
  348 
Cohort characteristics 349 
 350 
The UK Biobank is a biomedical resource containing in-depth genetic and health information from 351 

>500,000 individuals from across the UK. Participants were recruited between 2006 and 2010 and, at 352 

enrolment, were between 40 and 69 years of age. At the initial assessment, UK Biobank volunteers 353 

provided consent, answered questions on socio-demographic, lifestyle and health-related factors, 354 

completed a range of physical measures, and provided biological samples. DNA was extracted from 355 

the donated blood samples and was used to generate genotyping array data. The baseline 356 

information has been extended in several ways. For example, repeat assessments were conducted in 357 

subsets of the cohort every few years (Bycroft 2018). Notably, thousands of UK Biobank participants 358 

underwent ophthalmic phenotyping including imaging of the central retina using OCT (>84,000 359 

individuals) (Patel 2016; Chua 2019). A total of 67,664 individuals were imaged at the time of their 360 

baseline visit (Instance 0, “Initial assessment visit (2006-2010)”); this cohort was the focus of the 361 

primary analysis. A further 17,090 different participants were imaged for the first time during their first 362 

repeat assessment (Instance 1, “First repeat assessment visit (2012-13)”); these were included in the 363 

replication study.  364 
  365 
We performed quality control considering genetic and imaging parameters. First, to reduce the impact 366 

of population stratification and to increase the validity of the conducted genetic association studies, 367 

we focused on individuals within a genetically well-mixed, European-like subset of the UK Biobank. 368 

This was achieved by applying PCA to UK Biobank genotypic data using standard, previously-369 

implemented methods (Currant 2023). Additional participants were excluded as their OCT scans 370 

failed to meet a set of previously-described, rigorous quality control criteria (Patel 2016; Currant 2021; 371 

Currant 2023). Finally, participants were removed on the basis of being recommended for exclusion 372 

from genetic studies by the UK Biobank or because they were related to third degree or more. The 373 

final dataset for the primary analysis included 31,135 study subjects (Supplementary Fig.1). Similar 374 

criteria were used for the replication study with the exception of the imaging quality control parameters 375 

which were identical to those described by Zekavat and colleagues (Zekavat 2023). 376 

 377 
 378 
Generation of thickness maps from OCT volume scans 379 
 380 
All the UK Biobank volunteers that were analysed as part of this study were imaged using the 3D 381 

OCT-1000 Mark II device (Topcon, Japan). OCT imaging was carried out in a dark room without pupil 382 

dilation using the 3D 6x6 mm2 macular volume scan mode (128 horizontal B-scans in a 6x6 mm raster 383 

pattern). The right eye was imaged first (Patel 2016; Chua 2019). Our analysis focused on left eye 384 

images as we assumed that familiarity with the test would have led to scans that, on average, had 385 

higher overall quality. A total of 128 PNG images were generated from each tested eye with the 386 

dimensions of each PNG image being 650 x 512 x 1 grayscale pixels. After cropping the top (superior) 387 

and bottom (inferior) edge of the image area, PNG images with dimensions of 512 x 512 x 1 pixels 388 

were obtained. 389 
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  390 
The 128 images of each OCT scan were used to create a “thickness map”, i.e. a single image 391 

displaying the retinal thickness throughout the imaged area. To achieve this, segmentation of all the 392 

scans in the dataset was performed using a U-Net based approach. The utilised U-Net method was 393 

first described in 2015 (Ronneberger 2015) and involves a fully convolutional network that consists of 394 

a contracting path (that extracts features) and an expansive path (that localises objects).  395 
  396 
Initially, the inner- and outer-most limits of the retina (corresponding to the inner limiting membrane 397 

and the Bruch’s membrane respectively) were manually identified in 100 randomly-selected OCT 398 

images using the https://www.makesense.ai tool. The original images and the generated “ground 399 

truth” segmentation masks were subsequently utilised to train the U-Net. Adaptive Moment Estimation 400 

(Adam) was used to optimize the algorithm for training the network parameters and training was 401 

performed for 50 epochs. The output of the U-Net consisted of segmented OCT images (analogous to 402 

the provided masks). These were used to calculate retinal thickness (i.e. the vertical distance between 403 

the top and bottom edge of the mask in each of the 512 points of the horizontal axis). The obtained 404 

measurements were compared to those acquired through the purpose-built Topcon Advanced 405 

Boundary Segmentation (TABS) software (the latter are available in the UK Biobank dataset). Good 406 

correlation was observed in retinae both with and without pathology, increasing confidence in the 407 

utilised approach (Supplementary Fig.6). Finally, the thickness measurements from the 128 images 408 

(‘slices’) that were obtained in each tested left eye were combined and used to generate a thickness 409 

map for each UK Biobank participant that met the inclusion criteria of this study (Fig.1). 410 

 411 
 412 
Autoencoder set-up 413 
 414 
An autoencoder was used for self-supervised feature extraction from the 31,135 left eye OCT-derived 415 

thickness maps. A conventional autoencoder architecture was utilised (Hinton 2006; Michelucci 2022): 416 

the encoder network projected the input images to a low-dimensional space (‘latent space’) with 64 417 

variables (‘embeddings’), and a function was used to try to reconstruct the original images from these 418 

64 latent space representations. A Mean Squared Error (MSE) loss function was employed to 419 

measure the deviation between reconstructed and input data (but otherwise the reconstructed images 420 

were not used in the primary analysis). It is noted that the autoencoder was trained end-to-end for 150 421 

epochs utilising 2500 training and 500 test images. We trialled different autoencoder layouts with 422 

bottleneck layers of the following sizes: 128, 64, 32 and 16. For 128 and 64, we obtained very similar 423 

reconstruction loss curves during training over 300 epochs. In contrast, for both 32 and 16 the image 424 

reconstruction loss could not be dropped below 0.006 suggesting that these models were unable to 425 

generalise as well as the larger bottleneck sizes. We then selected a bottleneck size of 64 since this 426 

was the smallest size with the best image reconstruction accuracy among the layouts that we tested. 427 
 428 
To extract further information from the latent space, PCA (i.e. linear dimensionality reduction) was 429 

performed using the 64 embeddings as input; the first 25 principal components were then considered 430 

for further analyses. 431 

 432 
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 433 
Genome-wide association studies: primary analysis 434 
  435 
GWAS analyses of autoencoder-derived embedded features (64 embeddings and 25 embedding-436 

related principal components) were performed using an additive linear model implemented in 437 

REGENIE v3.1.1 (https://rgcgithub.github.io/regenie/) (Mbatchou 2021). All embedded variables were 438 

inverse rank normalised prior to modelling with REGENIE to avoid any potential bias that could be 439 

introduced by outlier values. The following quality-control filters were applied on the imputed genotype 440 

data (UK Biobank data-field 22828) during the creation of the whole-genome regression model 441 

(REGENIE step 1):  a minor allele frequency (MAF)�≥�5%; Hardy–Weinberg equilibrium test not 442 

exceeding P�>�1 × 10–15; a genotyping rate above 99%; not present in a low-complexity region, a 443 

region of long-range linkage disequilibrium or a sex chromosome (Mbatchou 2021). This resulted in 444 

up to 7,114,193 genotyped variants that were tested for association using a Firth logistic regression 445 

model (REGENIE step 2). Correction for the following covariates was undertaken: age at recruitment 446 

(data-field 21022), sex (data-field 31), height (data-field 50), weight (data-field 21002), refractive error 447 

(calculated as spherical error + 0.5 × cylindrical error; data-fields 5085 and 5086) and genetic 448 

principal components 1 to 20 (data-field 22009). Two levels of statistical significance were used: the 449 

conventional genome-wide significance (p-value < 5 × 10–8) and a conservative, “study-wide” 450 

threshold (p-value < 3.2 x 10-10 following Bonferroni correction for 153 tests).  451 
  452 
A degree of correlation was expected among autoencoder-derived embeddings and the summary 453 

statistics obtained from the GWAS analyses were used to perform a multi-trait meta-analysis. First, 454 

embeddings with a high genetic correlation (i.e. with Pearson correlation coefficient R > 0.9) were 455 

identified. Then, the MTAG v1.0.8 tool (https://github.com/JonJala/mtag) (Turley 2018) was used to 456 

conduct a single meta-analysis for every individual inverse rank normalised embedding, leveraging 457 

the findings from correlated embedded features and producing an updated set of GWAS summary 458 

statistics for each of these 64 variables. Under certain assumptions, the generated estimates will be 459 

more precise than those obtained from the input GWAS (Turley 2018). 460 
  461 
To refine the obtained association signals, further analyses were performed using the GCTA-COJO 462 

tool (https://yanglab.westlake.edu.cn/software/gcta/#COJO) (Yang 2010). These analyses were 463 

conducted utilising linkage disequilibrium estimates from a reference sample (Currant 2023) and 464 

summary statistics from: (i) the 64 embedding GWAS, (ii) the 25 embedding-related principal 465 

component GWAS, (iii) the 64 embedding MTAG-GWAS. Genetic variants in loci that were on 466 

different chromosomes or more than 10 Mb distant from each other were assumed to be uncorrelated. 467 
  468 
Genetic changes in the main variant set were annotated using Ensembl (Cunningham 2022), Open 469 

Targets (Ochoa 2021) and GWAS Catalog (Sollis 2023) data. To accurately summarise the strongest 470 

signals (presented in Table 2), the linkage disequilibrium metrics of the changes that were highlighted 471 

as lead variants by GCTA-COJO analysis and were within 1 Mb of one another were manually 472 

inspected using the LDlink tool (Myers 2020). 473 

 474 
 475 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2024. ; https://doi.org/10.1101/2023.06.15.23291410doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291410
http://creativecommons.org/licenses/by/4.0/


 

 20

Genome-wide association studies: replication 476 
 477 
We sought to replicate the genetic associations detected in the primary analysis in a different set of 478 

OCT images. As the number of open resources that have sufficiently large human cohorts with 479 

combined genomic and OCT imaging data is very small, we made use of the UK Biobank “Instance 1” 480 

left eye scans (data-field: 21017_1_0). This included images from 17,090 participants that were not 481 

part of the discovery/primary cohort and were not used for training either the U-net segmentation or 482 

the autoencoder. It is noted that these additional OCT images were obtained at a different time (2012-483 

13) compared to the scans in the discovery/primary cohort (2006-2010). Due to the inconsistent 484 

capture of certain OCT-related metrics in the replication cohort scans, we used a different set of 485 

image QC exclusion criteria. Following the removal of poor quality and outlier images (using the 486 

approach described in Zekavat 2023), the replication cohort included 10,439 high quality scans from 487 

unrelated UK Biobank participants of predominantly European-like genetic ancestries (as determined 488 

by PCA of genotypes). A replication GWAS was then performed using exactly the same parameters 489 

as in the discovery/primary study (outlined above). To gain insights into the extent to which the 490 

findings of the primary and the replication study were in agreement, we assessed the degree of 491 

correlation between the detected effect size estimates; the relevant beta-beta plots are shown in 492 

Supplementary Fig.4.  493 

 494 
 495 
Correlation and logistic regression analyses 496 
  497 
Direct pairwise comparisons between the 64 embeddings were performed and the relevant Pearson 498 

correlation coefficients (R) were calculated. Genetic correlation was also estimated, again using 499 

Pearson correlation coefficients but this time utilising the effect size estimates from across the 500 

significant associations for all 64 embeddings. The two correlation matrices that were generated were 501 

then displayed using a heatmap where rows and columns were ordered by the distances obtained via 502 

hierarchical clustering (on the embedding value correlation matrix only) (Fig.4).  503 
 504 
In addition to evaluating the relationship between pairs of the studied embedded features, correlation 505 

analyses were performed to look for links between each of these 64 features and four ophthalmic 506 

traits (Supplementary Fig.3). Furthermore, a logistic regression approach was used to look for 507 

relationships between embeddings and a set of diseases (high-level ICD10 codes); only the 454 508 

disease-related codes for which there were >1000 cases in the UK Biobank cohort were considered 509 

(when factoring in only data obtained after the date of OCT image acquisition (2012)). Age, sex, 510 

height and weight were used as covariates and the statistical significance threshold was determined 511 

using Bonferroni correction.  512 

  513 
  514 
Predictive modelling 515 
  516 
Survival analysis was performed using penalized Cox proportional hazard regression; a mixture of L1 517 

and L2 regularisation was utilised (often referred to as the Cox elastic net). We focused on two main 518 
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outcomes – glaucoma and cardiovascular disorders (essential hypertension, angina pectoris and 519 

chronic ischaemic heart disease). These included ICD10 codes that were highlighted as significant by 520 

the logistic regression analyses described in the previous section, and were chosen as predicting 521 

them was deemed to be of clinical significance. Only diagnoses assigned after the date of OCT image 522 

acquisition were considered. To evaluate discriminative performance, we used Harrell’s C-index as a 523 

measure of the concordance between predicted and actual risk. The hyperparameter of L1/L2 524 

penalization strength was set to 0.1 and 20 repetitions of five-fold cross-validation were used to 525 

evaluate model performance. Survival curves were estimated using the Kaplan-Meier estimator. 526 

 527 
  528 
Ethics approval 529 
 530 
The UK Biobank has received approval from the National Information Governance Board for Health 531 

and Social Care and the National Health Service North West Centre for Research Ethics Committee 532 

(Ref: 11/NW/0382). This research was conducted using the UK Biobank Resource under projects 533 

49978, 53144 and 2112. All investigations were conducted in accordance with the tenets of the 534 

Declaration of Helsinki.  535 

 536 

 DATA AVAILABILITY 537 

 UK Biobank data are available under restricted access through a procedure described at 538 

http://www.ukbiobank.ac.uk/using-the-resource/. All other data supporting the findings of this 539 

study are available within the article (including its supplementary information files). 540 

 541 

CODE AVAILABILITY 542 
  543 
The scripts used to analyse the datasets included in this study are available at 544 

https://github.com/tf2/autoencoder-oct. 545 

 546 

 547 

  548 
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