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Abstract 

Executive functions can be conceptualised as either a set of higher-order cognitive skills that enable us 

to engage in flexible thinking and regulate our thoughts and behaviours, or as the ability to integrate 

knowledge, beliefs, and values when applying cognitive control in everyday situations. These two 

perspectives map onto the ways in which executive function is measured in childhood – using either 

structured laboratory tasks or ratings of everyday behaviours. Differences in executive functioning are 

associated with neurodevelopmental differences, but evidence for associations between specific profiles 

of executive function and specific neurodevelopmental conditions is mixed. In this study, we adopt a 

data-driven approach to identify common profiles of executive function in a transdiagnostic sample of 

566 neurodivergent children, using both performance and rating-based measures of executive function. 

Three profiles of executive function were identified: one had consistent difficulties across both types of 

assessments, while the other two had inconsistent profiles of predominantly rating- or predominantly 

task-based difficulties. Children with these different profiles had differences in academic achievement 

and mental health outcomes and could further be differentiated from a comparison group of neurotypical 

children on both shared and profile-unique patterns of neural white matter organisation. Importantly, 

children’s executive function profiles were not directly related to diagnostic categories or to dimensions 

of neurodiversity associated with specific diagnoses (e.g., hyperactivity, inattention, social 

communication). These findings support the idea that there are separate domains of executive function 

and that the two types of assessment tapping these functions are dissociable and provide non-redundant 

information related to neurodevelopmental differences. These findings advance our understanding of 

executive function profiles in neurodivergent populations and their relationship to behavioural 

outcomes and neural variation. 
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Introduction 

The transdiagnostic revolution in neurodevelopmental conditions emphasises a move away from 

diagnostic systems towards identifying broad dimensions that characterise neurodiversity (Astle et al., 

2021). One such dimension, which captures characteristics associated with multiple 

neurodevelopmental outcomes (e.g., Bloemen et al., 2018) and can be a barrier to learning (Holmes et 

al., 2020) is executive function. The term executive function is used widely to describe the processes 

supporting the volitional control of cognition and behaviour. In this study, we adopt a transdiagnostic 

data-driven approach to delineate profiles of executive function among a large neurodevelopmentally 

neurodivergent sample using measures designed to capture two conceptually distinct aspects of 

executive function: performance-based tasks designed to tap higher-order cognitive skills (Miyake et 

al., 2000), and behaviour ratings suited to capturing the application of cognitive control in everyday 

contexts (Doebel, 2020). We then explore whether and how these data-driven groups are associated 

with differences in neurodevelopmental diagnostic categories and dimensions, academic and mental 

health outcomes, and neural white matter organisation. 

Executive function can be conceptualised in two ways that map broadly on to the ways in which 

they are measured (Malanchini et al., 2018; Toplak et al., 2013). The first views executive function as 

a set of higher-order cognitive skills that enable flexible thinking (Miyake et al., 2000). These abilities 

include shifting/switching, inhibition, working memory, planning, and sustained attention (Friedman & 

Miyake, 2017; Miyake et al., 2000; St Clair-Thompson & Gathercole, 2006a). They are typically 

indexed by accuracy or response times on performance-based tasks. These include memory span tasks 

that index working memory performance (e.g., Automated Working Memory Assessment, Alloway, 

2007), tasks that require goal-oriented planning (e.g., Tower of London, Shallice, 1982), semantic 

incongruence or cognitive flexibility tasks that assess shifting/switching (e.g., Number-Letter 

sequencing, Delis et al., 2001; Stroop, Stroop, 1935), and tasks that require focused attention in the face 

of distraction over a lengthy periods that measure sustained attention and response inhibition (e.g., 

Continuous Performance Test , Conners, 1992). There are many other task-based measures of executive 

function, and multiple variants of the examples provided here (see Strauss et al., 2006 for a 
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comprehensive list of task-based measures of executive function), but what they have in common is 

that they are administered individually under controlled experimental conditions requiring effortful 

cognitive control. In this way, therefore they can be viewed to reflect optimal rather than typical 

performance.   

The second view of executive function integrates knowledge, beliefs, and values alongside 

cognitive, motor, and perceptual control, and makes explicit that these factors come together in the 

service of goals in specific settings (Doebel, 2020). It refers to the individual use of executive skills in 

particular situations, rather a general “capacity process” such as inhibitory control that is applied across 

all situations. To illustrate the distinction, Doebel (2020) uses the example of a child inhibiting the 

impulse to hit another child who has taken their toy. In this situation, the child brings to bear knowledge 

and beliefs about hitting another child (e.g., socially acceptable alternatives to hitting, beliefs about 

being scolded for engaging in hitting behaviour) when exerting inhibitory control. In this way, executive 

functions are viewed as inseparable from the task goals, context, and mental content that comes into 

play in specific situations. Understanding executive function as a concept that is tied to the activities a 

person is completing in their everyday activities mirrors the second way in which executive function is 

measured – using rating scales to index the ability to coordinate multiple processes in everyday 

problem-solving situations that draw on knowledge, beliefs, and values. Examples of these rating scales 

include the Behaviour Rating Index of Executive Function (BRIEF; Gioia et al., 2000) and the Working 

Memory Rating Scale (Alloway et al., 2009). These, and similar questionnaires, require observers to 

rate the frequency of everyday executive function behaviours in different contexts. They were originally 

developed to provide an ecologically valid measure of executive function that captures real-world 

functioning. Questionnaire responses typically reflect behavioural observations over extended periods 

of time, and may therefore reflect more trait-like or stable processes and provide a more accurate 

assessment of typical performance (Malanchini et al., 2018). 

Two lines of evidence suggest that executive function in these two domains – cognitive 

processes or skills involved in goal-oriented behaviour in everyday situations – is dissociable. First, 

there is little convergent validity between the measurement types tapping each domain (Dang et al., 
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2020). If performance-based and rating-based measures of executive function were assessing the same 

underlying construct, they should be highly correlated. Yet concurrent and predictive validity studies 

consistently indicate that they are, at best, weakly correlated (e.g., Gerst et al., 2017; Nin et al., 2022; 

Soto et al., 2020; Tamm & Peugh, 2019; Toplak et al., 2013), and that these relationships remain small 

when using latent variable approaches (Snyder et al., 2021) and/or when controlling for mono-method 

bias (e.g., that performance-based measures predict other performance-based measures, and rating-

based measures predict other rating-based measures Soto et al., 2020). In a review, Toplak and 

colleagues (2013) concluded that the two types of measurement capture different information, with 

rating-based measures capturing goal-oriented successes in typical everyday settings and performance-

based measures capturing processing-efficiency under optimal conditions.  

Second, they make independent contributions to clinical, academic, and life outcomes. 

Difficulties with executive function are associated with multiple neurodevelopmental conditions, 

including attention deficit hyperactivity disorder (ADHD), specific learning difficulties, and autism 

(e.g., Benallie et al., 2021; Holmes et al., 2014; Loe & Feldman, 2007; McClain et al., 2022; Willcutt 

et al., 2005), they can be a barrier to learning (Holmes et al., 2020; Peng & Fuchs, 2016; Soto et al., 

2021; Yeniad et al., 2013), and are also linked to poor mental health outcomes (e.g., Bloemen et al., 

2018). Substantial evidence suggests that the different measurement methods corresponding to each 

domain of executive function make unique and separable contributions to these outcomes (Gerst et al., 

2017; Soto et al., 2020). In terms of academic achievement, both rating- and performance-based 

measures predict outcomes, but the relationships are typically stronger and more consistent for 

performance-based measures (Gerst et al., 2017; Malanchini et al., 2018; Soto et al., 2020). Similarly, 

for mental health outcomes, rating- and task-based measures of executive function explain independent 

variance in both internalising and externalising difficulties (Eisenberg et al., 2019; Ellingson et al., 

2019; Friedman et al., 2020; Friedman & Gustavson, 2022), with the stronger relationships typically 

reported between rating-based measures and mental health (Friedman et al., 2020). 

The correspondence between ratings of executive function behaviours and performance on 

cognitive tests is also low in neurodivergent groups. For example, in individuals with ADHD, the 
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executive function profiles captured on performance-based and rating-based measures have little 

overlap (Biederman et al., 2008). Moreover, both types of assessments have their own distinct 

contribution to predicting occupational outcomes in this population (Barkley & Murphy, 2010, 2011). 

In a transdiagnostic study, Williams and colleagues (2022) found that a substantial proportion of a large 

sample of neurodivergent children had what they termed as an inconsistent executive function, defined 

as difficulties reported on rating-based assessments of executive function that were not evident on 

performance-based tasks.    

Current study  

The aim of the current study was to adopt a transdiagnostic approach to delineate profiles of executive 

function among a large neurodevelopmentally neurodivergent sample. Previous studies exploring 

executive function in neurodivergent children have typically either contrasted executive function 

performance between groups (e.g., those with a diagnosis compared those with a different, or no, 

diagnosis) across a range of performance-based measures (e.g., Geurts et al., 2004; Holmes et al., 2014), 

explored how well executive function rating scales and performance tests predict outcomes separately 

(e.g., Gerst et al., 2017; Soto et al., 2020), or tested relationships between different types of executive 

function measurement (e.g., Nin et al., 2022; Tamm & Peugh, 2019).  Here, we adopted a different 

approach to explore individual profiles of executive function across both performance- and rating-based 

measures that were designed to tap into the cognitive process-based and situational goal-oriented 

conceptualisations of executive function. We used a self-organising map algorithm to map the 

multidimensional space of a broad range of performance and rating-based assessments of executive 

function, representing how children group together based on their executive function profiles. We then 

used data-driven clustering to delineate subgroups of children presenting with different executive 

function profiles and explored how these related to the two dissociable conceptualisations of executive 

function. We also investigated whether the groups differed in terms of neurodevelopmental diagnostic 

categories (ADHD, autism, etc.) and dimensions that capture neurodiversity (hyperactivity, inattention, 

social communication). Finally, we explored how these groups related to learning, mental health, and 

neural white matter organisation. We focussed on white matter organisation because there is a 
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substantial literature supporting its links to both executive function (Bathelt et al., 2018; Baum et al., 

2017) and neurodevelopmental conditions and dimensions (Ameis et al., 2016; Beare et al., 2017). We 

applied this approach to data from a transdiagnostic sample that included a range of children who had 

been identified as having additional needs by health and education practitioners, irrespective of their 

diagnostic status, consistent with the notion that diagnostic-based studies fail to capture broad 

populations of neurodivergent children (Astle et al., 2021). The study was fully exploratory, and we did 

not formulate a hypothesis about the number of groups or the phenotypic and neural features that would 

differentiate them. Instead, we used a data-driven approach to address the following questions: 1) can 

we identify subgroups of children with different profiles of executive function; 2) do groups differ in 

terms the two dissociable conceptualisations of executive function; and 3) how do these groups relate 

to neurodevelopmental diagnostic characteristics, academic and mental health functioning, and neural 

white matter organisation?  

Method 

Participants 

Participants were drawn from the Centre for Attention, Learning, and Memory (CALM) cohort. 

Recruitment details and testing procedures are described in the study protocol (Holmes et al., 2019). 

Broadly, children aged 5-18 years were referred to the study by health and educational professionals 

for difficulties with attention, learning, and/or memory regardless of diagnostic status. Participants aged 

8 years and above were included in the current study. Younger children were excluded because some 

of the executive function tasks were not standardised for children under 8 years and were therefore not 

administered to them. The sample for this study included 566 children (45% diagnosed) with an average 

age of M = 10.55 years, SD = 2.02 (Nboys = 380, Ngirls = 186). The most common diagnoses were ADHD 

(N=156), Autism (N=46), and dyslexia (N= 47). Ethical approval was obtained by the National Health 

Service (REC: 13/EE/0157). Parents/caregivers gave written consent and children gave verbal assent to 

participate. 

Measures 
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Children completed a range of assessments of learning and cognition and a questionnaire asking about 

their mental health. Parents/caregivers completed questionnaires about the child’s behaviour, 

communication skills, and mental health. All assessments were administered by a trained researcher at 

the CALM clinic, following standardised administration procedures documented in the test manuals. 

Task details and administration procedures are available in the study protocol and summarised briefly 

below. 

Executive Function  

Task-based measures - Tasks tapping executive functioning were chosen from the broader 

neuropsychological battery used in the CALM study (Holmes et al., 2019). These included four tasks 

from the Automated Working Memory Assessment (AWMA; Alloway, 2007), tapping verbal and 

visuospatial short-term/working memory: forward digit recall, backward digit recall, dot matrix, and 

Mr X. Two tasks from the Delis-Kaplan Executive Function System test battery (D-KEFS, Delis et al., 

2001) were included: the Tower task, commonly used to assess planning skills, and the Trail-making 

number-letter sequencing task, a Stroop-like task indexing shifting. Two tasks from the Test of 

Everyday Attention for Children 2 (TEA-Ch2, Manly et al., 2016) were also included: the switching 

task, Reds, Blues, Bags and Shoes (RBBS), and the Vigil task tapping sustained attention.  

Rating-based measures - Parents/caregivers completed the BRIEF (Gioia et al., 2000), an 80-item rating 

scale covering eight domains: Inhibition, Shifting, Emotional control, Initiation, Working memory, 

Planning, Organisation, and Monitoring.  

Learning  

The Word Reading and Numerical Operations subtests of the Wechsler Individual Achievement Test II 

(WIAT-II; Wechsler, 2005) were used to assess children’s reading and mathematical skills.  

Mental health  

The total anxiety and depression score from the Revised Child Anxiety and Depression Scale (RCADS, 

Chorpita et al., 2005) was used to index child-reported internalising difficulties. This questionnaire was 
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introduced into the CALM protocol mid-way through the study, meaning data were only available for 

269 participants.  

Diagnostic categories and dimensions of neurodiversity 

Neurodevelopmental diagnoses were reported by the referring professional and confirmed by parents/ 

caregivers at the time of referral to the CALM study. Ratings on dimensions of neurodiversity that are 

core features of neurodevelopmental conditions that were included in the CALM protocol were included 

in the current study. These were ratings provided by the child’s parent / caregiver using the following 

scales: inattention and hyperactivity/impulsivity (dimensions of ADHD measured by the Conners-3 

Parent Short Form Rating Scale (Conners, 2008); communication skills (dimension of developmental 

language disorder measured by the Child Communication Checklist-2, CCC-2, Bishop, 2003), and 

social communication and interests (core dimensions of autism, measured by the CCC-2, Bishop, 2003). 

MRI data acquisition and pre-processing 

All participants were invited to participate in an optional magnetic resonance imaging (MRI) session. 

T1-weighted volume scans were acquired using a whole-brain coverage 3D Magnetization Prepared 

Rapid Acquisition Gradient Echo (MP RAGE) sequence acquired using 1 mm isometric image 

resolution. Diffusion scans were obtained using echo-planar diffusion-weighted images with an 

isotropic set of 68 noncollinear directions. Whole brain coverage was based on 60 contiguous axial 

slices and isometric image resolution of 2 mm. Echo time was 90 ms and repetition time was 8,500 ms. 

QSIPrep 0.13.0RC1 (based on Nipype 1.6.0 Gorgolewski et al., 2011)  was used for MRI pre-processing 

and reconstruction. Whole-brain white matter connectivity matrices (i.e. connectomes) were 

constructed for each child based on the Brainnetome atlas (Fan et al., 2016). For each pairwise 

combination of regions (N = 246), the number of streamlines intersecting them was estimated and 

transformed to a 246 x 246 streamline matrix. 

Only a subsample of the children referred to CALM agreed to participate in the neuroimaging 

session (N = 248, Age scan = 10.92, SD = 2.07, 70% male). The neuroimaging cohort also included 77 

children who formed a comparison group. These children (N = 77, Age scan =10.75, SD = 2.01) were 
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not referred by health and educational professionals but were recruited from the same schools attended 

by those who were referred. This non-referred / neurotypical group was included in the neuroimaging 

analyses, because unlike the cognitive and behavioural assessments, neuroimaging metrics do not allow 

for straightforward interpretation of age-typical levels of functioning. 

Analysis Plan 

Analyses were conducted in four steps: 1) missing data estimation; 2) self-organising map (SOM) and 

data-driven clustering; 3) comparison of profiles across executive function, neurodevelopmental, 

academic, and mental health functioning based on a series of chi-squares and t-tests; 4) pairwise 

comparisons and partial least squares discriminant analysis (PLSDA) to explore patterns of neural white 

matter organisation that distinguish the data-driven groups from the neurotypical participants who were 

included in the neuroimaging cohort. Details for each step of the analysis are outlined below.  

Missing data 

Missing data were estimated only for the assessments used in the SOMs. For all other assessments used 

in the validation analyses, missing data was not estimated to ensure it was independent and suitable for 

external validation. Missingness across executive function assessments used in the SOMs ranged from 

0.7% to 25.3%. Data was complete for 59% of participants. Boys and girls were equally likely to have 

missing data (χ2 = 0.22, p = 0.64) and so were diagnosed and undiagnosed participants (χ2  = 0.03, p = 

0.87). Missing data was estimated via the random forest nonparametric imputation procedure 

implemented in R package missForest (Stekhoven & Bühlmann, 2012). Participant sex and age were 

also added to the imputation model to improve estimates.  

Self-organising maps (SOMs) 

Self-organizing maps (SOMs) are a type of artificial neural network suitable for analysing high-

dimensional data in a lower-dimensional space. SOMs use unsupervised learning to group similar input 

data together and create a topological map, where neighbouring nodes correspond to similar input 

patterns. Here we provide a brief conceptual overview of the implementation used in the current 

analysis, for more information about the SOM algorithm, see Wehrens & Buydens, (2007). SOMs 
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consist of a predefined number of nodes laid out on a grid – in this case, hexagonal nodes on 10 by 10 

grid, where each node in the grid corresponded to a weight vector with the same dimensionality as the 

input data (N =16, corresponding to the number of executive function measures used to train the SOMs). 

The training of the map began with a subset of the data randomly assigned to the units. The process was 

repeated in 1000 iterations, and each time the weights of a best-matching unit (i.e., the node most alike 

the current training object based on the least shared Euclidean distance), and its neighbouring nodes, 

were updated to become more similar to the input data. In this way, neighbouring nodes became more 

alike. At the end of the training process, the weight vector for each node reflected the executive function 

scores of the children for whom that node was the best matching unit, with neighbouring nodes having 

similar weights. The resulting map represented a model of the multidimensional executive function data 

on which the SOM was trained, whereby children with similar profiles across the 16 executive function 

assessments “sat” closer in space. Age-standardised scores were used in these analyses. These were a 

combination of T-, scaled and standard scores, so they were converted to age-referenced z-scores to be 

on the same scale (score of 0 corresponded to age-typical performance, 1 = 1 SD above the age-expected 

mean, and -1 represented 1 SD below the age-expected mean). SOMs were trained using the R package 

kohonen (Wehrens & Buydens, 2007). 

Data-driven clustering 

The SOM maps the data in a continuous two-dimensional plane of nodes, where space indicates 

similarity. Therefore, carving the map into sections should yield groups with relatively homogenous 

profiles who are different from children sitting elsewhere on the map. Given the unsupervised nature of 

the SOMs, there is no pre-defined rationale for how many sections the map should be divided into. To 

identify the optimal number of groups, we used a data-driven method in which the nodal weight values 

from the SOM were submitted to a data-driven clustering. Following good practice recommendations,  

before clustering, the nodal weights were reduced using uniform manifold approximation and projection 

(Bathelt et al., 2021; Dalmaijer et al., 2022). The optimal number of clusters was chosen based on a 

consensus approach implemented in the R-package NbClust (Charrad et al., 2014). This method uses 

30 indices for determining the number of clusters and converges on the best clustering scheme across 
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the different results obtained by combinations of the number of clusters, distance measures, and 

clustering methods. Once the nodes were grouped according to the similarity of their weights, we 

identified children assigned to each group of nodes. This provided us with clusters of children based on 

nodes they were assigned to in the original mapping. To check the clustering, each cluster distribution 

was plotted on the original map with the expectation that all cluster members ought to sit on 

neighbouring nodes within the original map.  

Cluster characterisation & comparisons 

To characterise the data-driven groups we compared their average scores on each of the assessments 

used in the SOM in a series of t-tests. False discovery correction was used to handle multiple 

comparisons. We also validated the data-driven clusters by testing whether group differences 

generalised to data not included in the SOM – in this case, learning assessments and self-reported mental 

health difficulties, neurodevelopmental diagnostic categories, and parent-reported dimensions of 

neurodiversity. For continuous data, t-tests were conducted using false discovery rate as a correction 

for multiple comparisons, and for categorical data, chi-square tests were used (e.g., to compare the 

number of children with a particular diagnosis in each subgroup relative to the overall distribution across 

the whole sample). 

Neuroimaging comparisons 

The neuroimaging analyses explored three levels of white matter connectome organisation: global, 

module, and regional hubs. For the first two, we used series of non-parametric comparisons contrasting 

the non-referred neurotypical group to the data-driven groups using false-discovery rate correction. This 

approach was favoured as it allowed us to explore both shared and subgroup-unique differences relative 

to the comparison group with a minimum number of comparisons. To explore differences in regional 

hub organisation we used a PLSDA (Brereton & Lloyd, 2014) , aiming to derive components of regional 

hubs that best explain group membership across the data-driven profiles and the non-referred 

neurotypical sample. Prior to analyses, the effects of age and in-scanner motion (average frame 

displacement) were regressed from each metric using a robust estimation approach. 
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At the global level, we focused on connectome efficiency and the average participation 

coefficient. Global efficiency describes the potential for information exchange in the connectome and 

is the average inverse distance from any one brain region to another (Sporns et al., 2007). The 

participation coefficient measures the proportion of possible connections each region has with regions 

from other modules. It is considered an index of modular segregation, with lower values indicating 

more segregation: regions with a high participation coefficient have strong connections to many 

modules, while regions with a low participation coefficient have strong connections to fewer modules 

(Baum et al., 2017). A global participation coefficient was derived by averaging across the 246 regions.  

These metrics were chosen because they have been previously linked to improved performance on tests 

of executive function in developing populations (Baum et al., 2017; Koenis et al., 2015).  

To derive module organisation, we grouped the 246 regions of the Brainnetome atlas a priori 

into their corresponding functional networks as defined by Yeo et al. (2011). Subcortical nodes were 

also grouped together. This modular parcellation is based on independent functional data but has been 

previously shown to be a good representation of the organisation seen in the white matter connectome 

in developing populations (Baum et al., 2017).  We then estimated modular strength for each one of the 

7 networks and the subcortex. Significantly different results were followed-up to explore whether 

differences were driven by changes in within-module connectivity, between-module connectivity, or 

both. 

Finally, PLSDA was chosen as a tool to explore links between regional connector hub strength 

and group membership. PLSDA is a statistical technique used to find relationships between two sets of 

variables: a predictor set and a response set. In our case these were connector hub strength and group 

membership respectively. The goal of PLSDA was therefore to identify the linear combination of 

connector hubs that best explains the variation in group membership. We focused on connector hubs 

because they play an important role in network specialisation across development and support the 

development of executive function (Baum et al., 2017; Jones et al., 2021; Zink et al., 2021). In 

accordance with prior work, connector hubs were defined as regions which were above the 70th 

percentile on both betweenness centrality and the participation coefficient (Jones et al., 2021). The 
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analysis was implemented in the R package mixOmics (Rohart et al., 2017). The model was evaluated 

by using 5-fold cross-validation repeated 50 times and the number of components to retain was chosen 

based the balanced error rate metric, accounting for the uneven number of participants across groups 

(N cluster 1 = 95, Ncluster2 =74, N cluster3 =79). The contribution of each hub (i.e., component loadings) to the 

PLSDA components was then evaluated using a bootstrap procedure (N= 1000), where a Procrustes 

rotation was applied to align the factors across iterations (Krishnan et al., 2011). This was done to test 

whether the bootstrapped confidence interval passed zero, and thus to establish which hubs reliably load 

on the PLSDA components. Group differences in component scores were compared using a non-

parametric permutation procedure testing whether they significantly differed from chance when group 

labels were permuted 1000 times. 

Results 

SOMs and Clustering 

Performance across all measures used in the SOM are presented in Table 1, and correlations between 

the measures in Figure 1. The outcomes of the trained SOM are presented in Figures 2, showing how 

the SOM represents the values for each weight vector (i.e., the weights that correspond to each 

individual executive function measure) across the grid of nodes. Each panel shows the distribution of 

weights for a different executive function measure. Data-driven consensus clustering applied to the 

SOM suggested that a three-cluster solution was optimal (the map separated by cluster can be seen in 

Figure 3).   

Cluster Characterisation 

The group means for each of the three data-driven groups on the executive function assessments used 

in the SOM are shown in Figure 4. One group (Cluster 1, N = 204) was characterised by close to age-

expected levels across the rating-based assessments, with fewer difficulties compared to the other two 

clusters. Their performance on the task-based measures was poorer than their ratings, and below age-

expected levels. Overall, they had better task-based performance compared to children in Cluster 2 and 

poorer performance than those in Cluster 3. Based on the discrepancy between their rating- and task-
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based performance, children in Cluster 1 are referred to as having an inconsistent profile of 

predominantly task-based difficulties.   

A second group, Cluster 2 (N=187), was characterised by widespread difficulties across both 

the rating- and task-based executive function assessments and was therefore labelled as having 

consistent difficulties. The third group, Cluster 3 (N = 175), included children with the opposite profile 

to those in Cluster 1. They had an inconsistent profile with close to age-expected levels of performance 

on the task-based measures with pronounced difficulties on the rating-based assessments that were 

indistinguishable from those of the children in Cluster 2 who had a profile of consistent difficulties. 

Children in Cluster 3 are referred to as having an inconsistent profile of predominantly rating-based 

difficulties.  

There were significant differences in the average age of children in each of the three Clusters 

(F = 9.56, p <.01): children in Cluster 1 who had an inconsistent profile of predominantly task-based 

difficulties were on average younger than children in Cluster 2 who had a consistent profile of 

difficulties (t= -3.50, p <.001, mean difference = 0.71 years) and children in Cluster 3 who had 

predominantly rating-based difficulties (t = -3.06, p <.002, mean difference = 0.62 years). There was 

no significant difference in age between children in Clusters 2 and 3. To explore whether child sex was 

related to group membership, while accounting for the overrepresentation of boys in the sample as a 

whole, a series of chi-square tests were conducted to compare the sex distribution observed in each 

cluster to the sex distribution of the whole sample (Figure 4). Girls were overrepresented in Cluster 1 

(profile with predominantly task-based difficulties, 2= 5.66, p=.02), and underrepresented in Cluster 3 

(profile with predominantly rating-based difficulties, 2= 7.94, p=.005). The distribution of boys and 

girls in Cluster 2 (consistent difficulties group) matched that of the whole sample (2= 0.06, p=.81), 

suggesting that boys and girls were equally likely to have this profile. 

Cluster validation 

To validate differences between the three clusters, their performance was compared across measures of 

learning, mental health, and dimensions of neurodiversity, and the distribution of children with 
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diagnosed neurodevelopmental conditions in each cluster was compared to the distribution across the 

whole sample. Children in Cluster 3 (inconsistent profile of predominantly rating-based difficulties) 

had significantly better performance across measures of reading and maths relative to children in the 

other two clusters (Figure 5). Those in Cluster 2 (consistent difficulties profile) had significantly lower 

performance on the maths measure relative to children in Clusters 1 and 3, but their reading performance 

was indistinguishable from that of children in Cluster 1 who had predominantly task-based difficulties. 

For mental health, children in Cluster 3 (predominantly rating-based difficulties) had significantly 

elevated levels of anxiety and depression relative to children in the other two clusters; their scores were 

not significantly different from one another (see Figure 5).  

Autistic participants and those with an ADHD diagnosis were underrepresented in Cluster 1, 

the group with predominately task-based difficulties (ADHD: 2= 39.73, p<.001; Autism: 2= 12.11, 

p<.0001), but were represented in similar proportions in the other two clusters. It should be noted that 

41% of autistic participants also had an ADHD diagnosis, meaning separate conclusions cannot be 

drawn for the two conditions. Children with a dyslexia diagnosis were present in each cluster, and there 

was no relationship between dyslexia diagnosis and group membership (ps >.05). A similar pattern 

emerged across dimensions associated with neurodevelopmental conditions. Across the five 

dimensional measures (inattention, hyperactivity/impulsivity, general communication skills, social 

communication and interests), children in Cluster 1 (predominantly task-based difficulties) had 

significantly fewer difficulties than those in Clusters 2 and 3, who did not differ significantly from one 

another. In other words, there was no clear one-to-one correspondence between data-driven group 

membership and neurodevelopmental diagnostic dimensions. Instead, relative to the group with 

primarily task-based difficulties (Cluster 1), the groups with consistent and predominantly rating-based 

difficulties (Clusters 2 and 3) included more children with diagnosed neurodevelopmental conditions 

and experienced more neurodevelopmental difficulties on dimensional measures.  

Neuroimaging comparisons 

At the global level (Figure 6), children with consistent difficulties across rating- and task-based 

measures (Cluster 2) and those with mainly rating-based difficulties (Cluster 3) had significantly lower 
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global connectome efficiency compared to the non-referred neurotypical group. The three data-driven 

groups did not differ significantly from the non-referred comparison group in average connectome 

participation coefficient. Looking at modular organisation, Clusters 2 (consistent difficulties) and 3 

(predominantly rating-based difficulties) had similar patterns of neural organisation that differentiated 

them from the non-referred comparison group: they both showed reduced modular strength in the limbic 

network and the subcortex (Figure S1). The group with primarily task-based difficulties (Cluster 1) 

showed the same pattern of reduced modular strength in the limbic network and the subcortex but was 

also characterised by increased strength in somatomotor and ventral attention modules relative to the 

comparison sample (Figure S1). Follow-up analysis suggested that all these differences were driven by 

differences in between - rather than within - modular connection strength (Figure 6). 

Next, we identified 22 connector hubs that included regions within middle frontal gyrus, orbital 

gyrus, precentral gyrus, insula, cingulate gyrus, and the subcortex. The cross-validated balanced error 

rate across all models explored (k =1:5) suggested that the most accurate PLSDA model was the one 

with two components. The bootstrapped hub loadings onto the PLSDA components, which had 95% 

confidence intervals that did not cross zero, are shown in Figure 7. For the first component, robust 

loadings included regions mostly within the insula, as well as within the dorsolateral prefrontal cortex, 

superior temporal gyrus, and the basal ganglia. Permutation analyses suggested that relative to the non-

referred comparison group, children with an inconsistent profile of predominantly task-based 

difficulties (Cluster 1) scored significantly lower on this component (p=.003). For the second 

component, all loadings that were shown to be robust in the bootstrapping procedure were frontal and 

parietal subregions. The second component distinguished participants with a profile of consistent 

difficulties across the executive function measures (Cluster 2) from the non-referred comparison group 

(p = .02), with component scores significantly higher in the comparison group. 

Discussion 

This study used an unsupervised machine learning approach to map profiles of executive function 

among a large neurodivergent sample of children. Topographical maps were used to represent the 

profiles, which were subsequently carved into clusters representing homogeneous groups of children 
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with similar profiles of executive function. Three clusters were identified, each with a distinct profile 

of executive function. The clusters could also be distinguished on measures of learning and mental 

health, but they cut across traditional neurodevelopmental diagnostic taxonomies: for the most part, 

they did not correspond to diagnostic categories or to dimensions of neurodiversity associated with 

common conditions such as ADHD or autism. 

 Three profiles of executive function were identified. One was characterised by difficulties that 

were consistent across the task- and rating-based measures of executive function (Cluster 2). The other 

two profiles were inconsistent across the two measurement types: children in Cluster 1 had close to age-

expected levels on the rating-based measures but had difficulties on the performance-based tasks, while 

children in Cluster 3 had the opposite profile of close to age-expected performance on the task-based 

measures with pronounced difficulties on the rating-based assessments. In total, more than half the 

sample had an inconsistent profile. This provides further evidence that the two types of assessment 

(ratings and tasks) are dissociable, consistent with previous studies that have used latent variable or 

predictive validity approaches (e.g., Gerst et al., 2017; Nin et al., 2022; Soto et al., 2020; Tamm & 

Peugh, 2019; Toplak et al., 2013). The finding that a substantial proportion of our transdiagnostic 

neurodivergent sample showed little overlap between performance and rating based measures is also 

consistent with previous neurodevelopmental literature, which has shown that the two domains of 

executive function can be selectively affected within the boundaries of a single neurodevelopmental 

condition  (e.g., those with ADHD, Biederman et al., 2008). Overall, the current findings support the 

idea that two types of measurement provide non-redundant information and should not be used 

interchangeably in the context of neurodevelopment. 

Cluster comparisons: behaviour 

 Children in Cluster 1, who were characterised by difficulties on the cognitive performance-

based tasks with near to age-typical everyday executive function behaviours, were significantly younger 

than children in other two clusters, were less likely to have a diagnosed neurodevelopmental condition, 

and had fewer difficulties on dimensions of neurodiversity associated with ADHD, developmental 

language disorder and autism than children in the other two clusters. Girls were under-represented in 
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this cluster. Children in this cluster performed more poorly on both learning measures than children in 

Cluster 3, who had the opposite profile of better task- than rating-based performance, and their maths 

scores were equivalent to those in Cluster 2 who had a consistent but poor executive function profile.  

The broad profile of children in Cluster 1 suggests that diagnoses are less common among 

younger children, girls, and those with everyday behaviours that appear to be age-typical, despite poor 

performance on cognitive task-based measures of executive function and learning. This might reflect 

diagnostic systems that rely on observations of behaviour rather than performance on cognitive tests 

(the everyday behaviours of this group were almost age-typical), and in which children are not typically 

formally assessed for conditions such as ADHD until they are 7 years or older  (American Psychiatric 

Association, 2013; Hoang et al., 2019; Root et al., 2019). Lower rates of diagnoses among this group, 

in which girls were over-represented, could also reflect differences in the outward characteristics of 

neurodivergent girls and boys: girls are more likely to use behavioural camouflaging strategies, 

appearing more able from others’ perspectives (Dean et al., 2017; Hiller et al., 2014; Hull et al., 2020), 

meaning they are less likely to receive a diagnosis (Dhuey & Lipscomb, 2010; Lockwood Estrin et al., 

2021). Patterns of difficulties captured by parent/carer ratings on dimensions of neurodiversity 

associated with neurodevelopmental difficultes (e.g. ratings of inattention, restricted social interests 

etc.) reflected the same pattern as the diagnostic categories: fewer difficulties were present in children 

in this cluster relative to theose in the other clusters. This could again reflect masking / camouflaging, 

as well as socially constructed gender-biased or stereotypical views of boys as being disruptive (e.g., 

Sciutto et al., 2004). Together these findings underscore the need to include cognitive task-based 

assessments and female-representative characteristics in systems designed to identify children’s 

additional needs (see Guy et al., 2022 further discussion of this issue).  

 Children with the opposite profile of executive function, those in Cluster 3 with close to age-

typical task-based performance and greater difficulties on the rating-based assessments, had 

significantly better performance on the learning measures than children in the other two clusters. This 

is consistent with a vast literature showing strong associations between performance on laboratory-

based assessments of executive function and learning (Bull et al., 2008; Holmes et al., 2020; St Clair-
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Thompson & Gathercole, 2006). They also had significantly elevated self-reported internalising 

difficulties (anxiety and depression) compared to children in the other two clusters. This group also 

self-reported more internalising difficulties relative to the other two clusters, potentially suggesting a 

link between higher levels of executive function rating difficulties and mental health. Notably, this 

could not be entirely attributed to rater biases, given that mental health was self-rated and executive 

function ratings were provided by parents. The relationship between mental health difficulties and a 

profile of inconsistent and predominantly rating-based difficulties has previously been observed using 

different methods in this cohort (Williams et al., 2022). Others have suggested that rating-based 

difficulties occurring in the absence of any task-based performance problems arise through emotional 

rather than cognitive mechanisms (Vaidya et al., 2020; Williams et al., 2022), but longitudinal and/or 

causal evidence is needed to test this hypothesis.  

 Finally, those with the consistent profile of executive function difficulties had below-age-

expected performance across both types of executive function assessments. Relative to the other 

clusters, they had similar ratings of executive function difficulties to children in Cluster 3, but 

significantly poorer performance on the task-based assessments than children in both other clusters. 

Their reading and mental health ratings were equivalent to those in Cluster 1, but their maths 

performance was significantly. Overall, they showed commonalities and differences with children in 

the other two clusters, which were not entirely attributable to measurement type (e.g., even though their 

rating-based executive function difficulties were equivalent to those in Cluster 3, they had significantly 

different mental health ratings).  

Cluster comparisons: neuroimaging 

We observed both shared and cluster-specific patterns of neural white matter organisation 

differentiating data-driven groups from the comparison sample of neurotypical children who had not 

been referred for attention, learning, and/or memory difficulties. Children with either a consistent 

profile of executive difficulties (Cluster 2) and those with predominantly task-based difficulties (Cluster 

3) had decreased global connectome efficiency relative to the comparison sample, but no group 
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differences were observed in global participation. This was unexpected given previous reports of an 

association between modular segregation and executive function (Baum et al., 2017).  

Looking at modular organisation, all three data-driven groups showed reduced connection 

strength within the limbic network and the subcortex relative to the non-referred neurotypical 

comparison group, with follow-up analyses showing that differences were driven by reduced inter-

module connections. This is consistent with the idea that limbic and subcortical areas play a role in 

goal-directed cognition, and that differences in this circuitry are related to executive functioning in  

neurodevelopmental conditions (e.g., Arnsten & Rubia, 2012). The group with predominantly task-

based difficulties (Cluster 1) also showed increased inter-module connection strength in the 

somatomotor and ventral attention modules, a pattern that was also observed in the PLSDA: the 

component of connector hubs differentiating this group from the non-referred neurotypical comparison 

group involved multiple insular regions of the somatomotor and ventral attention modules. 

Somatomotor and ventral attention networks undergo substantial restructuring over the course of 

development, becoming more structurally segregated with age (Baum et al., 2017; Grayson & Fair, 

2017). Observing differences in this network among children with predominantly task-based difficulties 

is consistent with their implicated role in task-based executive functions (Reineberg et al., 2015). 

Additionally, several of the hubs which loaded robustly on the PLSDA component that differentiated 

this group from the neurotypical sample shared perception as a behavioural metadata label within the 

BrainMap Database (www.brainmap.org/ taxonomy).  

Children with a profile of consistent difficulties across the task- and rating-based measures 

(Cluster 2) were uniquely distinguished from the non-referred comparison group through a component 

of frontal and parietal connector hubs identified through the PLSDA. This is consistent with decades of 

research that has established a role for frontal and parietal regions in supporting executive function (see 

Friedman & Robbins, 2022). Exploratory cross-checking of the behavioural metadata labels for the 

hubs robustly loading on this component within the BrainMap Database suggested that many of them 

were functionally implicated in action execution.  
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Finally, considering other similarities, the two components identified by the PLSDA that 

differentiated the two groups with task-based executive function difficulties (Cluster 1 and 2) from the 

non-referred comparison sample had a single shared robust loading. This region, located in the right 

dorsal area 9/46 within the middle frontal gyrus, is functionally associated with task-based executive 

function performance on measures of working memory and attention (e.g., Jung et al., 2022).  

 Limitations  

The measurement types used were limited by those available in the cohort data. As such, it is possible, 

for example that stronger links between the everyday manifestations of executive function difficulties 

captured by the rating scales and learning could have been detected if we did not have to rely on 

measures of learning administered under optimal testing conditions, but instead had access to school-

based measures of academic achievement that reflect learning and assessment in everyday conditions. 

Methodologically, the combination of a continuous multidimensional mapping method with a data-

driven clustering algorithm means that inevitably some children will sit close to the cluster boundaries 

within the map. In terms of the neuroimaging results, it is important to acknowledge that the use of 

multimodal neuroimaging and larger samples may reveal further and equally important differences 

across groups, which we consider an important future direction. Finally, the exploratory nature of this 

investigation should be noted. We encourage further efforts to replicate and extend these findings to 

better understand the diversity of executive function profiles among neurodivergent individuals. 

Conclusion 

In summary, we used a machine learning approach to map the executive function profiles of large 

neurodevelopmentally neurodivergent sample. We identified three distinct profiles that were validated 

by differences across measures of learning, mental health, and neural white matter organisation. These 

data add to the growing evidence base for two conceptualisations of executive function: one that reflects 

higher-order cognitive skills and can be measured by cognitive tasks (Miyake et al., 2000), and the other 

that reflects the application of cognitive control in everyday contexts and can be measured by rating 

scales (Doebel, 2020). The majority of our neurodivergent sample had inconsistent profiles across the 

two domains, suggesting that researchers and practitioners should not use these two types of 
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assessments interchangeably in the context of neurodevelopment. They should instead be used together 

in a complementary manner. 
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Table 1 

Norm-referenced age-corrected means and standard deviations for the whole sample across all 

measures used in the self-organising map and clustering.  

 
 Mean SD 

AWMA: Digit recall 91.62 15.59 

AWMA: Backward digit recall 91.39 11.46 

AWMA: Dot matrix 90.02 15.60 

AWMA: Mr X 95.90 14.43 

DKEFS: Trails: number-letter sequencing 6.14 3.44 

DKEFS: Tower 9.41 2.28 

TEA-Ch2: Vigil 8.26 3.20 

TEA-Ch2: Reds, Blues, Bags and Shoes 7.69 3.36 

BRIEF: Initiation 66.46 10.43 

BRIEF: Inhibition 66.16 15.15 

BRIEF: Monitoring 65.51 10.71 

BRIEF: Shifting 68.24 14.52 

BRIEF: Organisation 60.08 9.82 

BRIEF: Planning 70.41 9.57 

BRIEF: Working memory 73.28 9.60 

BRIEF: Emotional control 64.60 13.30 

 

Note. AWMA = Automated Working Memory Assessment; DKEFS = Delis-Kaplan Executive 

Function Battery; TEA-Ch2 = Test of Everyday Attention for Children 2; BRIEF = Behaviour Rating 

Inventory of Executive Function. 
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Figure 1 

Pearson correlations across all norm-referenced age-corrected executive function assessment scores 

used in the self-organising map 

Note. DR = AWMA Digit recall, BRD= AWMA Backward digit recall, DOT = AWMA Dot matrix, 

MR X = AWMA Mr X, TRAILS = DKEFS number-letter sequencing, TOWER = DKEFS Tower, 

VIGIL = TEA-Ch2 Vigil, SWITCH = TEA-Ch2 Reds, Blues, Bags and Shoes, .INITI = BRIEF 

Initiation, INHIB =BRIEF Inhibition, .MONIT = BRIEF Monitoring, .SHIFT = BRIF Shifting, .ORG 

= BRIEF Organisation, .PLAN = BRIEF Planning, .WM = BRIEF Working Memory, .EMO = BRIEF 

Emotional Control; AWMA = Automated Working Memory Assessment, DKEFS = Delis-Kaplan 

Executive Function Battery,  TEA-Ch2 = Test of Everyday Attention for Children 2; BRIEF = 

Behaviour Rating Inventory of Executive Function. 
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Figure 2 

Weight distributions from the self-organizing map, split by assessment. For each assessment, the map 

depicts high weights (i.e., relatively stronger performance/ratings) as yellow hexagons and low weights 

(i.e., below age-expected performance/rating) as red hexagons. 

 

Note. Automated Working Memory Assessment: digit recall, backward digit recall, dot matrix, mr x; 

Delis-Kaplan Executive Function Battery: trails number-letter sequencing & tower; Test of Everyday 

Attention for Children 2: vigil & reds, blues, bags and shoes; Behaviour Rating Inventory of Executive 

Function: inhibition; initiation, monitoring, shifting; organisation of materials, planning, working 

memory, emotional control. Note that all scores are converted to z-scores where scores of zero are 

equivalent to age-typical levels, scores of 1 indicate one standard deviation above the age-expected 

mean, and scores of -1 indicate one standard deviation below the age-expected mean. 
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Figure 3 

Distribution of sexes and different diagnoses across data-driven groups. 
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Figure 4 

Executive function scores across all assessments used in the self-organising map for each one of the 

data-driven groups. 

 

Note. All age-referenced scores are converted to z-score (0 = age-expected mean) and p-values are 

adjusted using false discovery rate correction. DR = AWMA Digit recall, BRD= AWMA Backward 

digit recall, DOT = AWMA Dot matrix, MR X = AWMA Mr X, TRAILS = DKEFS number-letter 

sequencing, TOWER = DKEFS Tower, VIGIL = TEA-Ch2 Vigil, SWITCH = TEA-Ch2 Reds, Blues, 

Bags and Shoes, .INITI = BRIEF Initiation, INHIB =BRIEF Inhibition, .MONIT = BRIEF Monitoring, 

.SHIFT = BRIF Shifting, .ORG = BRIEF Organisation, .PLAN = BRIEF Planning, .WM = BRIEF 

Working Memory, .EMO = BRIEF Emotional Control; AWMA = Automated Working Memory 

Assessment, DKEFS = Delis-Kaplan Executive Function Battery,  TEA-Ch2 = Test of Everyday 

Attention for Children 2; BRIEF = Behaviour Rating Inventory of Executive Function. Note that all 

scores are converted to z-scores where scores of zero are equivalent to age-typical levels, scores of 1 

indicate one standard deviation above the age-expected mean, and scores of -1 indicate one standard 

deviation below the age-expected mean. 

§ = p fdr-corrected (1 vs 2) <.05 

^ = p fdr-corrected (1 vs 3) <.05  

* = p fdr-corrected (2 vs 3) <.05 
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Figure 5 

Results of pairwise comparisons of the data-driven groups across measures of learning, self-rated 

mental health, and patent-rated neurodevelopmental diagnostic dimensions. 

 

Note. WIAT = Wechsler Individual Achievement Test II: reading = Word Reading & math = numerical 

operations, higher scores indicate relatively better performance; RCADS = The Revised Child Anxiety 

and Depression Scale (Child-version) total difficulties score, higher score indicate more self-reported 

difficulties; CCC2 = Children Communication Checklist-2: gcc= general communication composite, 

social = social relations, higher scores indicate relatively better skills; Conners = Conners-3: inattention 

and hyperactivity/impulsivity, higher scores indicate relatively more difficulties; All p-values are 

adjusted using false discovery rate correction.*p<.05, **p <.01, *** p<.001, **** p<.0001  
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Figure 6 

Group differences in modular and global organisation between each one of the three data-driven 

groups and the comparison group 

 

 

Note. Panel A shows modules which showed different between-module strength from the comparison 

sample in at least one of the data-driven groups. Panel B shows group comparisons of global 

connectome metrics efficiency and participation coefficient. All metrics are age and motion-corrected. 

All p-values are corrected using false-discovery rate adjustment. *<.05, **<.01, ***<.001  
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Figure 7 

Bootstrapped component loadings of two components identified in the partial least squares discriminate 

analysis 

 

 

Note. The forest plots show the group loadings for both components (95% confidence intervals based 

on 1000 bootstraps). Displayed on the left side are connector hub loadings on both components. Only 

hub loadings that had 95% confidence intervals that did not cross zero are displayed.  
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Supplementary materials 

Figure S1 

Group differences in modular strength between each one of the three data-driven groups and the 

comparison group 

 

 

Note. The figure displays modules which showed differences in modular connection strength from the 

comparison sample in at least one of the data-driven groups. . All metrics are age and motion-corrected. 

All p-values are corrected using false-discovery rate adjustment. *<.05, **<.01, ***<.001 
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