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ABSTRACT 

The representativeness of Real-world Data is assumed, but findings will rarely 

generalise to the target population when the potential outcomes under treatment 

are influenced by variables causative of selection into a study. We assess the 

extent of  selection biases in a de-identified nationwide US Clinico-Genomic 

Database Non-Small Cell Lung Cancer cohort through each process using two referent 

populations: a superset of all NSCLC patients in the Flatiron Health network and 

the National Cancer Institute’s Surveillance, Epidemiology and End Results cancer 

registrations. Despite Standardised Differences suggesting differences in 

individual covariates between sample and referent populations, the conditional 

distributions of selection were alike, and indices suggest the results being 

generalizable (≥ 0.96 on a proportional scale of 0–1). Estimates of Real-world 

Overall Survival in a population weighted to be representative did not differ 

from naïve estimates in the unweighted cohort. We conclude with a counterfactual 

analysis highlighting how the Average Treatment Effect in the Sample and 

Population were concordant under an example having a Generalizability Index of 

0.97. The Tipton Generalizability Index provides a quantitative assessment of 

the generalizability of findings that can be used to determine the influence of 

selection biases.  
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Background 

Rarely is a study sample randomly drawn from the target population. Real-world 

data are oftentimes a convenience sample of patients receiving healthcare at 

centres using a proprietary Electronic Medical Record system, covered by a defined 

insurance policy or enrolled in a disease registry 1,2. When the mechanisms 

underlying the selection into a study sample affect the potential outcomes under 

treatment, the findings will rarely generalise to the target population as the 

Sample Average Treatment Effect (SATE) is expected to diverge from the Population 

Average Treatment Effect (PATE) 3–5.  

Our motivating example is in the study of the Flatiron Health-Foundation 

Medicine Clinico-Genomic Database (CGDB) Non-Small Cell Lung Cancer (NSCLC) 

cohort 6. The database represents the intersection of NSCLC patients treated 

within the Flatiron Health Research Network who underwent human technology-

assisted chart abstraction and whose tumor biopsy was submitted for Next 

Generation Sequencing (NGS). The differential selection of patients into the CGDB 

can therefore be caused by the geographic sampling of Flatiron Health clinics 

across the US, or in the requirement for patients to meet further eligibility 

criteria. Though the selection of patients to undergo chart abstraction is random, 

NGS at its introduction was not widely adopted by clinical guidelines or covered 

by insurers, which could introduce bias 7. A recent study suggested only slight 

differences in the distributions of patient characteristics between the CGDB and 

US cancer registrations 8, but judgements on the generalizability of study 

findings are necessarily subjective and do not quantify the potential bias 

introduced. 

We outline a quantitative alternative to assess the representativeness of 

the sample population based on the Tipton Generalizability Index 9 and detail a 

solution to reweight samples using Inverse Probability Weighting (IPW) where 

necessary 10. These methods have been used to extend randomised-controlled trial 

findings to a pragmatic setting 11,12. The Tipton Generalizability Index is a 
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quantitative measure of how closely a sample population approximates a sample 

randomly drawn from a defined referent population 9. IPW in the context of 

selection involves weighting selected subjects so that they account for 

themselves and their unselected counterparts with equal probability of selection 

3,10. Within this weighted cohort, selection is independent of the outcome.  

 Two referent datasets were identified to assess the selection of subgroups 

through each process. We define the referent population as the population 

preceding a selection process 4. The National Cancer Institute’s Surveillance, 

Epidemiology, and End Results (SEER) dataset includes cancer registrations for 

participating states covering 34.6% of the US population. In the absence of US-

wide cancer registrations, we use this as the underlying target population to 

which we want to extend our inferences. The Flatiron Health Machine Learning 

Extracted (ML-E) database is a super-sample of all patients treated within the 

Flatiron Health network; not just a nested sample that have undergone human chart 

abstraction and NGS. Selection from SEER to ML-E therefore represents the 

influence of geographic sampling; from ML-E to CGDB due to the requirement for 

NGS; and from SEER to CGDB due to both processes combined. We demonstrate with 

an applied example on how these methods can be used to calculate the SATE and 

PATE as a causal contrast of the potential outcomes under a hypothetical binary 

treatment in the presence of confounding biases. 

 

METHODS 

Sample population 

Flatiron Health-Foundation Medicine CGDB (2011–2021) 

The CGDB is a nationwide US de-identified database that links, via deterministic 

matching, Flatiron Health Research Network Electronic Medical Records from ~ 280 

US cancer clinics (~800 sites of care) with genomic data from Foundation Medicine 

Comprehensive Genomic Profiling NGS tests 6. Retrospective longitudinal clinical 
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data were curated via technology-enabled abstraction of variables from structured 

and unstructured data stored in Electronic Medical Records. Our sample was 

obtained from records covering the period 1 Jan 2011–31 Dec 2021. NSCLC case 

inclusion criteria were: a lung cancer diagnosis (ICD-9-CM 162.x or ICD-10-CM 

C34.x or C39.9); confirmation of NSCLC based on unstructured data; two visits on 

or after 1 Jan 2011; and a Foundation Medicine NGS test on a biopsy with 

pathologist-confirmed histology that is consistent with the abstracted tumour 

type and taken within 30 days before the chart-confirmed date of initial diagnosis 

(or anytime afterwards).  

Referent populations 

Flatiron Health ML-E Database (2011–2021) 

The ML-E database is a de-identified database of all NSCLC patients receiving 

care within the Flatiron Health Research Network. The ML-E database uses Machine 

Learning to extract variables from unstructured clinical data, without 

confirmation by chart abstraction 13. The referent population was obtained from 

records covering the period 1 Jan 2011–31 Dec 2021 NSCLC case inclusion criteria 

were the same as for the CGDB cohort except the requirement for a NGS test. 

SEER Incidence Data (1975-2016) 

The SEER program records cross-sectional data on the demographic and clinical 

characteristics of cancer registrations collected by participating state-level 

cancer registries covering 34.6% of the US population 

[https://seer.cancer.gov/data]. From publicly available de-identified patient-

level data covering the period 1 Jan 2011-31 Dec 2016, we generated a target 

population of patients with histologically confirmed NSCLC defined by ICD codes 

(ICD-9-CM 162.x or ICD-10-CM C34x or C39.9) and relevant ICD-O-2 histology 

(Supplementary Table 1). 

Statistical analyses 
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The analysis follows two parts. Part I is a descriptive analysis that compares 

a set of baseline variables at each stage of selection (ML-E vs. SEER, CGDB vs. 

ML-E, CGDB vs. SEER), followed by a comparison of marginal overall survival in 

the unweighted CGDB population relative to the CGDB population weighted to be 

represented of the ML-E or SEER referents. In part II we outline a counterfactual 

analysis in which we calculate the SATE and PATE. Part I uses only Inverse 

Probability of Selection Weights (sw), where part II uses the product terms of 

sw and Inverse Probability of Treatment Weights (tw).  

Causal estimand 

Akin to an intention-to-treat analog, the causal estimand of interest for the 

counterfactual analysis was the Average Treatment Effect at times t (ATEt) as a 

difference in potential outcomes of survival under initiating a hypothetical 

binary treatment A, regardless of intercurrent treatment adherence or 

discontinuation. The ATEt therefore equals E[Yta=1 – Yta=0], where the E[Ya] 

represents the potential outcome under treatment A (1 or 0). For a binary outcome 

of survival, the potential outcome E[Ya] equals the Pr[Ya = 0] — the probability 

that death did not occur. The hypothetical treatment was assigned to all stage 

III–IV CGDB patients by sampling from probability tables indicating initiation 

of two unnamed EGFR inhibitors as first line, conditional of a set of baseline 

variables Z, trained on a subset of ML-E patients. The ATEt was calculated within 

the CGDB sample (SATEt = E[Yta=1 – Yt=0| S = 1], where S denotes selection into the 

sample) using tw, and extended to the target population (PATEt = E[Yta=1 – Yta=0| S 

= 0]) with the product terms of tw and sw.  

We present our causal assumptions in the Supplementary Appendix, which 

depicts two non-causal paths: a confounding path (A < Z > Y) which we sever with 

tw and a collider-restriction (type-1 selection bias) path (A > [S] < Z > Y) 

which we reverse with sw. A set of baseline variables Z, shortlisted as causative 

of selection and treatment assignment under the theorems of d-separation, were 

used to estimate conditional probabilities during IPW: age [at diagnosis] 
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(continuous)), gender (Female, Male), race (Black, Other, White), stage (American 

Joint Committee on Cancer (AJCC) 7/8th edition I–IV for CGDB & ML-E or SEER stages 

(Localised, Regional, and Distant) for CGDB & SEER), and histological 

classification (Non-squamous carcinoma, Squamous carcinoma). While the AJCC stage 

was unrecorded for SEER patients, the SEER stages Localised, Regional, and Distant 

are equivalent to AJCC stages I–II, III, and IV. Gender was unrecorded for SEER 

therefore we used biological sex as a proxy. 

Missing data 

All patients from the CGDB & ML-E/SEER who did not have complete data were 

excluded. 

Inverse Probability of Selection Weights 

We estimated Stabilised Inverse Probability of Selection Weights (sw) using a 

logistic binomial model on the outcome indicating selection into the study sample 

(1 for sample, 0 for referent population), conditional on a set of baseline 

variables (Z) causative of selection. Age  was modelled with a natural cubic 

spline with 3 knots. All other variables were categorical indicator variables. 

Weights for ith CGDB patient (swi) were calculated as the marginal probability of 

selection into the sample population (𝑃𝑟[𝑆 =  1]) divided by the probability of 

selection conditional on a set of variables Z (𝑃𝑟[𝑆 =  1 | 𝑍 =  𝑧]) (Equation 1). We 

verified the positivity assumption that  0 <  𝑃𝑟[𝑆 =  1 | 𝑍 =  𝑧] for all levels of Z. 

 

Equation 1: Stabilised Inverse Probability of Selection Weights for the ith CGDB 

patient (swi) where S denotes selection into the study sample (1 for the sample 

population, 0 for the referent population) and Z a set of baseline variables 

(age, gender, race, stage, histological classification) causative of selection. 

 

𝑠𝑤௜  =  
𝑃𝑟[𝑆 =  1]

 𝑃𝑟[𝑆 =  1 | 𝑍 =  𝑧]
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Inverse Probability of Treatment Weights  

Stabilized Inverse Probability Treatment Weights (tw) were calculated for CGDB 

patients as per Equation 2. The calculation was the same as for the calculation 

of sw with the exceptions of the outcome variable being binary treatment (A), 

the weights being calculated for both counterfactuals (A = 1 & A = 0), and the 

training data was restricted to the CGDB sample. 

 

Equation 2: Stabilized Inverse Probability of Treatment Weights for the ith CGDB 

patient (twi) where A denotes a binary treatment (1 or 0), S a binary variable 

indicating selection into the CGDB sample, and Z a set of baseline variables 

causative of unrandom treatment initiation. 

 

𝑡𝑤௜ =

⎩
⎪
⎨

⎪
⎧ 𝑃𝑟[𝐴 =  1 | 𝑆 = 1]

 𝑃𝑟[𝐴 =  1 | 𝑆 =  1, 𝑍 =  𝑧]
 𝒊𝒇 𝑨 = 𝟏

1 −  𝑃𝑟[𝐴 =  1 | 𝑆 =  1]

 1 −  𝑃𝑟[𝐴 =  1 | 𝑆 =  1, 𝑍 =  𝑧]
 𝒊𝒇 𝑨 =  𝟎

 

Baseline characteristics 

We tabulated the set of baseline characteristics (Z) of the unweighted and sw-

weighted sample populations and calculated the Absolute Standardised Difference 

(ASD) as a metric to assess the differences in these distributions relative to 

those in the referent population. A rule-of-thumb for conditional exchangeability 

is an ASD < 0.1 for all variables 14. 

Generalizability  

The Tipton Generalizability Index (β) is a measure of the degree of similarity 

in the conditional distributions of selection (𝑃𝑟[𝑆 =  1 | 𝑍 =  𝑧]) within the sample 

and referent populations 9. β is calculated by integrating the product of the 

kernel densities for the conditional probabilities of selection in the sample 

(𝑓௦(𝑠)) and referent populations (𝑓௣(𝑠)) (Equation 2). Importantly, the index 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2023.06.15.23291372doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291372
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 
requires no distributional assumptions. Bounded between 0 and 1 from distinctly 

unrepresentative to perfectly representative, an index of ≥ 0.90 is indicative 

generalizable findings 9. We used the open-source implementation available as the 

R package {generalize} 15. 

 

Equation 3: Calculation of the Tipton Generalizability Index (β) where 𝑓௦(𝑠) 

denotes the conditional distribution of selection for the sample, 𝑓௣(𝑠) the 

conditional distribution of selection for the referent population, and 𝑑𝑠 a 

kernel density bandwidth defined using Silverman’s rule-of-thumb. 

 

𝛽 = න ට𝑓௦(𝑠)𝑓௣(𝑠)
ஶ

ିஶ

𝑑𝑠 

 

Real-world Overall Survival 

We estimated Real-world Overall Survival (rwOS) via Kaplan-Meier estimation of 

the unweighted and sw-weighted CGDB cohorts (each for stages I–IV, stages I–II, 

stages III–IV). Time zero was the date of diagnosis for analyses of stages I–IV 

& I–II and the date of initiating first-line systemic therapy for the stages III–

IV. The endpoint was mortality or right censorship on the latest evidence of 

clinical activity (oral medication, clinical visit or genetic report date). While 

the ascertainment of rwOS through medical records and external commercial & 

public data has high sensitivity relative to the National Death Index 16, right 

censorship on last known activity is necessary as patients lost to follow-up may 

not be at risk of a future event. The withheld day was imputed as the 15th of 

the same month or, if there was evidence of clinical activity after this, to the 

last calendar day of that month. To circumvent a left-truncation bias caused by 

eligibility potentially occurring after time zero, entry into the analysis was 

delayed until the day of earliest eligibility (the latest of their second visit 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2023.06.15.23291372doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291372
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 
or on their genetic report date) relative to the index date (risk-set adjustment) 

17,18. For the weighted cohorts we used robust variance estimation. For the 

descriptive analysis, a weighted log-rank test was used to compare survival times 

in the unweighted and sw-weighted CGDB cohorts, using a prespecified α of P < 

0.00833 (α of 0.05 Bonferroni adjusted for six comparisons). P values are two-

sided. For the counterfactual analysis, the SATE and PATE were calculated (sw 

using SEER as referent) at 12, 24, 36, and 48 months, with 95% confidence 

intervals for the difference in survival calculated from 500 bootstraps.  

Sensitivity analysis 

We undertook a sensitivity analysis wherein we compared baseline characteristics 

of stage I–IV CGDB patients restricted to be in harmony with the study period of 

SEER cancer registrations (both diagnoses during 1 Jan 2011–31 Dec 2016). 

Software 

All analyses were undertaken with R version 4.1 19. A JSON with all dependencies 

and a PDF with all package citations are made available as supplements. 

RESULTS 

Sample and referent populations 

There were 17,230, 199,278, and 240,943 patients with lung cancer histologically 

confirmed to be of non-small cell origin in the CGDB, ML-E, and SEER databases 

(Table 1). Relative to SEER, CGDB & ML-E had higher rates of missingness in 

capturing race (9.0% for CGDB, 9.6% for ML-E, 0.3% for SEER) and stage (3.7% for 

CGDB, 5.9% for ML-E, 2.5% for SEER, whereas SEER had higher rates of missingness 

for histological classification (4.0% for CGDB, 4.9% for ML-E, 15.7% for SEER). 

SEER staging is notably less granular than the AJCC system, however. The 

respective data for cohorts of stage I–II & III–IV are presented in Supplementary 

Tables 2 & 3. After exclusion of missing data, there were 14,545, 162,577, and 

198,741 remaining in the CGDB, ML-E, and SEER cohorts. 
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ML-E in comparison to SEER 

To understand the geographic sampling of the Flatiron Network from the target 

population, the baseline characteristics of the ML-E and SEER cohorts are 

presented for stages I–IV, I–I, and III–IV in Table 3 and Supplementary Tables 

4 & 5. Based on ASDs, the ML-E cohort differed from SEER in the distributions of 

race (ASD 0.28) and stage (ASD 0.21). Cohorts defined by stages I–II differed in 

the composition of race (ASD 0.30) and in stages III-IV by age (ASD 0.17), race 

(ASD 0.28), and stage (ASD 0.18). The β indices for stages I-IV, I–II, and III–

IV were all 0.98.  

CGDB in comparison to ML-E  

To understand the influence of selection based on requiring NGS, the baseline 

characteristics of CGDB patients in the unweighted and weighted in relation to 

ML-E are presented in Table 3. Based on the ASDs (Figure 1), CGDB patients were 

younger (median 68 years (IQR 61–75) vs. 70 years (IQR 62–75) (ASD 0.13)) and 

had a different distributions of AJCC stage (ASD 0.38) and histological 

classification (ASD 0.18) than all patients who underwent ML-E. Variables in the 

weighted cohort had ASDs between 0.01–0.03. Within the subset of cancer stages 

I–II (Supplementary Table 6), CGDB patients differed in the distribution in AJCC 

stage (ASD 0.26) and histological classification (ASD 0.18); differences that 

were corrected via weighting (ASD 0.01). Within the subset of stages III–IV 

(Supplementary Table 7), CGDB patients differed in the distribution in age (median 

67 years (IQR 60–74) vs. 69 years (IQR 61–75) (ASD 0.13)), AJCC stage (ASD 0.24), 

and histological classification (ASD 0.20), which was bought under closer 

alignment by weighting (all ASDs 0.00–0.03). 

CGDB in comparison to SEER 

To understand the influence of both selections processes combined, the baseline 

characteristics of CGDB patients and ASDs in the unweighted and weighted in 

relation to SEER are presented in Table 4. Based on the ASDs (Figure 1), CGDB 
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patients were younger (median 68 years (IQR 61–75) vs. 70 years (IQR 62–77 (ASD 

0.20)) and had different distributions of race (ASD 0.35), SEER stage (ASD 0.15), 

and histological classification (ASD 0.15) than SEER cancer registrations. These 

became aligned in the weighted population with ASDs of 0.00–0.06. Within the 

subset of stages I–II (Supplementary Table 8), differences in the distributions 

of age (ASD 0.16), race (ASD 0.36), and histological classification (ASD 0.10) 

in CGDB patients were balanced by weighting with ASDs ranging from 0.00–0.06. 

Stages III–IV (Supplementary Table 9) differed in age (ASD 0.24), race (ASD 

0.35), SEER stage (ASD 0.18), and histological classification (ASD 0.20) in the 

unweighted cohorts but were balanced in the weighted (ASDs 0.01–0.07). 

Generalizability 

Figure 2 shows the kernel densities for the conditional probabilities of selection 

in the sample and referent populations, in the unweighted and weighted. These 

suggest no major differences in the distributions before weighting. More 

formally, the β using the ML-E cohort as the referent population were 0.98 for 

stages I–IV, 0.97 for stages I–II, and 0.99 for stages III–IV. Using SEER as the 

referent population, the βwere 0.98 for stages I–IV, 0.97 for stages I–II, and 

0.97 for stages III–IV. These results suggest that CGDB findings are generalizable 

without weighting. 

Real-world Overall survival 

Figure 3 shows the Kaplan-Meier estimation of time-conditional rwOS estimates 

in the unweighted and weighted cohorts. The corresponding estimates of median 

survival presented in Table 5 shows that weighting only slightly changed the 

point estimates and confidence intervals. There were no statistical differences 

in the distributions of event times for the unweighted and weighted at a 

prespecified adjusted α of 0.00833 (Table 5). Sensitivity analysis 

In a CGDB sample restricted to diagnoses during the same time period as SEER 

cancer registrations (2011–2016), CGDB patients differed in the distributions of 
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age (ASD 0.41), gender (ASD 0.10), race (ASD 0.33), and histological 

classification (ASD 0.24) (Supplementary Table 10). The β was 0.96.Causal 

estimand 

Using the subset of stage III-IV CGDB patients that initiated systemic therapy 

and SEER as the referent population (β 0.97), the SATE and PATE was estimated as 

at 12-month intervals (Table 6). The corresponding counterfactual survival curves 

are presented in Figure 4. The SATE at times 12, 24, 36, and 48 months were 1.0, 

0.6, -0.1, and 0.0 percentage points, whereas the PATE were 0.5, 0.0, -1.2, and 

-1.0. Inferring from the bootstrap intervals, the SATE and PATE were concordant. 

DISCUSSION 

We sought to quantify how representative the NSCLC CGDB cohort was of the 

underlying target population, through each stepwise selection process. While CGDB 

patients tended to differ from the referent populations in the distributions of 

individual characteristics, indices suggest that findings are generalizable. 

Accordingly, re-estimation of rwOS within samples weighted to be representative 

of the US NSCLC target population, or all NSCLC patients in the Flatiron Health 

network, caused only slight changes in point estimates. We also show, by 

estimating a causal estimand as a contrast of potential outcomes under a 

hypothetical binary treatment, that within a sample with a generalisability index 

of 0.97 in relation to the target population, the SATE and PATE were concordant. 

Our findings are consistent with the few studies on the representativeness 

of Real-world Data. Flatiron Health have, for example, compared their CGDB 8 & 

Enhanced Database 20 cohorts with cancer registrations, finding only differences 

in individual covariates, most notably in the clinical stage and geographic 

distribution. For NSCLC, these differences included an under-representation of 

stage I and over-representation of stage IV in both databases. These assessments, 

however, are necessarily subjective and only compare individual covariates. The 

Tipton Index has been used for assessing the generalizability of randomised 

trials 9. We have shown that it can be applied to Real-world Data whose 
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representativeness should not be assumed, especially when subject to selection 

processes. Our findings also highlight the necessity of comparing the conditional 

distributions of selection over individual covariates because, whereas 

standardised differences can suggest differences in individual covariates, these 

would only lead to biased estimates if the distributions differed in a meaningful 

way.  Based on simulations in the study of pedagogy trials, current rules-of-

thumb suggests that indices ≥ 0.9 are indicative of findings being generalizable 

9. By this threshold, the influence of selection due to geographic sampling of 

Flatiron Health from the underlying cancer population (β 0.98), on the requirement 

for a NGS test (β ≥ 0.97), or the effect of both processes combined (β ≥ 0.97) 

was uninfluential. The utility of this index as a measure of generalizability is 

further corroborated in our counterfactual example wherein the SATE and PATE were 

concordant within a sample of stage III–IV CGDB patients that had a β index of 

0.97 relative to the SEER population. When the conditional distributions are 

alike, concordance between unweighted & weighted estimates are guaranteed. Future 

work should attempt establish interpretation rules relevant to the study of 

pharmacoepidemiology and outcomes of survival, which would aid researchers in 

assessing the generalizability of findings.  

The sample population of 14,545 CGDB patients was considerably larger than 

the typical real-world study cohort, enabling precise variance estimation of 

rwOS. Nevertheless, it is important to acknowledge the increased susceptibility 

of smaller sample sizes  to selection biases because there is a greater 

expectation for these to be unrepresentative by chance alone. While IPW can 

address the issue of representativeness, it does not automatically correct for 

the increased variance inherit to smaller samples; and in some circumstances may 

increase random error 22. Accordingly, one must be mindful of the necessity for 

precise variance estimation using appropriate power and sample-size 

calculations22, inclusion of auxiliary variables influential of the outcome, and 

using robust or bootstrap variance estimation 23.  
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We used the graphical rules of Directed Acyclic Graphs to inform the 

selection of variables based on our understanding of the data-generating 

mechanism 3,24. The causal assumption of exchangeability requires that no variables 

causative of selection or treatment are omitted from the respective propensity 

models 25,26. This also holds true for the generalizability index; a mis-specified 

selection model through omission of variables — measured or unmeasured — would 

still return a high index if the distributions of selection conditional on those 

variables specified showed a high degree of overlap between the sample and 

referent populations. The presence of residual confounding in such circumstances 

could be triangulated with negative controls 27 and measured with Quantitative 

Bias Analysis 28. Nonetheless, exchangeability remains a strong yet untestable 

assumption in observational studies. However, it is important to avoid the 

substantial bias that can arise from controlling for all variables without careful 

consideration of causal pathways 29–32.   

Further assumptions required to endow these estimates with causal 

interpretation include random delayed entry and random loss to follow-up. If 

there exists any violations to these whereby progression of disease after 

diagnosis is causative of either ordering NGS leading to a dependent left-

truncation bias 33 or informative censoring on last clinical activity after which 

death cannot be ascertained 3, further weights should be derived with time-

varying clinical parameters measured post baseline.  Estimation of these weights 

would mirror how one would account for treatment adherence in the case of time-

varying treatments and time-varying confounding 34, while weights would be 

combined as the product terms as we have described herein. 

Our study has some limitations. We used two data sources to understand the 

processes underlying each selection process: the ML-E superset of all Flatiron 

Health patients who underwent Machine Learning chart extraction and SEER cancer 

registrations. Data for the Flatiron Health ML-E database coincided with the CGDB 

study period, but SEER data represented an earlier period due to the lag period 
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required for their curation. Temporal shifts in demographics — delayed diagnosis 

due to the indirect effects of the COVID-19 pandemic, for example — could explain 

some of the observed differences between target and study populations not owed 

to selection biases; however, our sensitivity analysis suggests that differences 

between CGDB and SEER remained even while restricting to the same study period.  

Defining the target population can too be problematic, particularly in the US 

where healthcare and surveillance systems are fragmented. In the absence of 

population-wide cancer registration in the US, we make the strong assumption that 

SEER cancer registrations for participating states covering 34.6% of the US 

population is a valid representation of the target population. Nonetheless, there 

may be circumstances in which the research question requires the study of the 

treated population as represented by the ML-E cohort as opposed to the diagnosed 

population as represented by cancer registrations.  An advantage of using SEER 

is that this data is publicly available, and so the methods described herein can 

be readily applied. 

For simplicity, we conducted a Complete Case Analysis, excluding missing 

data in the study sample and referent populations. This is justified only under 

the assumption of Missing Completely At Random. If data were Missing At Random 

— poor prognosis leading to unnecessary diagnostic work-up in ascertaining stage, 

histological classification, for example — then this exclusion would skew study 

and referent population characteristics toward earlier disease by 

disproportionally excluding late-stage cancers. Multiple Imputation of missing 

data would be justified under this circumstance. 

In summary, Flatiron Health CGDB patients tended to differ from the referent 

populations in the distribution of individual characteristics, but indices 

suggest findings being generalizable. Estimates of rwOS in a population weighted 

to be representative did not differ from naïve estimates in the unweighted cohort, 

and estimates of the SATE and PATE in a counterfactual example were concordant. 

The Tipton Generalizability Index provides a quantitative assessment of the 
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generalizability of findings which, together with Directed Acyclic Graphs, can 

be used to determine the influence of selection biases. 
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Table 1: Baseline characteristics of CGDB, ML-E, and SEER cohorts (stages I–
IV), before exclusion of missing data 
Characteristic CGDB  

(n 17,230) 
ML-E  

(n 199,278) 
SEER  

(n 240,943) 
Age at diagnosis    
  Median  
  (Interquartile range) 

68.0  
(61.0, 75.0) 

70.0  
(63.0, 76.0) 

70.0  
(62.0, 77.0) 

  Unknown 0  
(0.0%) 

1  
(0.0%) 

0  
(0.0%) 

Gender    
  Female 8,793  

(51.0%) 
98,928  
(49.6%) 

114,973  
(47.7%) 

  Male 8,437  
(49.0%) 

100,334  
(50.3%) 

125,970  
(52.3%) 

  Unknown 0  
(0.0%) 

16  
(0.0%) 

0  
(0.0%) 

Race    
  Black 1,140  

(6.6%) 
15,898  
(8.0%) 

28,263  
(11.7%) 

  Other 2,944  
(17.1%) 

29,901  
(15.0%) 

18,023  
(7.5%) 

  White 11,600  
(67.3%) 

134,421  
(67.5%) 

193,988  
(80.5%) 

  Unknown 1,546  
(9.0%) 

19,058 
 (9.6%) 

669  
(0.3%) 

AJCC stage    
  Stage I 1,849  

(10.7%) 
44,729 
 (22.4%) 

— 

  Stage II 1,290  
(7.5%) 

18,164  
(9.1%) 

— 

  Stage III 3,938  
(22.9%) 

43,747 
 (22.0%) 

— 

  Stage IV 9,518  
(55.2%) 

80,883  
(40.6%) 

— 

  Unknown 635  
(3.7%) 

11,755  
(5.9%) 

— 

SEER stage1    
  Localized 3,139  

(18.2%) 
62,893  
(31.6%) 

55,754  
(23.1%) 

  Regional 3,938  
(22.9%) 

43,747  
(22.0%) 

56,664  
(23.5%) 

  Distant 9,518  
(55.2%) 

80,883 
(40.6%) 

122,410  
(50.8%) 

  Unknown 635  
(3.7%) 

11,755 
(5.9%) 

6,115  
(2.5%) 

Histological classification    
  Non-squamous cell carcinoma 12,814  

(74.4%) 
131,339  
(65.9%) 

144,502  
(60.0%) 

  Squamous cell carcinoma 3,727 
 (21.6%) 

58,273 
(29.2%) 

58,637  
(24.3%) 

  Unknown 689  
(4.0%) 

9,666 
(4.9%) 

37,804  
(15.7%) 

Abbreviations: CGDB, Clinico-Genomic Database [cohort]; ML-E, Machine 
Learning-Extracted [cohort]; SEER, Surveillance, Epidemiology, and End Results 
[cohort]; AJCC, American Joint Committee on Cancer 
 
1 SEER stage approximated for CGDB & ML-E cohorts 
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Table 2: Baseline characteristics of stages I–IV 
ML-E & SEER cohorts, in the unweighted 

Characteristic ML-E 

(n 162,577) 

SEER 

(n 198,741) 

ASD 

Age at diagnosis1 70.0  

(62.0, 
75.0) 

70.0  

(62.0, 
77.0) 

0.09 

Gender   0.03 

  Female 81,106 
(49.9%) 

96,221 
(48.4%) 

 

  Male 81,471 
(50.1%) 

102,520 
(51.6%) 

 

Race   0.28 

  Black 14,188 
(8.7%) 

23,042 
(11.6%) 

 

  Other 27,015 
(16.6%) 

15,311 
(7.7%) 

 

  White 121,374 
(74.7%) 

160,388 
(80.7%) 

 

SEER stage   0.21 

  Localized 56,031 
(34.5%) 

49,685 
(25.0%) 

 

  Regional 38,079 
(23.4%) 

49,014 
(24.7%) 

 

  Distant 68,467 
(42.1%) 

100,042 
(50.3%) 

 

Histological 
classification 

  0.03 

  Non-squamous 
cell carcinoma 

113,642 
(69.9%) 

141,547 
(71.2%) 

 

  Squamous cell 
carcinoma 

48,935 
(30.1%) 

57,194 
(28.8%) 

 

Abbreviations: ML-E, Machine Learning-Extracted 
[cohort]; SEER, Surveillance, Epidemiology, and 
End Results [cohort]; ASD, Absolute Standardized 
Difference 

 

1 Median (Interquartile range) 
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Table 3: Baseline characteristics of CGDB & ML-E cohorts (stages I–IV), in the 
unweighted and weighted  
 Unweighted Weighted 
Characteristic CGDB 

(n 14,545) 
ML-E 

(n 162,577) 
ASD CGDB 

(n 14,525) 
ML-E 

(n 162,577) 
ASD 

Age at diagnosis1 68.0  
(61.0, 
75.0) 

70.0 
(62.0,75.0) 

0.13 69.0 
(62.0, 
75.0) 

70.0 
(62.0,75.0) 

0.02 

Gender   0.03   0.01 
  Female 7,449 

(51.2%) 
81,106 
(49.9%) 

 7,208 
(49.6%) 

81,106 
(49.9%) 

 

  Male 7,096 
(48.8%) 

81,471 
(50.1%) 

 7,317 
(50.4%) 

81,471 
(50.1%) 

 

Race   0.07   0.01 
  Black 1,053 

(7.2%) 
14,188 
(8.7%) 

 1,248 
(8.6%) 

14,188 
(8.7%) 

 

  Other 2,713 
(18.7%) 

27,015 
(16.6%) 

 2,467 
(17.0%) 

27,015 
(16.6%) 

 

  White 10,779 
(74.1%) 

121,374 
(74.7%) 

 10,809 
(74.4%) 

121,374 
(74.7%) 

 

AJCC stage   0.38   0.03 
  Stage I 1,658 

(11.4%) 
39,761 
(24.5%) 

 3,384 
(23.3%) 

39,761 
(24.5%) 

 

  Stage II 1,168 
(8.0%) 

16,270 
(10.0%) 

 1,415 
(9.7%) 

16,270 
(10.0%) 

 

  Stage III 3,474 
(23.9%) 

38,079 
(23.4%) 

 3,401 
(23.4%) 

38,079 
(23.4%) 

 

  Stage IV 8,245 
(56.7%) 

68,467 
(42.1%) 

 6,324 
(43.5%) 

68,467 
(42.1%) 

 

Histological 
classification 

  0.18   0.02 

  Non-squamous 
cell carcinoma 

11,335 
(77.9%) 

113,642 
(69.9%) 

 10,272 
(70.7%) 

113,642 
(69.9%) 

 

  Squamous cell 
carcinoma 

3,210 
(22.1%) 

48,935 
(30.1%) 

 4,253 
(29.3%) 

48,935 
(30.1%) 

 

Abbreviations: CGDB, Clinico-Genomic Database [cohort]; ML-E, Machine 
Learning-Extracted [cohort]; ASD, Absolute Standardized Difference; AJCC, 
American Joint Committee on Cancer 
 
1 Median (Interquartile range) 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2023.06.15.23291372doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291372
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 
Table 4: Baseline characteristics of CGDB & SEER cohorts (stages I–IV), in the 
unweighted and weighted 
 Unweighted Weighted 
Characteristic CGDB 

(n 14,545) 
SEER 

(n 198,741) 
ASD CGDB 

(n 14,461) 
SEER 

(n 198,741) 
ASD 

Age at diagnosis1 68.0 
(61.0, 
75.0) 

70.0  
(62.0, 
77.0) 

0.20 70.0 
(63.0, 
76.0) 

70.0  
(62.0, 
77.0) 

0.06 

Gender   0.06   0.00 
  Female 7,449 

(51.2%) 
96,221 
(48.4%) 

 7,007 
(48.5%) 

96,221 
(48.4%) 

 

  Male 7,096 
(48.8%) 

102,520 
(51.6%) 

 7,454 
(51.5%) 

102,520 
(51.6%) 

 

Race   0.35   0.04 
  Black 1,053 

(7.2%) 
23,042 
(11.6%) 

 1,655 
(11.4%) 

23,042 
(11.6%) 

 

  Other 2,713 
(18.7%) 

15,311 
(7.7%) 

 1,262 
(8.7%) 

15,311 
(7.7%) 

 

  White 10,779 
(74.1%) 

160,388 
(80.7%) 

 11,544 
(79.8%) 

160,388 
(80.7%) 

 

SEER stage   0.15   0.01 
  Localised2 2,826 

(19.4%) 
49,685 
(25.0%) 

 3,569 
(24.7%) 

49,685 
(25.0%) 

 

  Regional2 3,474 
(23.9%) 

49,014 
(24.7%) 

 3,522 
(24.4%) 

49,014 
(24.7%) 

 

  Distant2 8,245 
(56.7%) 

100,042 
(50.3%) 

 7,370 
(51.0%) 

100,042 
(50.3%) 

 

Histological 
classification 

  0.15   0.02 

  Non-squamous cell 
carcinoma 

11,335 
(77.9%) 

141,547 
(71.2%) 

 10,450 
(72.3%) 

141,547 
(71.2%) 

 

  Squamous cell 
carcinoma 

3,210 
(22.1%) 

57,194 
(28.8%) 

 4,011 
(27.7%) 

57,194 
(28.8%) 

 

Abbreviations: CGDB, Clinico-Genomic Database [cohort]; SEER, Surveillance, 
Epidemiology, and End Results [cohort]; ASD, Absolute Standardized Difference 
 
1 Median (Interquartile range) 
2 Localized broadly equivalent to AJCC stages I–II, Regional to stage III, and 
Distant to stage IV  
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Table 5: Estimates of median rwOS and comparisons of event-time distributions 
 Median rwOS (95% confidence 

intervals) 
Event times 

Cohort Unweighted Weighted Log-rank P value1 

ML-E as referent population 
Stages I–IV2 9.8 (8.9–10.8) 10.5 (9.7–11.4) 0.830 
Stages I–II2  21.9 (20.5–23.8) 21.6 (20.1–23.4) 0.268 
Stages III–IV3  11.7 (11.2–12.2) 11.4 (11.0–11.9) 0.146 
SEER as referent population 
Stages I–IV2 9.8 (8.9–10.8) 9.5 (8.6–10.5) 0.049 
Stages I–II2  21.9 (20.5–23.8) 20.8 (19.4–22.6) 0.181 
Stages III–IV3 11.7 (11.2–12.2) 11.1 (10.6–11.6) 0.017 
Abbreviations: rwOS, Real-world Overall Survival; ML-E, Machine Learning-
Extracted [cohort]; SEER, Surveillance, Epidemiology, and End Results 
[cohort] 
 
1 prespecified α of 0.00833 (0.05 Bonferroni-adjusted for six comparisons) 
2 from date of diagnosis 
3 from date of initiating first-line systemic therapy 
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Table 6: Calculation of Average Treatment Effects in the Sample and extended 
to the Population 

 Sample Population 
Month t Yta=1 Yta=0 SATE(1) 

Yta=1 – Yta=0  
Yta=1 Yta=0 PATE(1) 

Yta=1 - Yta=0 
12 50.9% 49.9%  1.0 PP 

(-2.9–5.0) 
49.1% 48.6%  0.5 PP 

(-5.7–6.8) 
24 30.9% 30.3%  0.6 PP 

(-3.3–4.0) 
28.7% 28.7%  0.0 PP 

(-5.4–4.4) 
36 20.1% 20.2% -0.1 PP 

(-2.9–2.7)  
18.2% 19.4% -1.2 PP 

(-5.4–2.4) 
48 13.7% 13.8%  0.0 PP 

(-2.5–2.1) 
12.1% 13.1% -1.0 PP 

(-4.2–1.8) 
Abbreviations: Yta=, potential outcome of Real-world Overall Survival under 
treatment A 1 or 0; SATE, Sample Average Treatment Effect; PATE, Population 
Average Treatment Effect; PP, Percentage Points 
 

1 95% confidence intervals calculated from 500 bootstraps 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2023.06.15.23291372doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291372
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 
 

 

Figure 1: Absolute Standardised Differences summarising the differences in 

individual covariates between the sample and referent populations. An Absolute 

Standardised Difference < 0.1 suggests conditional exchangeability. 

Abbreviations: ML-E, Machine Learning-Extracted [cohort]; SEER, Surveillance, 

Epidemiology, and End Results [cohort] 
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Figure 2: Kernel densities for the estimated probabilities of sample selection 

conditional on a set of baseline variables, before and after weighting, using 

the ML-E or SEER as the referent population. Abbreviations: ML-E, Machine 

Learning-Extracted [cohort]; SEER, Surveillance, Epidemiology, and End Results 

[cohort]  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2023.06.15.23291372doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291372
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

 

Figure 3: Kaplan-Meier estimation of rwOS for CGDB patients as an unweighted 

sample and extended to the population within a CGDB sample weighted to be 

representative of the SEER or ML-E referent populations (facet labels). Time zero 

was the date of diagnosis for stages I–IV & I–II and the date of initiating 

first-line systemic therapy for the stages III–IV. Abbreviations: rwOS, Real-

world Overall Survival; ML-E, Machine Learning-Extracted [cohort]; SEER, 

Surveillance, Epidemiology, and End Results [cohort] 
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Figure 4: Counterfactual rwOS curves under a hypothetical binary treatment A for 

stage III-IV CGDB patients calculated within the selected sample and extended to 

the target population. Curves for the sample were weighted with treatment weights 

and were extended to the population with the product-terms of selection & 

treatment weights. Abbreviations: rwOS, Real-world Overall Survival 
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Supplementary Table 1: ICD-O-2 codes used for histological confirmation and 
classification of Non-Small Cell Lung Cancer 
Histological 
classification 

ICD-O-2 codes 

Non-squamous 
cell carcinoma 

Defined as adenocarcinomas, large-cell carcinomas or other 
specified carcinomas 
 
Adenocarcinomas: 
8015, 8050, 8140, 8143, 8147, 8190, 8201, 8211, 8250, 8260, 
8290, 8310, 8320, 8323, 8333, 8401, 8440, 8470, 8480, 8490, 
8503, 8507, 8550, 8570, 8574, 8576 
 
Large-cell carcinomas: 
8012, 8021, 8034, 8082 
 
Other specified carcinomas: 
8003, 8022, 8030, 8035, 8200, 8240, 8243, 8249, 8430, 8525, 
8560, 8562, 8575 

Squamous cell 
carcinoma 

8051, 8070, 8078, 8083, 8090, 8094, 8120, 8123 
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Supplementary Table 2: Baseline characteristics of stages I–II CGDB, ML-E, and 
SEER cohorts, before exclusion of missing data 
Characteristic CGDB 

(n 3,139) 
ML-E 

(n 62,893) 
SEER 

(n 55,754) 
Age at diagnosis    
  Median  
  (Interquartile range) 

70.0  
(64.0, 76.0) 

71.0  
(65.0, 76.0) 

71.0  
(64.0, 78.0) 

  Unknown 0  
(0.0%) 

0  
(0.0%) 

0  
(0.0%) 

Gender    
  Female 1,754  

(55.9%) 
34,154  
(54.3%) 

29,956  
(53.7%) 

  Male 1,385  
(44.1%) 

28,736  
(45.7%) 

25,798  
(46.3%) 

  Unknown 0  
(0.0%) 

3  
(0.0%) 

0  
(0.0%) 

Race    
  Black 166  

(5.3%) 
4,389  
(7.0%) 

5,196  
(9.3%) 

  Other 500  
(15.9%) 

9,088  
(14.4%) 

3,478  
(6.2%) 

  White 2,222  
(70.8%) 

44,429  
(70.6%) 

46,875  
(84.1%) 

  Unknown 251  
(8.0%) 

4,987  
(7.9%) 

205  
(0.4%) 

AJCC stage    
  Stage I 1,849  

(58.9%) 
44,729  
(71.1%) 

— 

  Stage II 1,290  
(41.1%) 

18,164 
(28.9%) 

— 

SEER stage1    
  Localized 3,139  

(100.0%) 
62,893  
(100.0%) 

55,754  
(100.0%) 

Histological classification    
  Non-squamous cell carcinoma 2,331  

(74.3%) 
41,101  
(65.4%) 

35,725 
(64.1%) 

  Squamous cell carcinoma 741  
(23.6%) 

19,722  
(31.4%) 

14,137  
(25.4%) 

  Unknown 67  
(2.1%) 

2,070 
(3.3%) 

5,892 
(10.6%) 

Abbreviations: CGDB, Clinico-Genomic Database [cohort]; ML-E, Machine 
Learning-Extracted [cohort]; SEER, Surveillance, Epidemiology, and End Results 
[cohort]; AJCC, American Joint Committee on Cancer 
 
1 SEER stage approximated for CGDB & ML-E 
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Supplementary Table 3: Baseline characteristics of stages III–IV CGDB, ML-E, 
and SEER cohorts, before exclusion of missing data 
Characteristic CGDB 

(n 13,456)1 
ML-E 

(n 124,630) 
SEER 

(n 179,074) 
Age at diagnosis    
  Median (Interquartile range) 68.0  

(60.0, 75.0) 
69.0  

(61.0, 75.0) 
69.0  

(61.0, 77.0) 
  Unknown 0 

(0.0%) 
0 

(0.0%) 
0  

(0.0%) 
Gender    
  Female 6,709  

(49.9%) 
58,969  
(47.3%) 

82,093  
(45.8%) 

  Male 6,747  
(50.1%) 

65,650  
(52.7%) 

96,981 
(54.2%) 

  Unknown 0 
(0.0%) 

11  
(0.0%) 

0  
(0.0%) 

Race    
  Black 931  

(6.9%) 
10,484  
(8.4%) 

22,415  
(12.5%) 

  Other 2,315  
(17.2%) 

19,022  
(15.3%) 

13,953  
(7.8%) 

  White 8,986  
(66.8% 

82,601  
(66.3%) 

142,347  
(79.5%) 

  Unknown 1,224  
(9.1%) 

12,523 
(10.0%) 

359  
(0.2%) 

AJCC stage    
  Stage III 3,938  

(29.3%) 
43,747  
(35.1%) 

— 

  Stage IV 9,518  
(70.7%) 

80,883  
(64.9%) 

— 

SEER stage2    
  Regional 3,938  

(29.3%) 
43,747  
(35.1%) 

56,664  
(31.6%) 

  Distant 9,518 
 (70.7%) 

80,883  
(64.9%) 

122,410  
(68.4%) 

Histological classification    
  Non-squamous cell carcinoma 10,097 

(75.0%) 
84,169  
(67.5%) 

106,210  
(59.3%) 

  Squamous cell carcinoma 2,783  
(20.7%) 

34,138  
(27.4%) 

43,147  
(24.1%) 

  Unknown 576  
(4.3%) 

6,323  
(5.1%) 

29,717  
(16.6%) 

Abbreviations: CGDB, Clinico-Genomic Database [cohort]; ML-E, Machine 
Learning-Extracted [cohort]; SEER, Surveillance, Epidemiology, and End Results 
[cohort]; AJCC, American Joint Committee on Cancer 
 

1 Stage III–IV patients that also initiated systemic therapy 
2 SEER stage approximated for CGDB & ML-E 
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Supplementary Table 4: Baseline 
characteristics of stages I–II ML-E & SEER 
cohorts, in the unweighted and weighted 
Characteristic ML-E 

(n 
56,031) 

SEER 
(n 49,685) 

ASD 

Age at diagnosis1 71.0 
(65.0, 
76.0) 

71.0 
(64.0, 
78.0) 

0.07 

Gender   0.00 
  Female 30,453 

(54.4%) 
26,894 
(54.1%) 

 

  Male 25,578 
(45.6%) 

22,791 
(45.9%) 

 

Race   0.30 
  Black 4,250 

(7.6%) 
4,637 
(9.3%) 

 

  Other 8,827 
(15.8%) 

3,185 
(6.4%) 

 

  White 42,954 
(76.7%) 

41,863 
(84.3%) 

 

SEER stage   0.00 
  Localized 56,031 

(100.0%) 
49,685 
(100.0%) 

 

Histological 
classification 

  0.09 

  Non-squamous 
cell carcinoma 

37,856 
(67.6%) 

35,578 
(71.6%) 

 

  Squamous cell 
carcinoma 

18,175 
(32.4%) 

14,107 
(28.4%) 

 

Abbreviations: ML-E, Machine Learning-
Extracted [cohort]; SEER, Surveillance, 
Epidemiology, and End Results [cohort]; ASD, 
Absolute Standardized Difference 
 
1 Median (Interquartile range) 
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Supplementary Table 5: Baseline 
characteristics of stages III–IV ML-E & SEER 
cohorts, in the unweighted and weighted 

Characteristic ML-E 

(n 
65,580) 

SEER 

(n 
149,056) 

ASD 

Age at diagnosis1 68.0 
(61.0, 
75.0) 

69.0 
(61.0, 
77.0) 

0.17 

Gender   0.02 

  Female 31,170 
(47.5%) 

69,327 
(46.5%) 

 

  Male 34,410 
(52.5%) 

79,729 
(53.5%) 

 

Race   0.28 

  Black 6,326 
(9.6%) 

18,405 
(12.3%) 

 

  Other 11,390 
(17.4%) 

12,126 
(8.1%) 

 

  White 47,864 
(73.0%) 

118,525 
(79.5%) 

 

SEER stage   0.18 

  Regional 16,248 
(24.8%) 

49,014 
(32.9%) 

 

  Distant 49,332 
(75.2%) 

100,042 
(67.1%) 

 

Histological 
classification 

  0.07 

  Non-squamous 
cell carcinoma 

48,592 
(74.1%) 

105,969 
(71.1%) 

 

  Squamous cell 
carcinoma 

16,988 
(25.9%) 

43,087 
(28.9%) 

 

Abbreviations: ML-E, Machine Learning-
Extracted [cohort]; SEER, Surveillance, 
Epidemiology, and End Results [cohort]; ASD, 
Absolute Standardized Difference 

 

1 Median (Interquartile range) 

 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2023.06.15.23291372doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291372
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 
Supplementary Table 6: Baseline characteristics of stages I–II CGDB & 
ML-E cohorts, in the unweighted and weighted 
 Unweighted Weighted 
Characteristic CGDB 

(n 2,826) 
ML-E 
(n 

56,031) 

ASD CGDB 
(n 2,832) 

ML-E 
(n 

56,031) 

ASD 

Age at diagnosis1 70.0 
(64.0, 
76.0) 

71.0 
(65.0, 
76.0) 

0.09 70.0 
(65.0, 
76.0) 

71.0 
(65.0, 
76.0) 

0.01 

Gender   0.03   0.01 
  Female 1,583 

(56.0%) 
30,453 
(54.4%) 

 1,518 
(53.6%) 

30,453 
(54.4%) 

 

  Male 1,243 
(44.0%) 

25,578 
(45.6%) 

 1,314 
(46.4%) 

25,578 
(45.6%) 

 

Race   0.08   0.01 
  Black 165  

(5.8%) 
4,250 
(7.6%) 

 216  
(7.6%) 

4,250 
(7.6%) 

 

  Other 489 
(17.3%) 

8,827 
(15.8%) 

 455 
(16.1%) 

8,827 
(15.8%) 

 

  White 2,172 
(76.9%) 

42,954 
(76.7%) 

 2,161 
(76.3%) 

42,954 
(76.7%) 

 

AJCC stage   0.26   0.01 
  Stage I 1,658 

(58.7%) 
39,761 
(71.0%) 

 1,998 
(70.6%) 

39,761 
(71.0%) 

 

  Stage II 1,168 
(41.3%) 

16,270 
(29.0%) 

 834 
(29.4%) 

16,270 
(29.0%) 

 

Histological 
classification 

  0.18   0.01 

  Non-squamous 
cell carcinoma 

2,143 
(75.8%) 

37,856 
(67.6%) 

 1,901 
(67.1%) 

37,856 
(67.6%) 

 

   Squamous cell 
carcinoma 

683 
(24.2%) 

18,175 
(32.4%) 

 932 
(32.9%) 

18,175 
(32.4%) 

 

Abbreviations: CGDB, Clinico-Genomic Database [cohort]; ML-E, Machine 
Learning-Extracted [cohort]; ASD, Absolute Standardized Difference; 
AJCC, American Joint Committee on Cancer 

1 Median (Interquartile range) 
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Supplementary Table 7: Baseline characteristics of stages III–IV CGDB & 
ML-E cohorts, in the unweighted and weighted 
 Unweighted Weighted 
Characteristic CGDB 

(n 
9,172)1 

ML-E 
(n 

106,546) 

ASD CGDB 
(n 9,164) 

ML-E 
(n 

106,546) 

ASD 

Age at diagnosis2 67.0 
(60.0, 
74.0) 

69.0 
(61.0, 
75.0) 

0.13 68.0 
(61.0, 
75.0) 

69.0 
(61.0, 
75.0) 

0.01 

Gender   0.06   0.00 
  Female 4,618 

(50.3%) 
50,653 
(47.5%) 

 4,342 
(47.4%) 

50,653 
(47.5%) 

 

  Male 4,554 
(49.7%) 

55,893 
(52.5%) 

 4,822 
(52.6%) 

55,893 
(52.5%) 

 

Race   0.08   0.01 
  Black 686  

(7.5%) 
9,938 
(9.3%) 

 849  
(9.3%) 

9,938 
(9.3%) 

 

  Other 1,776 
(19.4%) 

18,188 
(17.1%) 

 1,594 
(17.4%) 

18,188 
(17.1%) 

 

  White 6,710 
(73.2%) 

78,420 
(73.6%) 

 6,721 
(73.3%) 

78,420 
(73.6%) 

 

AJCC stage   0.24   0.03 
  Stage III 2,278 

(24.8%) 
38,079 
(35.7%) 

 3,162 
(34.5%) 

38,079 
(35.7%) 

 

  Stage IV 6,894 
(75.2%) 

68,467 
(64.3%) 

 6,001 
(65.5%) 

68,467 
(64.3%) 

 

Histological 
classification 

  0.20   0.02 

  Non-squamous 
cell carcinoma 

7,297 
(79.6%) 

75,786 
(71.1%) 

 6,604 
(72.1%) 

75,786 
(71.1%) 

 

   Squamous cell 
carcinoma 

1,875 
(20.4%) 

30,760 
(28.9%) 

 2,560 
(27.9%) 

30,760 
(28.9%) 

 

Abbreviations: CGDB, Clinico-Genomic Database [cohort]; ML-E, Machine 
Learning-Extracted [cohort]; ASD, Absolute Standardized Difference; 
AJCC, American Joint Committee on Cancer 
 

1 Stage III–IV patients that also initiated systemic therapy 
2 Median (Interquartile range) 
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Supplementary Table 8: Baseline characteristics of stages I–II CGDB & 
SEER cohorts, in the unweighted and weighted 
 Unweighted Weighted 
Characteristic CGDB 

(n 2,826) 
SEER 

(n 49,685) 
ASD CGDB 

(n 2,814) 
SEER 

(n 49,685) 
ASD 

Age at diagnosis1 70.0  
(64.0, 
76.0) 

71.0  
(64.0, 
78.0) 

0.16 71.0  
(65.0, 
76.0) 

71.0  
(64.0, 
78.0) 

0.06 

Gender   0.04   0.01 
  Female 1,583 

(56.0%) 
26,894 
(54.1%) 

 1,531 
(54.4%) 

26,894 
(54.1%) 

 

  Male 1,243 
(44.0%) 

22,791 
(45.9%) 

 1,283 
(45.6%) 

22,791 
(45.9%) 

 

Race   0.36   0.03 
  Black 165  

(5.8%) 
4,637 
(9.3%) 

 260  
(9.2%) 

4,637 
(9.3%) 

 

  Other 489 
(17.3%) 

3,185 
(6.4%) 

 199  
(7.1%) 

3,185 
(6.4%) 

 

  White 2,172 
(76.9%) 

41,863 
(84.3%) 

 2,355 
(83.7%) 

41,863 
(84.3%) 

 

SEER stage   0.00   0.00 
  Localized 2,826 

(100.0%) 
49,685 
(100.0%) 

 2,814 
(100.0%) 

49,685 
(100.0%) 

 

Histological 
classification 

  0.10   0.02 

  Non-squamous 
cell carcinoma 

2,143 
(75.8%) 

35,578 
(71.6%) 

 2,043 
(72.6%) 

35,578 
(71.6%) 

 

  Squamous cell 
carcinoma 

683 
(24.2%) 

14,107 
(28.4%) 

 771 
(27.4%) 

14,107 
(28.4%) 

 

Abbreviations: CGDB, Clinico-Genomic Database [cohort]; SEER, 
Surveillance, Epidemiology, and End Results [cohort]; ASD, Absolute 
Standardized Difference 
 
1 Median (Interquartile range) 
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Supplementary Table 9: Baseline characteristics of stages III–IV CGDB & 
SEER cohorts, in the unweighted and weighted 
 Unweighted Weighted 
Characteristic CGDB 

(n 9,172) 
SEER 
(n 

149,056) 

ASD CGDB 
(n 9,092) 

SEER 
(n 

149,056) 

ASD 

Age at diagnosis1 67.0 
(60.0, 
74.0) 

69.0  
(61.0, 
77.0) 

0.24 69.0 
(62.0, 
76.0) 

69.0 
 (61.0, 
77.0) 

0.07 

Gender   0.08   0.01 
  Female 4,618 

(50.3%) 
69,327 
(46.5%) 

 4,198 
(46.2%) 

69,327 
(46.5%) 

 

  Male 4,554 
(49.7%) 

79,729 
(53.5%) 

 4,895 
(53.8%) 

79,729 
(53.5%) 

 

Race   0.35   0.04 
  Black 686  

(7.5%) 
18,405 
(12.3%) 

 1,118 
(12.3%) 

18,405 
(12.3%) 

 

  Other 1,776 
(19.4%) 

12,126 
(8.1%) 

 834  
(9.2%) 

12,126 
(8.1%) 

 

  White 6,710 
(73.2%) 

118,525 
(79.5%) 

 7,141 
(78.5%) 

118,525 
(79.5%) 

 

SEER stage   0.18   0.02 
  Regional 2,278 

(24.8%) 
49,014 
(32.9%) 

 2,917 
(32.1%) 

49,014 
(32.9%) 

 

  Distant 6,894 
(75.2%) 

100,042 
(67.1%) 

 6,175 
(67.9%) 

100,042 
(67.1%) 

 

Histological 
classification 

  0.20   0.02 

  Non-squamous 
cell carcinoma 

7,297 
(79.6%) 

105,969 
(71.1%) 

 6,562 
(72.2%) 

105,969 
(71.1%) 

 

  Squamous cell 
carcinoma 

1,875 
(20.4%) 

43,087 
(28.9%) 

 2,531 
(27.8%) 

43,087 
(28.9%) 

 

Abbreviations: CGDB, Clinico-Genomic Database [cohort]; SEER, 
Surveillance, Epidemiology, and End Results [cohort]; ASD, Absolute 
Standardized Difference 
 
1 Median (Interquartile range) 
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Supplementary Table 10: Sensitivity analysis comparing the baseline 
characteristics of stages I–IV CGDB patients and SEER cancer 
registrations, harmonized to the same study period (2011–2016) 
 Unweighted 
Characteristic CGDB 

(n 5,249) 
SEER 

(n 198,741) 
ASD 

Age at diagnosis1 66.0  
(58.0, 73.0) 

70.0  
(62.0, 77.0) 

0.41 

Gender   0.10 
  Female 2,813  

(53.6%) 
96,221  
(48.4%) 

 

  Male 2,436  
(46.4%) 

102,520  
(51.6%) 

 

Race   0.33 
  Black 325  

(6.2%) 
23,042  
(11.6%) 

 

  Other 902  
(17.2%) 

15,311  
(7.7%) 

 

  White 4,022  
(76.6%) 

160,388  
(80.7%) 

 

SEER stage   0.02 
  Localized 1,353  

(25.8%) 
49,685  
(25.0%) 

 

  Regional 1,293  
(24.6%) 

49,014  
(24.7%) 

 

  Distant 2,603  
(49.6%) 

100,042  
(50.3%) 

 

Histological classification   0.24 
  Non-squamous cell carcinoma 4,279  

(81.5%) 
141,547  
(71.2%) 

 

  Squamous cell carcinoma 970  
(18.5%) 

57,194  
(28.8%) 

 

Abbreviations: CGDB, Clinico-Genomic Database [cohort]; SEER, 
Surveillance, Epidemiology, and End Results [cohort]; ASD, Absolute 
Standardized Difference 
 
1 Median (Interquartile range) 
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SUPPLEMENTARY APPENDIX 

We present our causal assumptions in Supplementary Figure 1, where A represents 

a hypothetical binary treatment, Y the outcome of Real-world Overall Survival, 

Z a set of baseline variables (age, gender, race, stage, histological 

classification), T a binary node indicating having undergone Next Generation 

Sequencing (NGS), and S a node indicating selection into the sample [vs. SEER 

target population]. A  [box] depicts conditioning through experimental design 

(restriction where S=1). The causal and non-causal paths are depicted as dashed 

& red lines, respectively.  

 

 

Supplementary Figure 1: Directed Acyclic Graph showing the causal assumptions 

underlying the study of a convenience CGDB sample.  

Selection into the sample from the SEER target population was assumed a priori 

to be a product of geographic sampling and further eligibility criteria. Note 

that while in real-world clinical practice a set of baseline variables Z can 

cause the ordering of NGS T, in our example T is defined only by the population. 

SEER patients by definition cannot undergo NGS. Nevertheless, any differential 

selection of patient subgroups through the requirement of NGS is corrected 

downstream by weighting on the Inverse Probability of Selection. Separately, 

undergoing NGS T only affects the outcome Y through directing treatment A based 

on the tumor genotype.  

 

In the language of causal Directed Acyclic Graphs 1, a type-1 selection bias 

(collider-restriction bias) results from conditioning on a common effect of both 

the treatment (or cause of treatment) and the outcome (or cause of the outcome) 
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2,3. Conditioning on a collider variable by studying a restricted cohort can 

induce a spurious association between its parents (treatment and outcome) even 

if they are marginally independent. This collider bias can inflate, attenuate or 

even reverse-sign associations 4,5. Where type-1 selection biases is a result of 

conditioning on a common effect of A & Y (A > [Z] < Y), confounding biases are 

defined by open backdoor paths dealing with common causes of A & Y (A < Z > Y). 

The graph above illustrates three paths: 

— a causal path (A > Y) which we wish to isolate; 
— a non-causal confounding path (A < Z > Y); 
— a non-causal collider-restriction path (A > [S] < Z > Y), invoked by 

restricting on a collider variable by restricting on levels of S — a common 
effect of Z and treatment A (i.e. type-1 selection bias) 
 

When use Inverse Probability of Treatment Weights, we weight on the conditional 

probability of A given Z (Pr[A|Z]), thereby severing the path Z > A. When use 

Inverse Probability of Selection Weights, we weight on the conditional 

probability of S given Z (Pr[S|Z]), and therefore sever the path Z > S. In the 

estimation of the Sample Average Treatment Effect, only the confounding path is 

blocked (with Inverse Probability of Treatment Weights), and there remains open 

the collider-restriction path as shown in Supplementary Figure 2. When we wish 

to extend the SATE to the PATE , we further weight the sample on the product 

terms of Inverse Probability of Treatment & Selection Weights as shown in 

Supplementary Figure 3. 

 

Supplementary Figure 2: Identification of the Sample Average Treatment Effect 

(SATE). Note the presence of a backdoor collider-restriction path. 
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Supplementary Figure 3: Identification of the Sample Average Treatment Effect 

(SATE). Note the closure of all backdoor paths. 
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