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0. Abstract 
 
During the COVID-19 pandemic, contact tracing was used to identify individuals who had been in 
contact with a confirmed case so that these contacted individuals could be tested and quarantined 
to prevent further spread of the SARS-CoV-2 virus. Many countries developed mobile apps to find 
these contacted individuals faster. We evaluate the epidemiological effectiveness of the Dutch app 
CoronaMelder, where we measure effectiveness as the reduction of the reproduction number R. To 
this end, we use a simulation model of SARS-CoV-2 spread and contact tracing, informed by data 
collected during the study period (December 2020 - March 2021) in the Netherlands. We show that 
the tracing app caused a clear but small reduction of the reproduction number, and the magnitude 
of the effect was found to be robust in sensitivity analyses. The app could have been more effective 
if more people had used it, and if time intervals between symptom onset and reporting of contacts 
would have been shorter. The model used is novel as it accounts for the clustered nature of social 
networks and as it accounts for cases informally alerting their contacts directly after symptom onset, 
without involvement of health authorities or a tracing app. 
 
Keywords: non-pharmaceutical interventions, digital contact tracing, branching process, clustering 
coefficient, behaviour, transmission model 
 
1. Introduction 
 
In most European countries, the main non-pharmaceutical control measures against the spread of 
SARS-CoV-2 in the first two years were aimed at reducing contacts or risk of transmission per contact 
on population level, for instance by closing schools or restaurants, working from home, keeping 
distance, or wearing face masks. Some of these measures may have had a negative impact on the 
society, in particular to mental health and the economy (Ashraf, 2020; Van den Boom, 2022). For 
that reason, control measures focusing on isolating only infected individuals and quarantining their 
contacts were preferable.  
 
In infectious disease control, contact tracing is a widely applied strategy to find potentially infectious 
individuals, quarantine and test them. Traditionally, contact tracing is done manually by public 
health professionals and relies on the ability and willingness of an individual to recall and report 
close contact events (to be referred to as contacts), and of the contacted persons (to be referred to 
as contactees) to follow the quarantine and testing rules. Modelling studies show that the 
effectiveness of contact tracing strongly depends on characteristics of the infection such as the 
incubation period and generation time, and can be very sensitive to delays in the tracing process 
such as waiting for test appointments or the time it takes for health authorities to call cases, ask for 
contacts, and then inform contactees, which increase the time between transmission and starting 
quarantine (Fraser et al., 2004; Hellewell et al., 2020; Klinkenberg et al., 2006; Kretzschmar et al., 
2021; Muller et al., 2000). 
 
To improve the process of contact tracing, various countries developed contact tracing apps which 
informed users that they were contacted by someone who was tested positive for SARS-CoV-2. 
These apps were meant to reduce the time interval between symptom onset of a case and the 
identification of their contacts with shorter time delays, and to trace contactees not known to or 
recalled by the case. Early modelling studies (Cencetti et al., 2021; Ferrari et al., 2021; Kucharski et 
al., 2020; Kurita et al., 2021) suggested a potentially relevant contribution of such apps to COVID-19 
control. Post-implementation analyses in the UK showed that many infections were indeed 
prevented by their contact tracing app (Ferretti et al., 2020). However, also with the digital contact 
tracing app, control by social distancing measures remained necessary. 
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Since the start of the pandemic many studies have been conducted on contact tracing with contact 
tracing apps (Braithwaite et al., 2020; Jenniskens et al., 2021). Mathematical modelling studies have 
applied several types of models, ranging from compartmental models (Ge et al., 2021; Nuzzo et al., 
2020) and branching process models (Bradshaw et al., 2021; Kretzschmar et al., 2020), to agent-
based models (Cencetti et al., 2021; Kucharski et al., 2020; Quilty et al., 2021; Scott et al., 2021). A 
consistent conclusion across studies is that contact tracing apps can contribute to the control of an 
epidemic, but the extent of the impact is very sensitive to the percentage of the population using the 
app and the delays in the process of tracing and isolating infectious contacts. In some studies (e.g. 
(Kretzschmar et al., 2020)) the importance of short delays of steps in the contact tracing process is 
emphasized whereas in other studies (e.g. (Kucharski et al., 2020)) the emphasis is on the 
importance of having a high proportion of cases to isolate and a high proportion of their contacts to 
be successfully traced.  
 
In 2021, the National Institute for Public Health and the Environment (RIVM) was asked for a model-
based evaluation of the epidemiological effectiveness of the Dutch contact tracing app 
CoronaMelder. Here we present the model and the evaluation. We measure effectiveness of contact 
tracing as the resulting reduction in the reproduction number R, which is defined as the mean 
number of secondary cases per primary case (see (Klinkenberg, 2021)). The model is informed with 
data from surveillance sources and behavioural surveys during the first months of 2021 in the 
Netherlands. The model itself includes two features that are novel. First, we account for the 
clustered nature of social contact networks, which is relevant as it increases the probability that 
infected individuals can be notified by a case in their social network without having been infected by 
that case. Second, we explicitly account for notification of contacts by cases themselves, without 
involvement of health authorities or a tracing app. We estimate the additional effect of manual 
contact tracing over this informal notification, and the additional effect of the contact tracing app 
over the combined effect of informal notification and manual contact tracing. 
 
 
2. Methods  
 
2.1 Data sources 
 
Model parameters were estimated from data on the Dutch COVID-19 epidemic as much as possible. 
Epidemiological data from three surveillance systems were used:  

- Osiris: the national case notification registry containing all confirmed COVID-19 cases (Ward 
et al., 2005) 

- CoronIT: tests carried out by the Municipal Health Services, from all public testing facilities 
- HPZone: all contact tracing data 

Behavioural data from three large studies were used: 
- CGU: questionnaires about beliefs and adherence to measures, ran by the Corona 

Behavioural Unit of the RIVM (RIVM, 2021) 
- LISS: questionnaires about the tracing app, beliefs and adherence to measures, with an 

existing longitudinal Social Sciences cohort panel (Van der Laan, 2021) 
- PanelClix: questionnaire about the tracing app and how it is used, with an existing internet 

panel (Ebbers, 2021) 
 
2.2 Epidemiological situation 
 
The evaluation was done for the period between 1 December 2020 and 31 March 2021, when 
vaccination was not yet available, and lockdown restrictions were in place such as keeping distance, 
working from home, and closed businesses. During that period, all testing was done by public testing 
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facilities (no self-administered antigen tests). People were allowed to get tested when they had 
symptoms, or five days after contact with a positive case identified by manual contact tracing. 
Notification of close contacts through the contact tracing app was done through the health 
authorities: when cases were approached by the health authorities for manual contact tracing, they 
were asked whether they used the app, and if so, they were provided a key by which they could 
activate the app to notify their contactees. Notified individuals were advised by the app to 
quarantine.  
 
2.3. Model formulation and analysis 
 
The effectiveness of contact tracing was expressed in terms of a percentual reduction of the 
reproduction number R. This reproduction number was determined with a simulation model for 
SARS-CoV-2 transmission and contact tracing. This was done for several parameter sets: the baseline 
parameter set, parameter sets for sensitivity analyses, and parameter sets for scenarios to explore 
improvements to the app and its use. 
 
For each parameter set we simulated 10,000 transmission trees (outbreaks starting with one index) 
of at most 10 generations which is equivalent to about 1.5 months of virus spread starting with an 
incidence rate of 2,500 cases during four days (with a mean generation interval of 4 days). In the 
simulations all cases and transmission links are known, therefore it is possible to calculate the mean 
number of secondary cases across all transmission chains, which is the reproduction number R. The 
epidemiological effectiveness of testing, case isolation, contact tracing and quarantine was 
determined by applying sets of control measures to the 10,000 simulated transmission trees, 
removing cases if they would have been prevented, and recalculating the reproduction number.  
 
The control measures were applied at different levels: 

0) no control 
1) testing and informal tracing: cases test and go into quarantine because of symptoms; cases 

go into isolation because of a positive test result; contactees test and go into quarantine 
because of informal contact tracing  

2) manual tracing: contactees test and go into quarantine because of manual contact tracing 
(in addition to 1) 

3) tracing app: contactees test and go into quarantine because of an app notification (in 
addition to 1 and 2) 

The total effectiveness for a parameter set was determined as the reduction in R from no control to 
control level 3. The contributions of informal tracing, manual tracing, and app-based tracing 
separately were determined as the reductions in R from no control to level 1, from level 1 to level 2, 
and from level 2 to level 3, respectively.  
 
Specific details of the Dutch testing policy were modelled explicitly: in control level 1, testing of 
contacts was only done when they were symptomatic and in control levels 2 and 3, testing of 
contacts was done when symptomatic or five days after infection (whichever was earlier). Of course, 
in all cases testing, isolation and quarantine were also conditional on adherence. See also section 
2.3.2. 
 
The simulation model consisted of three layers, explained in more detail below. The first layer was 
the transmission model, used to create transmission trees without contact tracing interventions. 
This resulted in a chronological description for all cases of who had contacted whom, and when 
symptoms had started (if any). The second layer was the behaviour model, used to assign 
behavioural parameters to each case that determine what actions they are willing to take to help 
control the epidemic. Actions are testing or isolation/quarantine, and are only taken when triggered 
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by symptom onset, a positive test result, or notification through contact tracing. The behaviour 
model is also used to determine who is willing to use the contact tracing app (app use). The third 
layer was the logistics model, used to apply testing and tracing to the transmission trees with all 
relevant delays in the test-and-trace process, and the probabilities by which contacts are traced. The 
second- and third layer were tailored to the Dutch situation in the study period, e.g. testing rules and 
notification processes. Further details are provided in the model description below.   
 
 
2.3.1 Transmission: epidemic outbreak and social network with clustering 
 
Transmission trees were simulated with a branching process with negative binomial offspring 
distribution, up to a maximum number of 10 generations after the index case. The offspring 
distribution is defined by a mean Rref (the reference reproduction number, i.e. without testing and 
tracing) and a shape k, which determines the variation and therefore the possibility of superspreading. 
The reproduction number Rref in the simulation is without isolation or quarantine, but should be 
interpreted in the presence of population-level control measures such as keeping physical distance, 
working from home, and closed businesses.  
 
For each case a time of infection was sampled, as well as a time of symptom onset, with a certain 
fraction of cases without symptoms (see also Table 1). Starting with infection time 0 for the index 
case of the branching process, the infection times for the subsequent cases were always one random 
generation interval later. The times of symptom onset were equal to the infection times plus a 
randomly sampled incubation period. Generation interval and incubation period were modelled with 
gamma distributions. 
 
We accounted for the local clustering of social contact networks by adding edges to the transmission 
trees that represent contacts that had not led to transmission but which may be used for contact 
tracing. These edges were placed such that networks with triangles were formed, in three steps: 

• each pair of individuals that had a contactee in common was linked with probability c. 

• each pair of individuals that had a contactee in common because of step 1, was linked with 
probability c2. 

• Each pair of individuals that had a contactee in common because of step 2, was linked with 
probability c3. 
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Parameter values with justification are listed in Table 1, with more detail in Supplement S1. 
 
 
2.3.2 Behaviour: adherence to control measures 
 
Behaviour was parameterised by a set of probabilities of adherence to testing, isolation, quarantine 
and app use (the behaviours), in response to symptoms, a positive test result, any type of contact 
tracing, or availability of a contact tracing app (the triggers). All individuals in the simulated 
outbreaks were randomly assigned three adherence levels between 0 and 1: one level related to 
testing, one related to isolation and quarantine, and one related to app use. These levels determined 
the behaviour of an individual in response to a trigger, by comparing their adherence level to a 

Table 1: Parameters of the transmission model 

Description Baseline value a Source b 

Reproduction number Rref 1.3 c 

Contacts   
Superspreading coefficient k (shape 
parameter of the negative binomial 
distribution with mean Rref) 

0.1 
 
 

(Kirkegaard and Sneppen, 
2021; Susswein, 2020) 

Clustering probability c 0.2 (Eames and Keeling, 2003; 
Kissler, 2020; Kucharski et al., 
2018) 

Course of an individual infection   
Percentage of infections with 
symptoms 

70% (Buitrago-Garcia et al., 2020; 
McDonald et al., 2021) 

Mean incubation period 5 days (Backer et al., 2020; Cheng, 
2020) 

Mean generation interval 4 days Osiris 
a Value of the baseline parameter set; see Supplement S2 for values used in sensitivity analyses and future scenarios 
b Literature reference or dataset: Osiris = case notification registry; see Supplement for more detail 
c The exact value of R is not essential to calculate a relative reduction. A value larger than one is necessary for an 

outbreak to enable computations. A value close to one is most representative for the evaluation period. 

Table 2. Parameters of the behaviour model. Adherence levels of actions in response to triggers 

Description Baseline value a Source b 

Scheduling a test in response to…   
…symptoms (own initiative) 50% CGU 
…informal tracing notification 68% CGU 
…manual tracing notification 90% CGU 
…tracing app notification 81% CGU, LISS, PanelClix 

Isolation in response to a positive test 90% CGU 
Quarantine in anticipation of test 
outcome, in response to… 

  

…symptoms (own initiative) 50% CGU 
…informal tracing, manual tracing 
or tracing app (with symptoms) 

75% CGU 

…informal tracing, manual tracing 
or tracing app (without symptoms) 

50% CGU, PanelClix 

a  Value of the baseline parameter set; see Supplement S2 for values used in sensitivity analyses and future scenarios 
b Dataset: CGU = questionnaires by Corona Behavioural Unit; LISS = questionnaires in LISS Social Sciences cohort panel; 
PanelClix = questionnaire in PanelClix internet panel; see Supplement for more detail 
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probability. For instance, if app use was 30%, the 30% individuals that were assigned the highest 
app-use adherence level (app-use level > 0.7) used the contact tracing app. By using adherence 
levels instead of random behaviours for each trigger-behaviour combination, we created consistency 
in each individual’s behaviour across triggers and parameter sets. The probabilities for each trigger-
behaviour combination are listed in Table 2, with more detail in Supplement S1. 
 
 
2.3.3 Logistics: delays and tracing efficiency 
 
The process of testing and informing contacts, potentially followed by quarantine and isolation, is 
described by a cycle of two steps, initiated by a trigger step. Most actions are conditional on 
adherence, as described above. 

0. The trigger step is the period between symptom onset and scheduling a test. During this 
step, there is no quarantine.  

1. The first step of the cycle is the period between scheduling the test and receiving the test 
result. During this period, the actual test is taken (not explicitly modelled). This first step may 
be the start of the case’s quarantine. Upon receiving the positive test result, the case may 
become an index in the tracing process. 

2. The second step of the cycle is the period between receiving the positive test result of the 
index and the scheduling of tests by his/her contacts. This second step may be the start of 
isolation of the index. During this period, the contacts may be informed by the modes of 
contact tracing that are in place, with probabilities depending on the effectiveness of 
recalling and notifying by the index, the contact tracing app, and the authorities.   

 
The parameter values of the logistics model are listed in Table 3, with more detail in Supplement S1.  
 
 
2.3.4 Applying testing and tracing to the simulated outbreaks  
 
Implementation of control was simulated by first starting the test-and-trace cycle once for each case 

i, resulting in quarantine and isolation times ijt  for all cases j ( ijt =  if j is never reached from i). 

From these times, ( )mini ijt  was determined as the end of the contact period for case j (i.e. 

minimum over all cases i), and all secondary cases of case j after these end times were removed, plus 
all cases from the generations thereafter. From all resulting transmission trees, the numbers of cases 

gC  in each generation g were added, and the geometric average reproduction ratio was calculated 

over 7 generations as ( )
1 7

9 2R C C= ; we skipped the initial and final generation to reduce edge 

effects. 
 
In sensitivity analyses and scenarios in which only parameters concerning behaviour or logistics were 
changed (Tables 2-3), the same set of 10,000 transmission trees and individual adherence levels 
were used as with the baseline parameter set. Only when parameters for the transmission tree 
model were changed (Table 1), new transmission trees were simulated.  
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The code implementation of the model described in this paper was done in R version 3.6.0 (2019-04-
26) (Team, 2019), platform: x86_64-redhat-linux-gnu (64-bit). All code for the model and the analysis 
is published on https://github.com/rivm-syso/cm-evaluation.  
 
 
2.3.5 Baseline parameter set, sensitivity analyses, and future scenarios 
 
The baseline parameter set (Tables 1-3) was estimated from data or obtained from literature, and 
was meant to best represent the situation in the Netherlands between December 2020 and March 
2021, as described in Section 2.2.  
 
In the baseline parameter set, 10% of the population would never test and therefore never go into 
isolation or quarantine, and 16% would use the app. In the baseline simulations, these behaviours 
were randomly drawn for each individual, but behaviours may be clustered in social networks. We 
explored the effect of clustering by dividing the population into two equal parts, one with higher 
adherence (5% never testing, 24% app use) and one with lower adherence (15% never testing, 8% 
app use), and determining the effectiveness in the two subpopulations. 
 
Sensitivity analyses were carried out with alternative parameter sets or assumptions, exploring the 
main uncertainties of the baseline parameters (details in Supplement S2): a lower reproduction 
number, a longer generation interval, less or more superspreading, less or more clustering in the 
tracing network, more asymptomatic infections, lower tracing probabilities, and a smaller or larger 
proportion of the population not adhering to anything. In addition, we considered the possibility 
that adherence was socially clustered, so that a mean adherence level actually results high 

Table 3. Parameters of the logistics model 

Description  Value a Source b 

Delay from symptom onset to 
scheduling a test (own initiative) 

1.6 days Osiris, CoronIT 

Delay from scheduling a test to test 
result… 

  

…with symptoms  1.3 days CoronIT 
…without symptoms  2.3 days CoronIT 

Delay from positive test result to 
scheduling a test of a contactee, found 
by… 

  

…informal tracing notification 4 hours  
…manual tracing notification 1.5 days HPZone 
…tracing app notification 1 day  

Percentage of infected contactees 
notified through… 

  

…informal tracing 32%  
…manual tracing 40% Osiris 
…tracing app 75% (Ministry of Health, 2020, 

2021a) 
Percentage of app users 16% PanelClix, (Ministry of Health, 

2021b) 
a Value of the baseline parameter set; see Supplement S2 for values used in sensitivity analyses and future scenarios 
b Reasoned assumptions or dataset: Osiris = case notification registry; coronIT = test data; HPZone = contact tracing 
data;  PanelClix = questionnaire in PanelClix internet panel; see Supplement for more detail 
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adherence in some transmission trees, and low adherence in other transmission trees. For this, we 
calculated the effectiveness in low-adherence and high-adherence transmission trees.  
 
Future scenarios were evaluated to explore the potential contribution of the contact tracing app. 

First, we considered a change in policy in letting app users notify their contacts directly in the app 

and not through the health authorities. Second, we explored the effect of the likely reduced 

effectiveness of manual tracing if the lockdowns (in place during the evaluation period) would be 

lifted. This was expected to increase contact rates, especially with strangers, making informal and 

manual contact tracing less effective. In another future scenario, it was even considered to 

completely terminate formal manual contact tracing. Finally we considered the possibility of 

increasing the percentage of the population using the app (by campaigns). All these developments 

were evaluated through simulations of several parameter sets describing these future scenarios 

(details in Supplement S2).  

 
 
 
3. Results 
 
3.1 Baseline parameters and sensitivity analysis 
 
The baseline parameter set (Tables 1-3) resulted in a total reduction of the reproduction number R 
by 12.7%, of which testing and informal tracing (notification of contactees by infected people 
themselves) contributed 6%, manual tracing (notification by health authorities) another 6.4%, and 
the contact tracing app only 0.3% (Figure 1a). This was our best estimate of the effectiveness of 
testing and tracing between December 2020 and March 2021 in the Netherlands. If behaviour is 
clustered in the population, high-adherence groups are better protected by less circulation in their 
social network (Figure 1b). 
 
In Figure 1c the results of the sensitivity analyses of individual parameters with the most uncertainty 
are presented. The effectiveness of testing and informal tracing did not change very much in most 
analyses, and became only much less effective with more asymptomatic infections, and more 
effective with a longer generation interval. Manual tracing effectiveness was very sensitive to 
changes in the contact network (superspreading and clustering), but also to parameters directly 
important to the test-and-trace cycle such as the proportion of asymptomatic infection, the 
probability to trace a contact, and the generation interval which directly affects timely notification of 
close contacts. Finally, the contribution of app-based tracing remained limited in all sensitivity 
analyses: 0.2% to 0.5% reduction in R.  
 
 
3.2 Scenarios to explore improvements to the app and its use 
 
From the baseline analysis it turned out that the contact tracing app did not contribute much to 
transmission control. We ran a series of scenario simulations to see if this could change in other 
conditions. First, we looked at the possibility to change the app such that contact notification can be 
done by the users themselves, before they are contacted by the health authorities for manual 
tracing (this became possible later in 2021). This increased the reduction in R by app-based tracing 
from 0.3% to 0.5%, which in relative terms is a lot but not so much in absolute terms (Figure 2a). 
Then we looked at how the app would work if lockdown measures were lifted, rendering manual 
tracing less effective because more contacts are made with strangers, and how it would work when 
manual tracing would be abandoned at all. It turned out that the reduced contribution of manual 
tracing was not expected to be compensated by the contact tracing app (Figure 2a).  
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Finally, we explored how much more effective the contact tracing app would become with more 
users (Fig 2b), in combination with direct notification by the users and a reduction in manual tracing 
effectiveness or abandonment of manual tracing. More users made the contact tracing app more 
effective, but to compensate for the expected lower effectiveness of manual tracing in a future 
scenario without lockdown, at least 40% of population would need to use the contact tracing app 
instead of the 16% in the baseline scenario. In that case, the benefit of notification by users 
themselves also increases, and would contribute 1% of the total reduction of 12.5% (2.5% vs 3.5% - 
top vs bottom row in Figure 2b, middle column). In the extreme case that 80% of the population 
would use the contact tracing app, the app could contribute 14.1% of the reduction in R (Fig 2b 
middle column, bottom row). 
 
 
4. Discussion and conclusion 
 

 
Figure 1: Relative reduction in the reproduction number by testing and tracing, with contributions 
of the control levels testing and informal tracing, manual tracing, and tracing app; (a) results with 
the baseline parameter set with parameter values reported in Tables 1-3; (b) results with the 
baseline parameter set where the population is subdivided into two separate groups with low and 
high adherence (see sections 2.4 and 2.6) (c) sensitivity analysis with each analysis adjusting 
exactly one parameter (see section 2.3.5 and Supplement S2 for parameter values) 
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We evaluated the epidemiological effectiveness of the Dutch contact tracing app CoronaMelder in 
the period from December 2020 to March 2021. We used a simulation model that was informed by 
testing and tracing data collected in the Netherlands during this study period. We conclude that the 
contribution of the contact tracing app to control the epidemic was very small, although some 
protection may have been provided to social groups with more app use. This conclusion was not 
very sensitive to the major parameter uncertainties. The app could have contributed more if more 
people would have used it, and if notification of contacts could have been done directly by the user, 
without involving the health authorities. If formal manual tracing would have become less effective 
or even abandoned, this would not have been compensated by the app. 
 

 
Figure 2: Analysis for future scenarios for the effectiveness of testing, manual tracing, and digital 
contact tracing in the base setting and a society with (little) restrictions, both with and without 
formal manual tracing (a) Reduction in the reproduction number, in the top row the app 
notification is by authorities while in the bottom row the app notification is by the user 
him/herself (24 vs 8 hours) (b) For the same six parameter sets the effect of a higher percentage 
app users on the reduction of the reproduction number 
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The results in our study are at the lower end of the spectrum of effectiveness estimates of contact 
tracing apps (Jenniskens et al., 2021). It is not straightforward to compare studies, as there are many 
complexities that play a role (Kretzschmar et al., 2022). Some modelling studies show the 
effectiveness of the digital contact tracing app in a general setting as a proof of concept, while other 
studies, like ours, are tailored to a specific country and period (and corresponding policies in place). 
In particular, the time intervals (Table 3) that were estimated from the data during the evaluation 
period were relatively long compared to most of the intervals used in literature. It is known that 
longer time delays in test-and-trace methods can greatly reduce the effectiveness of tracing (Fraser 
et al., 2004; Klinkenberg et al., 2006; Kretzschmar et al., 2020). In addition, the percentage of app 
users was low in the Netherlands as compasred to the values used in other studies. Simulations with 
more users and shorter delays showed the potential benefit of a contact tracing app (Figure 2), 
which should therefore certainly not be dismissed as a tool in controlling a future epidemic. 
 
Many models for contact tracing have been built, also for evaluation of digital contact tracing during 
the SARS-CoV-2 pandemic (e.g. (Bradshaw et al., 2021; Cencetti et al., 2021; Kretzschmar et al., 
2020; Kucharski et al., 2020; Quilty et al., 2021; Scott et al., 2021)), but our model was unique on 
three points. First of all, we were able to obtain realistic values for most parameters based on a large 
variety of data sources of high quality, such as large epidemiological surveillance systems and 
anonymous questionnaire surveys about behaviour in representative samples of the Dutch 
population. An important consequence is that our results were a quantitative estimate of the 
effectiveness of the tracing app in the Netherlands, which could be easily interpreted by policy 
makers. In fact, the evaluation of the CoronaMelder app (of which the epidemiological evaluation by 
this model was one part) was followed first by some improvements such as direct notifications by 
the user, but ultimately by termination of its use (Ministry of Health, 2022).  
 
Second, we made an explicit distinction between formal manual tracing and informal tracing by 
cases notifying their contacts themselves after receiving a positive test result. Informal tracing was 
observed in behavioural surveys, and is fast and cheap compared to manual tracing. A proper 
evaluation of tracing programmes should take this form of tracing into account, because it reduces 
the additional benefit of manual tracing. On the other hand, manual tracing may reach more 
contactees and provide the opportunity to better instruct what to do, thus improving the 
effectiveness of quarantine. In the evaluated context in the Netherlands, manual tracing was 
estimated to add 6.4% reduction in R to the 6% from testing and informal tracing (Figure 1a). 
 
Third, we included the possibility of tracing of contacts that were infected by someone else in the 
social network, known to be important for the effectiveness of tracing (House and Keeling, 2010; 
Kretzschmar et al., 2022). This was done by adding contacts to the simulated transmission trees 
through which tracing could take place. The extent to which these extra contacts are added makes a 
large difference to the effectiveness of tracing (sensitivity analysis in Figure 1c), which is easily 
understood as these contacts can bypass the transmission links and lead to quarantine just after or 
even prior to infection. In our model, we included these contacts so that triangles are created in the 
original transmission tree, just like triangles are part of clustered networks (Kiss, 2017; Newman, 
2003). In clustered networks, the clustering coefficient c determines what proportion of triplets form 
triangles in the network. A topic for further study is how clustering among infected individuals in a 
transmission tree (as in our model) relates to clustering in an underlying social network. 
 
 
 
 
References 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.15.23291010doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291010
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Ashraf, B.N., 2020. Economic impact of government interventions during the COVID-19 pandemic: 
International evidence from financial markets. J Behav Exp Finance 27, 100371. doi: 
10.1016/j.jbef.2020.100371. 
Backer, J.A., Klinkenberg, D., Wallinga, J., 2020. Incubation period of 2019 novel coronavirus (2019-
nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro Surveill 25. doi: 
10.2807/1560-7917.ES.2020.25.5.2000062. 
Bradshaw, W.J., Alley, E.C., Huggins, J.H., Lloyd, A.L., Esvelt, K.M., 2021. Bidirectional contact tracing 
could dramatically improve COVID-19 control. Nat Commun 12, 232. doi: 10.1038/s41467-020-
20325-7. 
Braithwaite, I., Callender, T., Bullock, M., Aldridge, R.W., 2020. Automated and partly automated 
contact tracing: a systematic review to inform the control of COVID-19. Lancet Digit Health 2, e607-
e621. doi: 10.1016/S2589-7500(20)30184-9. 
Buitrago-Garcia, D., Egli-Gany, D., Counotte, M.J., Hossmann, S., Imeri, H., Ipekci, A.M., Salanti, G., 
Low, N., 2020. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-
CoV-2 infections: A living systematic review and meta-analysis. PLoS Med 17, e1003346. doi: 
10.1371/journal.pmed.1003346. 
Cencetti, G., Santin, G., Longa, A., Pigani, E., Barrat, A., Cattuto, C., Lehmann, S., Salathe, M., Lepri, 
B., 2021. Digital proximity tracing on empirical contact networks for pandemic control. Nat Commun 
12, 1655. doi: 10.1038/s41467-021-21809-w. 
Cheng, H.-Y.J., S.-W.; Liu, D.-P.; Ng, T.-C.; Huang, W.-T.; Lin, H.-H., 2020. High transmissibility of 
COVID-19 near symptom onset. medRxiv. doi: https://doi.org/10.1101/2020.03.18.20034561. 
Eames, K.T., Keeling, M.J., 2003. Contact tracing and disease control. Proc Biol Sci 270, 2565-2571. 
doi: 10.1098/rspb.2003.2554. 
Ebbers, W., 2021. Wat volgt er na een melding van CoronaMelder? Eindrapportage van de evaluatie 
van `CoronaMelder-app meldingen van een kans op besmetting`, een kwantitatief onderzoek. 
Erasmus University Rotterdam. 
Ferrari, A., Santus, E., Cirillo, D., Ponce-de-Leon, M., Marino, N., Ferretti, M.T., Santuccione Chadha, 
A., Mavridis, N., Valencia, A., 2021. Simulating SARS-CoV-2 epidemics by region-specific variables and 
modeling contact tracing app containment. NPJ Digit Med 4, 9. doi: 10.1038/s41746-020-00374-4. 
Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler-Dorner, L., Parker, M., Bonsall, D., 
Fraser, C., 2020. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact 
tracing. Science 368. doi: 10.1126/science.abb6936. 
Fraser, C., Riley, S., Anderson, R.M., Ferguson, N.M., 2004. Factors that make an infectious disease 
outbreak controllable. Proc Natl Acad Sci U S A 101, 6146-6151. doi: 10.1073/pnas.0307506101. 
Ge, Y., Chen, Z., Handel, A., Martinez, L., Xiao, Q., Li, C., Chen, E., Pan, J., Li, Y., Ling, F., Shen, Y., 2021. 
The impact of social distancing, contact tracing, and case isolation interventions to suppress the 
COVID-19 epidemic: A modeling study. Epidemics 36, 100483. doi: 10.1016/j.epidem.2021.100483. 
Hellewell, J., Abbott, S., Gimma, A., Bosse, N.I., Jarvis, C.I., Russell, T.W., Munday, J.D., Kucharski, 
A.J., Edmunds, W.J., Centre for the Mathematical Modelling of Infectious Diseases, C.-W.G., Funk, S., 
Eggo, R.M., 2020. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. 
Lancet Glob Health 8, e488-e496. doi: 10.1016/S2214-109X(20)30074-7. 
House, T., Keeling, M.J., 2010. The impact of contact tracing in clustered populations. PLoS Comput 
Biol 6, e1000721. doi: 10.1371/journal.pcbi.1000721. 
Jenniskens, K., Bootsma, M.C.J., Damen, J., Oerbekke, M.S., Vernooij, R.W.M., Spijker, R., Moons, 
K.G.M., Kretzschmar, M.E.E., Hooft, L., 2021. Effectiveness of contact tracing apps for SARS-CoV-2: a 
rapid systematic review. BMJ Open 11, e050519. doi: 10.1136/bmjopen-2021-050519. 
Kirkegaard, J.B., Sneppen, K., 2021. Superspreading quantified from bursty epidemic trajectories. Sci 
Rep 11, 24124. doi: 10.1038/s41598-021-03126-w. 
Kiss, I.Z.M., J.C.; Simon, P.L., 2017. Mathematics of epidemics on networks: from exact to 
approximate models. Springer Cham. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.15.23291010doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.18.20034561
https://doi.org/10.1101/2023.06.15.23291010
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kissler, S.M.K., P.; Tang, M.; Conlan, A.J.K.; Gog, J.R., 2020. Sparking "The BBC Four Pandemic": 
leveraging citizen science and mobile phones to model the spread of disease. bioRxiv. doi: 
https://doi.org/10.1101/479154. 
Klinkenberg, D., Fraser, C., Heesterbeek, H., 2006. The effectiveness of contact tracing in emerging 
epidemics. PLoS One 1, e12. doi: 10.1371/journal.pone.0000012. 
Kretzschmar, M.E., Ashby, B., Fearon, E., Overton, C.E., Panovska-Griffiths, J., Pellis, L., Quaife, M., 
Rozhnova, G., Scarabel, F., Stage, H.B., Swallow, B., Thompson, R.N., Tildesley, M.J., Villela, D., 2022. 
Challenges for modelling interventions for future pandemics. Epidemics 38, 100546. doi: 
10.1016/j.epidem.2022.100546. 
Kretzschmar, M.E., Rozhnova, G., Bootsma, M.C.J., van Boven, M., van de Wijgert, J., Bonten, M.J.M., 
2020. Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling 
study. Lancet Public Health 5, e452-e459. doi: 10.1016/S2468-2667(20)30157-2. 
Kretzschmar, M.E., Rozhnova, G., van Boven, M., 2021. Isolation and Contact Tracing Can Tip the 
Scale to Containment of COVID-19 in Populations With Social Distancing. Frontiers in Physics 8. doi: 
10.3389/fphy.2020.622485. 
Kucharski, A.J., Klepac, P., Conlan, A.J.K., Kissler, S.M., Tang, M.L., Fry, H., Gog, J.R., Edmunds, W.J., 
group, C.C.-w., 2020. Effectiveness of isolation, testing, contact tracing, and physical distancing on 
reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet 
Infect Dis 20, 1151-1160. doi: 10.1016/S1473-3099(20)30457-6. 
Kucharski, A.J., Wenham, C., Brownlee, P., Racon, L., Widmer, N., Eames, K.T.D., Conlan, A.J.K., 2018. 
Structure and consistency of self-reported social contact networks in British secondary schools. PLoS 
One 13, e0200090. doi: 10.1371/journal.pone.0200090. 
Kurita, J., Sugawara, T., Ohkusa, Y., 2021. Estimated effectiveness of school closure and voluntary 
event cancellation as COVID-19 countermeasures in Japan. J Infect Chemother 27, 62-64. doi: 
10.1016/j.jiac.2020.08.012. 
McDonald, S.A., Miura, F., Vos, E.R.A., van Boven, M., de Melker, H.E., van der Klis, F.R.M., van 
Binnendijk, R.S., den Hartog, G., Wallinga, J., 2021. Estimating the asymptomatic proportion of SARS-
CoV-2 infection in the general population: Analysis of nationwide serosurvey data in the 
Netherlands. Eur J Epidemiol 36, 735-739. doi: 10.1007/s10654-021-00768-y. 
Ministry of Health, W.a.S., 2020. Veldtest bluetooth validatie COVID-19 notificatie app. 
https://www.rijksoverheid.nl/documenten/rapporten/2020/06/08/veldtest-bluetooth-validatie-
covid-19-notificatie-app, accessed 2023 2 May 
Ministry of Health, W.a.S., 2021a. CoronaMelder hertest bluetooth validatie beoordeling AEN v2 API. 
https://www.rijksoverheid.nl/ministeries/ministerie-van-volksgezondheid-welzijn-en-
sport/documenten/publicaties/2021/05/17/coronamelder-hertest-bluetooth-validatie-april-2021, 
accessed 2023 2 May 
Ministry of Health, W.a.S., 2021b. CoronaMelder statistics. https://github.com/minvws/nl-covid19-
notification-app-statistics, accessed 2023 2 May 
Ministry of Health, W.a.S., 2022. CoronaMelder. 
https://www.rijksoverheid.nl/onderwerpen/coronavirus-covid-19/coronamelder, 2 May 2023 
Muller, J., Kretzschmar, M., Dietz, K., 2000. Contact tracing in stochastic and deterministic epidemic 
models. Math Biosci 164, 39-64. doi: 10.1016/s0025-5564(99)00061-9. 
Newman, M.E.J., 2003. Properties of highly clustered networks. Physical Review E 68, 026121. 
Nuzzo, A., Tan, C.O., Raskar, R., DeSimone, D.C., Kapa, S., Gupta, R., 2020. Universal Shelter-in-Place 
Versus Advanced Automated Contact Tracing and Targeted Isolation: A Case for 21st-Century 
Technologies for SARS-CoV-2 and Future Pandemics. Mayo Clin Proc 95, 1898-1905. doi: 
10.1016/j.mayocp.2020.06.027. 
Quilty, B.J., Clifford, S., Hellewell, J., Russell, T.W., Kucharski, A.J., Flasche, S., Edmunds, W.J., Centre 
for the Mathematical Modelling of Infectious Diseases, C.-w.g., 2021. Quarantine and testing 
strategies in contact tracing for SARS-CoV-2: a modelling study. Lancet Public Health 6, e175-e183. 
doi: 10.1016/S2468-2667(20)30308-X. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.15.23291010doi: medRxiv preprint 

https://doi.org/10.1101/479154
https://www.rijksoverheid.nl/documenten/rapporten/2020/06/08/veldtest-bluetooth-validatie-covid-19-notificatie-app
https://www.rijksoverheid.nl/documenten/rapporten/2020/06/08/veldtest-bluetooth-validatie-covid-19-notificatie-app
https://www.rijksoverheid.nl/ministeries/ministerie-van-volksgezondheid-welzijn-en-sport/documenten/publicaties/2021/05/17/coronamelder-hertest-bluetooth-validatie-april-2021
https://www.rijksoverheid.nl/ministeries/ministerie-van-volksgezondheid-welzijn-en-sport/documenten/publicaties/2021/05/17/coronamelder-hertest-bluetooth-validatie-april-2021
https://github.com/minvws/nl-covid19-notification-app-statistics
https://github.com/minvws/nl-covid19-notification-app-statistics
https://www.rijksoverheid.nl/onderwerpen/coronavirus-covid-19/coronamelder
https://doi.org/10.1101/2023.06.15.23291010
http://creativecommons.org/licenses/by-nc-nd/4.0/


RIVM, 2021. Resultaten onderzoek gedragsregels en welbevinden [results research behavioural rules 
and wellbeing]. https://www.rivm.nl/gedragsonderzoek/maatregelen-welbevinden, accessed 2023 2 
May 
Scott, N., Palmer, A., Delport, D., Abeysuriya, R., Stuart, R.M., Kerr, C.C., Mistry, D., Klein, D.J., Sacks-
Davis, R., Heath, K., Hainsworth, S.W., Pedrana, A., Stoove, M., Wilson, D., Hellard, M.E., 2021. 
Modelling the impact of relaxing COVID-19 control measures during a period of low viral 
transmission. Med J Aust 214, 79-83. doi: 10.5694/mja2.50845. 
Susswein, Z.B., S., 2020. Characterizing superspreading of SARS-CoV-2: from mechanism to 
measurement. medRxiv. doi: https://doi.org/10.1101/2020.12.08.20246082. 
Team, R.C., 2019. R: A language and environment for statistical computing. R foundation for 
statistical computing, Vienna, Austria. 
Van den Boom, W.M., E.; Van der Vliet, N.; Elberse, J.; Van Dijken, S.; Van Dijk, M.; Euser, S.; Derks, 
M.; Leurs, M.; Albers, C.; Sanderman, R.; De Bruin, M., 2022. Mental health, loneliness and life 
satisfaction in the dynamic context of COVID-19 pandemic policies and healthcare burden: a two-
year cohort study in the Netherlands. OSF Preprints. doi: https://dio.org/10.31219/osf.io/qr8fv. 
Van der Laan, N.V.d.W., N.; De Wit, J., 2021. Endreport CoronaMelder Evaluation - Survey LISS panel 
wave 3. Tilburg University. 
Ward, M., Brandsema, P., van Straten, E., Bosman, A., 2005. Electronic reporting improves timeliness 
and completeness of infectious disease notification, The Netherlands, 2003. Euro Surveill 10, 7-8. 
doi: 10.2807/esm.10.01.00513-en. 

 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.15.23291010doi: medRxiv preprint 

https://www.rivm.nl/gedragsonderzoek/maatregelen-welbevinden
https://doi.org/10.1101/2020.12.08.20246082
https://dio.org/10.31219/osf.io/qr8fv
https://doi.org/10.1101/2023.06.15.23291010
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplement to 
 
Effectiveness of a COVID-19 contact tracing app in a simulation model with indirect and informal 
contact tracing  
 
Authors: Ka Yin Leung, Esther Metting, Wolfgang Ebbers, Irene Veldhuijzen, Stijn P. Andeweg, Guus 
Luijben, Marijn de Bruin, Jacco Wallinga, Don Klinkenberg 

 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.15.23291010doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291010
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

S1 Model parameters 
 
In this section we provide a detailed description of the sources for each of the parameter values in 
the study (Tables 1-3) 
 
Model parameters were estimated from data on the Dutch COVID-19 epidemic as much as possible. 
Epidemiological data from three surveillance systems were used:  

- Osiris: the national case notification registry containing all confirmed COVID-19 cases (Ward 
et al., 2005) 

- coronIT: all tests carried out by the Municipal Health Services, from all public testing facilities 
- HPZone: all contact tracing data 

Behavioural data from three large studies were used: 
- CGU: questionnaires about beliefs and adherence to measures, ran by the Corona 

Behavioural Unit of the RIVM (RIVM, 2021) 
- LISS: questionnaires about the tracing app, beliefs and adherence to measures, with an 

existing longitudinal Social Sciences cohort panel (Van der Laan, 2021) 
- PanelClix: questionnaire about the tracing app and how it is used, with an existing internet 

panel (Ebbers, 2021) 
 
Table 1: Parameters of the transmission model 
 

Reproduction number refR  

Value: 1.3 
Source: The exact value of R is not essential. A value larger than 1 is necessary to get enough cases in 
the simulations, to enable calculations. A value close to 1 is representative for the evaluation period 
under consideration (https://coronadashboard.rijksoverheid.nl/landelijk/reproductiegetal) 
 
Contacts, superspreading coefficient k (shape parameter of the negative binomial distribution with 

mean refR )  

Value: 0.1 
Source: (Kirkegaard and Sneppen, 2021; Susswein, 2020)  
 
Contacts, clustering probability c 
Value: 0.2 
Source: clustering is incorporated into the model because it is known that this influences the 
effectiveness of infectious disease control through contact tracing (Eames and Keeling, 2003). The 
implementation of clustering, by adding additional contacts to a transmission tree, is new; we 
assumed that the clustering probability of our model is similar to the clustering coefficient in 
population networks. For this, we found estimates of approximately 0.3 for contacts within schools 
(Kucharski et al., 2018) and 0.1-0.2 from a large scale contact study (Kissler, 2020). 
 
Course of an individual infection, percentage of infections with symptoms 
Value: 70% 
Source:  (Buitrago-Garcia et al., 2020; McDonald et al., 2021) 
 
Course of an individual infection, incubation period 
Value: gamma distribution with mean 5 days and standard deviation 2.5 days 
Source: (Backer et al., 2020; Cheng, 2020) 
 
Course of an individual infection, generation interval 
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Value: gamma distribution with mean 4 days and standard deviation 2 days 
Source: analysis of RIVM Osiris data yields a distribution for the serial interval, from which the 
distribution of the generation interval can be calculated. The mean coincides between generation 
interval and serial interval, and for the standard deviation it holds that Var(serial interval) = 
Var(generation interval) + 2* Var(incubation period)  
 
 
Table 2: parameters of the behaviour model. Adherence levels of actions in response to triggers 
 
Scheduling a test in response to symptoms (own initiative) 
Value: 50% 
Source: An adherence percentage of 56% with respect to scheduling a test after manual tracing 
(90%, see below). This 56% is based on the average of people that have gotten tested as estimated 
from behavioural data ((RIVM, 2021), 10e ronde): “Of the people that have had cold-like symptoms, 
46% has gotten themselves tested. Of the people with symptoms that (likely) did not arise from 
another condition, 57% has gotten themselves tested.” 
 
Scheduling a test in response to informal tracing notification 
Value: 68% 
Source: We assumed a percentage of 75% with respect to the adherence scheduling a test after 
manual tracing (90%, see below), which is based on the proportion people that get themselves 
tested after getting notified by the index him/herself (61.2%) and after notification by the health 
authorities (83.4%) ((RIVM, 2021) Table S1).  
 
Scheduling a test in response to manual tracing notification 
Value: 90%  
Source: A percentage of the population (estimated 10%) does not get tested, and as such does not 
participate in the contact tracing effort. This percentage is an estimate based on the percentage of 
people that schedules a test after getting notified by the health authorities that they have had close 
contact with an infectious individual ((RIVM, 2021) Table S1). 
 
Scheduling a test in response to tracing app notification 
Value: 81% 
Source: We assume a adherence percentage of 90% with respect to scheduling a test after formal 
manual tracing (90%, see above). We assume the adherence to lie between the percentage of 41% 
that schedules a test after notification as reported by (Ebbers, 2021) and 95% that has the intention 
to schedule a test as reported by (Van der Laan, 2021). 
 
Isolation in response to a positive test 
Value: 90% 
Source: Based on the average percentage between ”staying at home” and “not receiving any 
visitors” from behavioural data ((RIVM, 2021), 10e ronde): “of the participants that tested positive, 
75% report to have stayed at home and 98% reports not having had any visitors”. 
 
Quarantine in anticipation of test outcome, in response to symptoms (own initiative) 
Value: 50% 
Source: Based on the average between “staying at home” and “not receiving any visitors” based on 
behavioural data ((RIVM, 2021), 10e ronde): “when people have scheduled a test and have cold-like 
symptoms that probably didn’t arise from an underlying condition, 34% stayed at home and 70% did 
not receive visitors” (in round 9 the percentages were 44 and 70%, resp.). 
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Quarantine in anticipation of test outcome, in response to informal tracing, manual tracing, or 
tracing app (with symptoms) 
Value: 75% 
Source: Based on the average percentage between “staying at home” and “not receiving any 
visitors” from behavioural data ((RIVM, 2021), round 8): “when people are approached by the health 
authorities in the contact tracing process because they have been in close contact with an infectious 
individual, 61% stayed at home and 87% did not receive visitors”; “if people received a notification 
from the health authorities, CoronaMelder app, infectious index him/herself or from school or work, 
due to close contact, 57% stayed at home and 89% did not receive visitors (round 10)”. 
 
Quarantine in anticipation of test outcome, in response to informal tracing, manual tracing, or 
tracing app (without symptoms) 
Value: 50% 
Source: based on (1) Contact tracing app-questionnaire – percentage of people that goes into 
quarantine when notified by the contact tracing app is 41% (presented as a lower bound (Ebbers 
2021) and (2) behavioural data ((RIVM, 2021), round 10): of people that “goes grocery shopping” 
and “getting fresh air”: “when symptoms (probably) did not arise from an underlying condition, 39% 
would go out to get fresh air and 32% would go out for grocery shopping. Of the participants with a 
household member that tested positive, 17% went out to do groceries, 27% went out for fresh air, 
and 20% went out to walk the dog. Of the ones that were notified by the health authorities, 
CoronaMelder, infectious index him/herself, or through work or school, 22% went outside for fresh 
air, 15% went to work, and 15% went grocery shopping.” 
Note: the value of 50% adherence to quarantine only applies to those individuals that schedule a 
test, so the ultimate percentage of individuals that quarantines is lower, as also reported by the 
behavioural data 
Note: without symptoms, after informal notification,  the policy was that no test could be scheduled, 
and therefore the model does not consider quarantine of such individuals. 
 
 
Table 3: parameters of the logistics model 
 
The time delays in Table 3 are based on the period 1 January until 31 March 2021. In particular, we 
did not consider the month December 2020 of our evaluation period, due to special events in that 
month such as holidays. Note that our estimates are optimistic, e.g. we excluded the month 
December 2020 from the time interval estimation and, due to a lack of data, we assumed that the 
scheduling of a test follows directly after the notification of a contact from a positive index case. 
Below, the rationale behind each time interval parameter in the model is explained. 
 
Delay from symptom onset to scheduling a test (own initiative) 
Value: 1.6 days 
Source: in Osiris (Ward et al., 2005)the average duration is 2.5 days between symptom onset and 
positive lab result. The back calculation to the scheduling of the test is through the average duration 
of 0.5 days between the scheduling of the test and actual taking of the test and 0.4 days between 
test administration and lab result. 
 
Delay from scheduling a test to test result, with symptoms 
Value: 1.3 days 
Source: in CoronIT the average time is 0.5 days between scheduling of a test and lab outcome, and 
0.4 days between test administration and lab outcome. In addition to those intervals, coronIT yields 
an average time of 0.4 days between lab outcome and notification of the health authorities, through 
which a tested individual would get notified. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.15.23291010doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.15.23291010
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Delay from scheduling a test to test result, without symptoms 
Value: 2.3 days 
Source: in CoronIT the average time is 1.5 days between scheduling of a test and test administration, 
which is 1.0 days longer than the same interval for those with symptoms. In addition, from CoronIT, 
the time intervals are 0.4 days between test administration and lab result and 0.4 days between lab 
result and notification of the health authorities. 
 
Delay from positive test result to scheduling a test of a contactee, found by informal tracing 
notification 
Value: 4 hours 
Source: no data available. The time interval should be shorter than through tracing app notification 
(1 day, see below), and is through the social network of the index case, so it should be fast. 
 
Delay from positive test result to scheduling a test of a contactee, found by manual tracing 
notification 
Value: 1.5 days  
Source: from HPZone we calculate the time between the notification of the health authorities of the 
index case and the start date of monitoring a contact. In this calculation we excluded the contacts 
that were never reached.  
 
Delay from positive test result to scheduling a test of a contactee, found by tracing app notification 
Value: 1 day 
Source: no data available. The time interval should be shorter than through manual tracing (1.5 days, 
see above). Because the index still needs to be approached by the health authorities before the 
tracing app is activated, it cannot be much shorter.  
 
Percentage of infected contactees notified through manual tracing 
Value: 40% (31% in figure 3C) 
Source: based on the percentage of 40% of cases that is found through manual tracing as reported in 
Osiris (between 1 January – 31 March 2021). The percentage is equal to the probability of tracing a 
contact if we assume that the proportion is constant between those infected individuals that do not 
get tested, those that get tested after formal manual tracing, and those that get tested after 
symptoms.  
 
Percentage of infected contactees notified through informal tracing 
Value: 32% 
Source: we assume that the percentage is 80% of the percentage through manual tracing 
 
Percentage of infected contactees notified through tracing app 
Value: 75% 

• Source: percentage taken from the reported value on the website of the Dutch contact tracing 
app coronamelder.nl (Note: website is no longer in use. Date at which the url was last accessed: 
31 March 2021) See also (Ministry of Health, 2020, 2021a). 

 
Percentage of app users 
Value: 16% 
Source: the number of app downloads was 4.5 million on 27 January 2021, as percentage of the 
Dutch population that is 25% (Ministry of Health, 2021b). The estimated percentage of active users 
is 65% (Ebbers, 2021)  
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Table S1: Data from the Corona Behavioural Unit (CGU) (translated from the RIVM website, round 
11, 24-28 March: https://www.rivm.nl/gedragsonderzoek/maatregelen-welbevinden/resultaten-
11e-ronde-gedragsonderzoek/naleven-gedragsregels) 

Description % tested 
total 

% tested 
after 
close 
contact 

% tested 
after not-
close 
contact 

% stayed 
at home 

% no visitors 

After notification 
by the index 

61,2 
(n= 
2197) 
 

84,9 
(n= 795) 
 

47,6 
(n=1380) 
 

61,5 
(n= 797) 
 

89,8 
(n= 797) 

After notification 
by CoronaMelder 

75,7 
(n= 515) 
 

94,1 
(n= 152) 
 

68,2 
(n= 258) 
 

68 
(n= 153) 
 

90,8 
(n= 153) 

After notification 
by health 
authorities/marked 
as contact by 
health authorities 

83,4 
(n= 763) 
 

91,9 
(n= 468) 
 

69,1 
(n= 285) 
 

63,9 
(n= 468) 
 

90,6 
(n= 468) 

After notification 
through other 
sources (e.g. 
school or 
employer) 

52,4 
(n= 
1089) 
 

79,8 
(n= 242) 
 

43,5 
(n= 817) 
 

45,9 
(n= 242) 
 

85,1 
(n= 242) 

TOTAL (all 
notifications) 

61,7 
(n= 
3942) 
 

85,2 
(n= 1306) 
 

48,9 
(n= 2481) 
 

60 
(n= 
1309) 
 

89,2 
(n= 1309) 
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S2 Parameter sets 
 
Table S2. The parameter sets used in the sensitivity analyses of Figure 1 and future scenarios of 
Figure 2. Parameter values that were different from the baseline set of Tables 1-3 are reported for 
each parameter set.  

Figure  Description Parameter value changes compared to Tables 1 - 3 

1a Baseline set None 
1b High adherence group Adherence level of scheduling a test in response to 

- symptoms = 53% 
- informal notification = 71% 
- manual notification = 95% 
- tracing app notification = 86% 
Percentage app users = 24% 

1b Low adherence group Adherence level of scheduling a test in response to 
- symptoms = 48% 
- informal notification = 64% 
- manual notification = 85% 
- tracing app notification = 77% 
Percentage app users = 8% 

1c No clustered contacts  Clustering probability c = 0 
1c More clustered contacts  Clustering probability c = 0.3 
1c Lower reproduction number Reproduction number Rref = 1.05 
1c Longer generation interval Mean generation interval = 5 days 
1c Less superspreading Superspreading coefficient k = 0.05 
1c More superspreading Superspreading coefficient k = 0.5 
1c Fewer symptomatic infections Percentage of infections with symptoms = 30% 
1c Lower tracing probability Percentage of infected contactees notified through 

- informal tracing = 25% 
- manual tracing = 31% (data from CoronIT) 

1c More non-compliers Adherence level of scheduling a test in response to 
- symptoms = 48% 
- informal notification = 64% 
- manual notification = 85% 
- tracing app notification = 77% 

1c Fewer non-compliers Adherence level of scheduling a test in response to 
- symptoms = 53% 
- informal notification = 71% 
- manual notification = 95% 
- tracing app notification = 86% 

2a, b App notification by authorities None 
2a, b App notification directly by 

user 
Delay from positive test result to scheduling a test of a 
contactee, found by tracing app notification = 8 hours 

2a, b Future: less effective manual 
tracing 

Percentage of infected contactees notified through  
- informal tracing = 16% 
- manual tracing = 20% 

2a, b Future: no manual tracing Percentage of infected contactees notified through  
- informal tracing = 16% 
- manual tracing = 0% 

2b Percentage of the population 
using the CoronaMelder app 

Percentage of app users = 20%, 30%, 40%, 60%, 80% 
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