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Abstract 

Vaccine development and distribution have been at the forefront of efforts to combat the COVID-
19 pandemic. As the vaccines have been widely adopted by the population, uncertainties around 
their effectiveness resulting from the emergence of new variants and other confounding factors 
make it challenging to determine their real-world impact, which is critical for understanding risk, 
informing public health policies, and mitigating the impact of COVID-19. We analyzed the 
association between time-dependent vaccination rates and COVID-19 severity for 48 states in the 
U.S. using Generalized Additive Models (GAMs). We controlled for additional dynamic factors 
such as testing rates, purpose-specific travel behaviors, underlying population immunity, and 
policy, and critical static factors such as comorbidities, social vulnerability, race, and state 
healthcare expenditures. We used SARS-CoV-2 genomic surveillance data to model the different 
COVID-19 variant driven waves separately, and evaluate if there is a changing role of the potential 
drivers of severity over time and across waves. Our study revealed a strong and statistically 
significant negative association between vaccine uptake and COVID-19 severity across each 
variant wave. Results also showed that booster shots offered additional protection against severe 
diseases during the Omicron wave. Additionally, higher underlying population immunity based on 
previous infection rates are shown to be associated with reduced COVID-19 severity. Full-service 
restaurant visits are associated with increased COVID-19 severity for the pre-Delta and Delta 
waves, while office of physician visits are associated with increased COVID-19 severity for the 
Omicron wave. Moreover, the states with higher government policy index scores have lower 
COVID-19 severity. Regarding static variables, the social vulnerability index, and the proportion 
of adults at high risk exhibit positive associations with COVID-19 severity, while Medicaid 
spending per person exhibits a negative association with COVID-19 severity. Despite the 
emergence of new variants, vaccines remain highly effective at reducing severe outcomes of 
COVID-19. Therefore, given the ongoing threat posed by COVID-19, vaccines remain a critical 
line of defense for protecting the public and preventing burden on healthcare systems.  
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Introduction 

By March 1st, 2023, the COVID-19 pandemic had resulted in over 102 million reported cases and 
1·1 million deaths in the United States. Vaccine development and distribution have been at the 
forefront of efforts to combat the impact of the disease. Three vaccines are currently available in 
the U.S., developed by Pfizer-BioNTech, Moderna, and Johnson & Johnson. The initial 
randomized clinical trials demonstrated the safety and efficacy of these vaccines, with vaccine 
efficacies against severe disease (hospitalization and death) ranging from 73% to 96·7%.1–3 The 
clinical trials were designed to estimate the direct effect of vaccines against severe disease at the 
individual level.4 However, as vaccines roll out to a broader population, uncertainties such as the 
emergence of new variants, variable immune responses, the quality of cold-chain storage, and 
other confounding factors may impact a vaccine's efficacy.5 Hence, evaluating real-world vaccine 
protection against severe diseases poses a challenge.  

Several published studies have attempted to quantify the real-world impact of the COVID-19 
vaccines against severe disease. For example, a study in Qatar assessed the vaccines’ effectiveness 
against severe, critical, or fatal Omicron infections using test-negative case-control analysis, and 
found previous infections and vaccination are effective against symptomatic Omicron infections.6 
An observational study conducted in Israel using national surveillance data showed that the two 
doses of the Pfizer-BioNTech mRNA vaccines are 97·2% effective in preventing COVID-19-
related hospitalizations.7 A Danish study estimated vaccine effectiveness against COVID-19 
hospitalization using a cohort study design, and found that two doses of the vaccine provide high 
protection against hospitalization for the Alpha and Delta variant, and even higher protection 
against hospitalization for the Omicron variant.8 A similar cohort study was applied in Singapore 
and the United Kingdom to determine whether booster shots reduce the severity of COVID-19 
infections during the Omicron wave, and found consistent results - that risk of severe COVID-19 
outcomes reduced after receiving booster mRNA vaccines.9,10  

Currently, most existing literature on the population-level effects of COVID-19 vaccination is 
based on individual-level data and observational studies. Specifically, these studies relied upon 
detailed individual level data to assess the direct effectiveness of vaccination by comparing health 
outcomes between vaccinated and unvaccinated individuals exposed to the same environment. 
However, these studies may be subject to confounding by unmeasured factors and inconsistent 
quality of individual level data. Further, in the U.S., such high-resolution data is unavailable at the 
population-level, so alternative strategies must be engaged to evaluate COVID-19 vaccines 
effectiveness at a regional level.  

One such approach is to rely on compartmental and agent-based models to simulate transmission 
and disease outcomes both in the presence and absence of vaccines implementation for the same 
population. Watson et al applied this method to estimate the impact of varying vaccine uptake rates 
on mortality across multiple countries and found that vaccines prevented 14·4 million COVID-19 
deaths in 2021.11 However, this approach is subject to many assumptions and limitations and 
therefore limited in its ability to estimate accurate effectiveness. Alternatively, statistical methods 
such as time series and regression analysis can be implemented to evaluate the association between 
vaccination coverage and healthcare outcomes across different locations. One study using this 
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strategy evaluated the association between vaccination coverage and the COVID-19 cases growth 
rate for all 50 U.S. states in the U.S. using a structural nested mean model and found a 1% increase 
of vaccination coverage was associated with 1·02% reduction in case growth rate.12 However, the 
scope of this study is limited to cases between March and May 2021. A recent study found that 
vaccine coverage reduced COVID-19 mortality, but seroprevalence and prior infection rates were 
not associated with mortality13 This study utilized linear regression to analyze vaccine coverage 
and natural immunity in relation to mortality during the Delta and Omicron waves. However, this 
method has limitations in capturing dynamic changes and non-linear relationships between 
variables. A different study by Bollyky et al14 applied regression analysis to determine how 
vaccination coverage amongst other factors (e.g., presence of comorbidities, political partisanship, 
race, and ethnicity) impacted health outcomes (standardized infections and deaths) in the U.S. at 
the state level, and determined that higher vaccination rates were associated with lower death rates. 
The scope of this study varies from ours in its focus on the association between static variables 
and COVID-19 health outcomes for a fixed time window between January 1st, 2020, and July 31st, 
2022, while our study expands the analysis by incorporating novel dynamic variables to capture 
behavioral changes over time, and explicitly evaluating the different variants independently. A 
recent study evaluated the time-varying relationship between vaccination, mobility, and COVID-
19 health outcomes before and after the Omicron waves.15 They found the significance of vaccine 
effectiveness in reducing case rates diminished during the Omicron surge, while its efficacy in 
lowering case-fatality rates remained substantial throughout the pandemic. Our study extends their 
analysis by emphasizing hospitalization rate as the outcome variable, breaking aggregated mobility 
into purpose-specific travel variables, modelling previous infections as a dynamic variable, and 
including an interaction between the completed primary series and booster rate for the Omicron 
wave. Despite numerous studies assessing the effectiveness of vaccines, most have not accounted 
for the relative impact of vaccines across different populations and variant waves, while 
considering dynamic potential confounding factors. Therefore, a more comprehensive 
understanding of vaccines' effectiveness across diverse populations and COVID-19 waves is 
crucial in developing informed public health policies that can effectively mitigate the spread of the 
virus and ensure equitable distribution of healthcare resources. 

In this study, we use Generalized Additive Models (GAMs) to address these shortcomings by 
evaluating the time-dependent association between vaccines’ effectiveness and severe COVID-19 
disease for multiple populations (48 states) and across distinct variant driven COVID-19 waves, 
while controlling for a comprehensive set of potential confounding factors that change over time. 
Our framework also explicitly captures the spatial variation in the modeled relative associations 
through a variable transformation procedure (discussed in detail in the methods section). To 
distinguish between COVID-19 variant driven waves, we utilized SARS-CoV-2 genomic 
surveillance data and identified the dominant variant for each state and point in time, to determine 
time windows so the distinct variant-driven waves can be modeled independently. For the Omicron 
wave, we also considered the added benefit of booster doses on COVID-19. Specifically, we 
evaluated the interaction between completed primary series and booster rate on reducing the 
COVID-19 severity. Results from this analysis help improve our understanding of the real-world 
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relative impact of the available COVID-19 vaccines against severe COVID-19 disease at the 
population-level over time and can help inform future public health policies to reduce harm.  

 

Methods 

Study design 
The objective of this study is to analyze the association between vaccination rates and severity of 
COVID-19 in the U.S., while controlling for potential confounding effects on the main 
associations of interest. These include novel dynamic covariates that may potentially contribute to 
COVID-19 severity such as naturally derived immunity from prior COVID-19 infection, local 
healthcare infrastructure, travel-related activities, government policies, alongside various static 
variables that have been identified to be significant in previous studies14,16,17 such as comorbidities, 
social vulnerability index (SVI), race, and state healthcare expenditures. By controlling for these 
factors, we aim to provide a more comprehensive understanding of the association between 
vaccination rate and COVID-19 severity at the population level. The study was conducted for 48 
states in the U.S. for the period between April 19th, 2021, the date at which the vaccines were 
approved for all adults in the U.S., to March 1st, 2022. This period covers the pre-Delta 
(characterized by the predominance of the Alpha variant and other variants), Delta, and Omicron 
waves of COVID-19, which are each evaluated independently.  

Data sources and collection 
We collected state-level time-series data and static variables from publicly available databases. All 
timeseries data were aggregated to the weekly level. A summary of the variables and their 
respective sources are listed in table 1, and detailed explanation and justification for the inclusion 
of each variable are provided in Appendix section 1·3. To mitigate the effects of potential noise 
and reporting issues a 3-week moving average was applied to all time series variables, with the 
exception of the government policy index. 

 

Variable Name Variable Description  Source 

Output variables 

Hospitalization rate  Weekly new admissions of patient with confirmed 
COVID-19 normalized by reported cases for each 
state.   

18, 19 

Infection rate Weekly number of confirmed cases normalized by 
state population.    

18 

Dynamic input variables 
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Partial vaccination rate Percentage of the total population who received at 
least one dose of COVID-19 vaccine approved or 
authorized for use in the United States. 

20 

Completed primary series rate Percentage of the population who have received the 
second dose in a two-dose COVID-19 vaccines 
primary series or one dose of a single-dose COVID-
19 vaccine primary series approved or authorized for 
use in the United States. 

20 

Booster vaccination rate Percentage of the total population who received an 
updated (bivalent) booster dose. 

21 

Weekly testing rate Total number of weekly tests conducted for each 
state normalized by population. 

22 

Full-service restaurant visits Weekly number of visits per person to full-service 
restaurants. 

23 

Gym visits Weekly number of visits per person to gyms. 23 

University visits Weekly number of visits per person to universities. 23 

Office of physicians visits Weekly number of visits per person to Office of 
physicians.  

23 

Government policy index Quantitative measure of government policies 
implemented in response to the COVID-19 
pandemic across various domains including health, 
social, and economic policies.  

24 

Previous infection The total infections reported within a recent time 
window, e.g., 12 to 16 weeks ahead of 
hospitalization.  

18 

Static input variables 

Black proportion Proportion of the population identifying as Black. 25 

Social vulnerability index 
(SVI) 

A single metric based on the combination of 15 
social factors, including poverty, lack of vehicle 
access, and crowded housing.  

26 

Proportion of adults at high 
risk 

Proportion of adults at higher risk of serious illness if 
infected with COVID-19 due to age, heart disease, 
COPD, asthma, diabetes, or BMI.  

27 

Medicaid spending Total Medicaid spending for each state normalized 28 
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by the population.  

Table 1. Summary of variables.  
 

Dynamic variable transformation 

To ensure the precise estimation of each dynamic variable's impact, a variable transmission 
mechanism must be used to account for the effects of time trends and autocorrelation in the data. 
For example, the completed primary series rate is always increasing with time for all locations 
modeled, hence it can be difficult to distinguish how much of the observed associations between 
vaccination rate and COVID-19 health outcomes are due to the variable interaction or the passage 
of time. Therefore, we applied the following transformation to all dynamic variables to remove the 
time trend and redefine the relative variable (𝑅𝑉!"): 

𝑅𝑉!" 	= 	
𝑉!"

1
𝑛∑ 𝑉#"#

 

Where 𝑅𝑉!"  represents the transformed variable for state 𝑖 at week 𝑡, 𝑉!" represents the original 
variable for state 𝑖  at week 𝑡  without the transformation, $

%
∑ 𝑉#"#  represents the mean of the 

original variable at week 𝑡, over all locations being modeled n, e.g., the national mean across the 
U.S. A 𝑅𝑉!"  larger than one indicates that state 𝑖 has a higher variable value compared to the 
national mean at week t, while 𝑅𝑉!" lower than one indicates that state 𝑖 has a lower variable value 
compared to the national mean, at week t. After normalization, the final set of time-dependent 
variables included in the analysis are: Relative hospitalization rates (𝑅𝐻𝑅!"), relative completed 
primary series rate (𝑅𝐶𝑃𝑆𝑅!"), relative booster rate (𝑅𝐵𝑅!"), relative weekly testing rate (𝑅𝑊𝑇𝑅!"), 
relative full-service restaurant visits (𝑅𝐹𝑆𝑅𝑉!" ), relative gym visits (𝑅𝐺𝑉!" ), relative office of 
physician visits (𝑅𝑂𝑃𝑉!"), relative university visits (𝑅𝑈𝑉!"), relative previous infection (𝑅𝑃𝐼!"), and 
relative government policy (𝑅𝐺𝑃!" ). These newly transformed variables enable an explicit 
evaluation of the relative association between each of them and the COVID-19 severity outcome 
of interest within a single multi-state model. 

Statistical analysis 
The generalized additive model (GAM) was selected as the statistical model for this analysis 
because of its ability to capture complex and non-linear relationships between the independent 
variables and the outcome variables of interest, namely, the weekly hospitalization rate in each 
state and weekly infection rate in each state. In efforts to identify potential discrepancies in 
vaccination on COVID-19 severity for different variants, we model each variant-driven wave 
during the study period independently. To define the variant waves we clustered each state-week 
pair based on the dominant circulating variant based on SARS-CoV-2 genomic surveillance data 
downloaded from GISAID.29 The three waves are classified as: 1) Pre-Delta Wave, 2) Delta Wave, 
3) Omicron Wave, and each state is labeled with its most dominant variant each week to define 
the windows. Details of this classification are described in Appendix section 1·1, and the 
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assignment of state-week pairs is shown in Appendix figure S1. In addition to modeling each wave 
separately, we also implement a single model covering the entire the study period.   

Eight different GAMs were implemented in this study, which differ in their set of input covariates, 
response variable, and model structure. The first four models treat hospitalization rate as the 
outcome variable, while the second four model infection rate.  

Model 1, Dyn-Hosp, treats hospitalization rates as the explanatory variable and includes only 
dynamic covariates, namely relative completed primary series rate, relative weekly testing rate, 
relative full-service restaurant visits, relative gym visits, relative office of physician visits, relative 
university visits, relative government policy, and relative previous infections. Model 1 is presented 
in equation (1): 

 
𝑅𝐻𝑅!" 	∼ 	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜙) 

log(𝜇) = 	𝑓$(𝑅𝐶𝑃𝑆𝑅!"&') + 𝑓'(𝑅𝑊𝑇𝑅!"&') +	𝑓((𝑅𝐹𝑆𝑅𝑉!"&') +	𝑓)(𝑅𝐺𝑉!"&') +	 
																𝑓*(𝑅𝑂𝑃𝑉!"&') +	𝑓+(𝑅𝑈𝑉!"&') 	+	𝑓,(𝑅𝐺𝑃!"&') +	𝑓-(𝑅𝑃𝐼!")																																						(1) 

 

In Model 1, the Gamma distribution is utilized to model the hospitalization rate variable with mean 
𝜇  and variance 𝜙. 𝑓! denotes the smoothed, non-parametric functions of each independent variable. 
To account for the sequential process of infection leading to hospitalization we introduce a time 
lag between each of the input variables relative to the outcome variable, which is denoted by the 
superscript. The timeline of this model is introduced as follows: the modeled hospitalizations rate, 
(𝑅𝐻𝑅!"), occur at time t. Infections resulting in hospitalization, are assumed to occur at time t-2, to 
account for a one week incubation period30, and one additional week between symptoms onset and 
hospitalization.31 Note, this timeline aligns with the definition of the hospitalization rate variable, 
which is normalized by the number of reported infections one week prior, which assumes a one 
week delay between when infection occurred and when it is reported. To accurately reflect the 
conditions presented at the time of infection, each of the variables related to vaccination 
(𝑅𝐶𝑃𝑆𝑅!"&'), mobility (𝑅𝐹𝑆𝑅𝑉!"&', 𝑅𝐺𝑉!"&', 𝑅𝑂𝑃𝑉!"&', 𝑅𝑈𝑉!"&') , policy (𝑅𝐺𝑃!"&'), and testing 
(𝑅𝑊𝑇𝑅!"&') are also lagged by two weeks relative to the hospitalization variable. Lastly, the past 
infections variable, defined as stated above to capture the role of recently acquired immunity from 
infection in protecting from severe disease upon reinfection, is equal to the total infection rate in 
the population summed over the prior four to 16 weeks. This time window is explicit in the 
definition of 𝑅𝑃𝐼!" (see Appendix section 1·3). The lagged values for dynamic variables in Models 
2-4 incorporate identical explanations as those utilized in Model 1. 

Model 2, Dyn-Hosp-Booster, is a direct extension of Model 1, applied for only the Omicron wave, 
and includes an additional interaction effect between the relative completed primary series rate 
(𝑅𝐶𝑃𝑆𝑅!")	and the relative booster rate (𝑅𝐵𝑅!"). Model 2 is presented in equation (2): 

 
𝑅𝐻𝑅!" 	∼ 	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜙) 

log(𝜇) = 	𝑓$(𝑅𝐶𝑃𝑆𝑅!"&', 𝑅𝐵𝑅!") + 𝑓'(𝑅𝑊𝑇𝑅!"&') +	𝑓((𝑅𝐹𝑆𝑅𝑉!"&') +	𝑓)(𝑅𝐺𝑉!"&') +	 
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																𝑓*(𝑅𝑂𝑃𝑉!"&') +	𝑓+(𝑅𝑈𝑉!"&') 	+	𝑓,(𝑅𝐺𝑃!"&') +	𝑓-(𝑅𝑃𝐼!")																																						(2) 
 

Model 3, Int-Hosp, also models hospitalization rates as the explanatory variable and includes both 
static and dynamic covariates, specifically removing the dynamic variables relative full-service 
restaurant visits, relative gym visits, relative office of physician visits, and relative university visits, 
and including the static variables, black proportion, the social vulnerability index (SVI), the 
proportion of adults at high risk, and Medicaid spending. Model 3 is presented in equation (3): 

 

𝑅𝐻𝑅!" 	∼ 	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜙)	

𝑙𝑜𝑔(𝜇) = 	𝑓$(𝑅𝐶𝑃𝑆𝑅!"&') + 𝑓'(𝑅𝑊𝑇𝑅!"&') +	𝑓((𝑅𝐺𝑃!"&') +	𝑓)(𝑅𝑃𝐼!")
+ 𝑓*(𝐵𝑙𝑎𝑐𝑘	𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) 	+ 𝑓+(𝑠𝑜𝑐𝑖𝑎𝑙	𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥) 	
+	𝑓-(𝑎𝑑𝑢𝑙𝑡𝑠	𝑎𝑡	ℎ𝑖𝑔ℎ	𝑟𝑖𝑠𝑘) 	+	𝑓,(𝑀𝑒𝑑𝑖𝑐𝑎𝑖𝑑	𝑠𝑝𝑒𝑛𝑑𝑖𝑛𝑔)																					(3)	 

 

The selection of static variables included in the model was based on those found significant in 
prior research, and the removal of the subset of dynamic variables was based on a correlation 
analysis amongst the static and dynamic variables. Detail of static variables selections are 
documented in Appendix section 2·6. 

Model 4, Int-Hosp-Booster, is an extension of Model 3 that includes an additional interaction effect 
between the relative completed primary series rate (𝑅𝐶𝑃𝑆𝑅!")	and the relative booster rate (𝑅𝐵𝑅!"). 
Model 4 is presented in equation (4): 

 

𝑅𝐻𝑅!" 	∼ 	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜙)	

𝑙𝑜𝑔(𝜇) = 	𝑓$(𝑅𝐶𝑃𝑆𝑅!"&', 𝑅𝐵𝑅!"&') + 𝑓'(𝑅𝑊𝑇𝑅!"&') +	𝑓((𝑅𝐺𝑃!"&') +	𝑓)(𝑅𝑃𝐼!")
+ 𝑓*(𝐵𝑙𝑎𝑐𝑘	𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) 	+ 𝑓+(𝑠𝑜𝑐𝑖𝑎𝑙	𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥) 	
+	𝑓-(𝑎𝑑𝑢𝑙𝑡𝑠	𝑎𝑡	ℎ𝑖𝑔ℎ	𝑟𝑖𝑠𝑘) 	+	𝑓,(𝑀𝑒𝑑𝑖𝑐𝑎𝑖𝑑	𝑠𝑝𝑒𝑛𝑑𝑖𝑛𝑔)																					(4)	 

 

Each of these four models are also implemented with the infection rate as the outcome variable of 
interest, making eight total models. The hospitalization and infection rates were assumed to follow 
a Gamma distribution, and the parameters were estimated using the Residual Maximum Likelihood 
(REML) method. The choice of Gamma distribution is based on the observed right-skewed nature 
of the relative hospitalization rate and relative infection rate, which has been validated through 
distribution fitting (Appendix section 1·2). Further details of each model are documented in 
Appendix section 2·7. All models are fitted separately to the full study period and each variant 
wave.   

The results for Models 1 and 2, Dyn-Hosp and Dyn-Hosp-Booster, are presented in the section 
below. The results for Models 3 and 4, Int-Hosp, Int-Hosp-Booster, are presented in Appendix 
sections 3·2 and 3·3. The equivalent results for Models 4-8, with infection rate as the outcome 
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variable, are presented in Appendix section 3·4 to 3·7. Data processing, visualization, and analysis 
were carried out using R 4·0 and Python 3·8. 
 

Results 

Figure 1 illustrates the results for Dyn-Hosp for each variant, namely, the Pre-Delta (Blue), Delta 
(Orange), and Omicron waves (Red), respectively.  

 
Figure 1: Estimated partial effects of dependent variables by different variant waves from Dyn-
Hosp. The dots on the x-axis represent the distribution of the variables.  

Dyn-Hosp results for the three variants revealed similar patterns as the full model (Appendix figure 
S22). The relative completed primary series rate, relative previous infections, and relative weekly 
testing rate consistently displayed strong negative associations with relative hospitalization rate 
across different waves. Moreover, the relative full-service restaurant visits maintained a positive 
effect except for the Omicron wave. The relative office visits to physicians slightly changed from 
negative to positive effects as the analysis progressed from the pre-Delta to the Omicron wave. On 
the other hand, the results from the relative government response index revealed a different pattern 
which resulted in its impact gradually flattening out from the pre-Delta to the Omicron wave.  

Figure 2 illustrates the results of Dyn-Hosp-Booster, for just the Omicron wave with the additional 
inclusion of an interaction effect between the completed primary series rate and the relative booster 
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rate. This interaction effect is presented as a 3-dimensional surface and a 2-dimension contour map 
in figure 2·a, and 2·b. 

 
Figure 2: Estimated partial effects of dependent variables for the Omicron wave from Dyn-Hosp-
Booster. The figure 2·a shows a three-dimensional partial dependent plot for the interaction and 
figure 2·b shows the two-dimensional contour plot. The dots on the x-axis represent the 
distribution of the variables.  

With the exception of the completed primary series rate, the effects of all other variables shown 
modeled remained consistent with the results for the Omicron wave shown in figure 1. Figures 2·a, 
and 2·b show the interaction between two vaccine-related variables in three-dimensional space and 
the projection into two-dimensional variable space, respectively. The deeper red indicates a more 
positive effect on the hospitalization rate, and the light yellow indicates a more negative effect to 
the hospitalization rate. The solid black lines in figure 2·b represent the contour lines. The contour 
lines correspond to points that have an equivalent impact on the hospitalization rate, with the values 
marked on each line indicating the actual interaction effect of these points on the hospitalization 
rate. Those two plots reveal that the relative hospitalization rate decreases along the direction of 
increasing the relative booster rate and the relative completed primary series rate.  

Discussion 
The primary objective of administering a COVID-19 vaccine is to safeguard against severe illness 
from the virus. However, despite the wide availability of vaccines in the U.S. since April 19th, 
2021, their real-world impact on minimizing COVID-19 severity at a population level is yet to be 
fully understood. In addition, it is difficult to ascertain how the effectiveness of the vaccines may 
vary for different variants. In this study, we aimed to address this gap in knowledge by evaluating 
the association between COVID-19 severity and vaccine uptake across different variant waves in 
the United States, while explicitly taking into account additional potentially dynamic confounding 
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factors such as purpose-specific travel behaviors, government policy, previous infection rates, and 
testing rates. The revealed associations can help improve our understanding of vaccines 
effectiveness in real world settings and compliment the findings from clinical trials and survey-
based studies.  

Vaccines protect against severe COVID-19 for pre-Delta, Delta and Omicron waves 

Our study reveals a strong and statistically significant negative association between vaccine uptake 
rates and COVID-19 severity. This relationship was consistent across each of the variant waves 
modeled, as well as the entire 11-month study period. As illustrated in figure 1·a, the results 
indicated no decline in protection from the completed primary series through the Omicron waves, 
consistent with earlier findings that vaccine protection against severe illnesses does not 
significantly wane with the new variants circulated to date. In contrast, when we modeled infection 
rates as the response variable, we observed a decreasing effect of vaccines from the pre-Delta to 
the Omicron wave (Appendix section 3·4). This outcome aligns with existing literature 
highlighting the rapid waning of the vaccines’ effectiveness against infection.32,33 Nonetheless, 
while vaccines may offer reduced protection against infection, they continue to provide substantial 
protection against severe outcomes of COVID-19. A separate GAM analysis (Figure 2) including 
booster data for the Omicron variant indicates that boosters provide additional protection against 
severe disease caused by the Omicron variant, particularly in states with higher completed primary 
series rates. Although the value of booster shots in protecting against severe cases of COVID-19 
is still being studied and controversial,34 results from our analysis provide evidence supporting the 
effectiveness of booster doses against severe cases caused by the Omicron variant. Nonetheless, 
the findings obtained from model 6 (Dyn-Inf-Booster) reveal that the interaction between the 
booster and completed primary series rates has a relatively limited impact on Omicron infection 
(Appendix figure S28). However, it is crucial to emphasize that despite the diminished 
effectiveness of mRNA boosters against Omicron infections, vaccines still serve the essential 
purpose in reducing the severity of COVID-19, even in the face of emerging variants. 

Immunity from recent infection protects against severe COVID-19 upon reinfection 

Higher past COVID-19 infection levels in a population are associated with a decrease in COVID-
19 severity, indicating immunity gained from infection can provide some protection against severe 
disease in the event of re-infection in the future, but only for a limited period of time. Our study 
utilized the total number of cases reported in a 12-week window, ranging from 4 to 16 weeks prior 
to the time period modeled, as a proxy for recently acquired immunity, and found a strong negative 
association between the previous infection rate and future COVID-19 severity. These results were 
consistent across the different variant waves. This finding aligns with other case-control studies 
that found previous infections showed strong effectiveness against severe, critical, or fatal 
COVID-19.6,35 Additionally, as shown in the sensitivity analysis in Appendix section 2·4, evidence 
for protection from prior infection exists across time windows up to 24 weeks, indicating 
protection from previous infection can last for up to six months. Results from the sensitivity 
analysis also highlight that the negative association between previous infection rates and severity 
of COVID-19 weakens over time, (see Appendix section 2·5), suggesting that infection-acquired 
immunity protection against severe COVID-19 outcomes decreases with time since the last 
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infection. While the waning of natural immunity has been established in molecular and clinical 
research36, our analysis provides additional insight at the population level. Our models with 
infection rate as the outcome variables reveal an insignificant association between previous 
infection and infection rate during the pre-Delta and Delta waves but a significant negative 
association during the Omicron wave (Appendix figure S27). This finding partially aligns with 
existing literature that found suggests, at the individual level, previous infection protected against 
infection pre-Omicron, but this effectiveness decreases substantially during the Omicron wave.37 
Nevertheless, at the population level, the number of infected individuals is considerably higher 
during the Omicron wave than earlier, while a smaller proportion remains susceptible. 
Consequently, the cumulative impact of previous infections becomes more pronounced. Our 
results highlight the variability in the impact of previous infections on infection at the individual 
and population levels. 

Local factors contribute to variation in COVID-19 health outcomes 

Existing clinical and statistical studies14,16,17 have identified critical indicators for COVID-19 
severity including demographics, comorbidities, SVI, and healthcare expenditures. Results from 
the integrated model that includes both dynamic and static variables indicate the proportion of 
adults at high risk and the social vulnerability index (SVI) are positively associated with COVID-
19 severity across all variant waves modeled (Appendix figure S24·f and S24·g). This finding is 
consistent with existing literature14,17, which suggests that individuals with comorbidities and those 
from socially vulnerable regions are more likely to experience severe COVID-19 outcomes. Our 
results reveal a negligible association between black proportion and COVID-19 severity, which 
differs from a previously identified positive associations.14 This discrepancy is likely due to the 
more comprehensive nature of our model, which includes novel covariates that have strong 
relationships with ethnicity rates, e.g., full-service restaurant and office of physician visits are 
positively correlated with black proportion, thus reducing the impact of the standalone ethnicity 
variable. In the United States, the eligibility for Medicaid varies by state, but generally, individuals 
and families with incomes up to 138% of the federal poverty level may qualify for coverage.38 Our 
results reveal a consistent negative association between state-level Medicaid spending per person 
and COVID-19 severity (Appendix figure S24·h), which indicates the potential protective effect 
of healthcare expenditures in mitigating the impact of the pandemic on vulnerable groups.  In 
contrast to the hospitalization rate models, when infection rate is treated as the outcome variable 
(see Appendix section 3·7), there is no evidence for consistent or significant associations with 
demographics, comorbidities, SVI, or healthcare expenditures across variant waves. These results 
suggests that dynamic COVID-19 infection risk is complex and changed over time, and the factors 
which contributed to transmission varied across waves. Further research is needed for a more 
comprehensive understanding of the complex and evolving nature of COVID-19 transmission.  

Mobility-derived activity patterns are associated with COVID-19 health outcomes 

At the beginning of the pandemic, several studies evaluated the association between mobility and 
COVID-19 transmission with inconsistent findings.39,40 One possible reason for this inconsistency 
is that aggregated mobility data may not accurately reflect dynamically changing human behaviors. 
Furthermore, the connection between mobility and severe health outcomes remains unclear. This 
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study uses disaggregated mobility patterns to capture diverse behaviors between populations, 
specifically relative engagement levels in particular activities, to explore the association between 
these variables and COVID-19 severity. Results shown in figure 1·c indicate that increased visits 
to full-service restaurants are positively associated with severe COVID-19 outcomes in the pre-
Delta and Delta waves, but not significant during the Omicron wave. Furthermore, regarding the 
lack of evidence for this relationship during Omicron, the sensitivity analysis conducted that 
relaxed the basis dimension k in the model (allowing for a more complex, nonlinear relationship 
between the input and output variables in the model), revealed that full-service restaurant visits 
also exhibit a strong nonlinear positive relationship with COVID-19 severity for the Omicron wave 
(refer to Appendix figure S9). These results indicate a more complex, but still significant 
relationship between dining out and COVID-19 severity during Omicron relative to earlier waves. 
In contrast, when we modeled the infection rate as the outcome variable, our analysis revealed a 
slight negative to neutral effect of full-service restaurant visits (refer to Appendix figure S27·c). 
Taken together, our findings suggest that while more visits to full-service restaurants may not 
contribute to increased transmission, they may be linked to higher-risk infections because they are 
occurring among more vulnerable demographic groups. This hypothesis is supported by additional 
analysis (shown in Appendix figures S19 to S21), which highlights the positive correlation 
between regional full-service restaurant visits and both the social vulnerability index and poverty 
rate. In addition to restaurant activity, we also observed a significant association between disease 
severity and visits to hospitals, medical centers, and Outpatient Care Centers, however unlike with 
restaurant activity, this association transitioned from negative to positive between the pre-Delta to 
Omicron wave. One possible explanation for this finding is that as the pandemic evolved, the 
public became more familiar with the disease and more tolerant to at-home symptom management, 
thus those COVID-19 patients that sought medical care were more likely to be those with more 
severe symptoms. Finally, visits to the university and gym were found not to be significantly 
associated with COVID-19 severity. This is likely due to the young and relatively healthy 
demographic that frequents universities and gyms, while still vulnerable to contracting the SARS-
CoV-2 virus, they are less likely to experience severe outcomes from COVID-19 infection.  This 
hypothesis is further supported by the findings from the infection rate model, which identified a 
positive association with university visits during the Delta and Omicron waves (Appendix figure 
S27·f).    

More stringent government public health policy is associated with reduced COVID-19 severity 

Our results indicate that more stringent government policies were associated with reduced 
COVID-19 severity, consistent with previous studies.41 More precisely, it was found that the state-
week pairs with a significantly high government response index (indicating stricter policy) have a 
stronger negative effect on the severity of COVID-19. (Appendix figure S22). However, this 
negative effect reduced over time, and was least evident during the Omicron wave. The reduced 
effect of the policy during Omicron is likely due to a complex combination of factors, including 
the increasing population level immunity from both widespread adoptions of vaccines and prior 
exposure providing more protection from severe disease during this period, combined with a 
reduction in the government's response to the pandemic over time.  
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Additionally, weekly testing rates were shown to be negatively associated with COVID-19 severity 
levels. While this result does not imply a causative relationship between testing rate and COVID-
19 severity, there are various reasons why testing rates may be linked to severity rates. Firstly, 
higher testing rates during periods of high transmission can provide more public awareness of risk, 
in which case the more vulnerable population make be more likely to take precautions to protect 
themselves, thus lowering transmission amongst high-risk groups and lowering severity rates. 
Second, testing rates directly affect the hospitalization rate because they impact the denominator, 
i.e., confirmed cases. Third, the testing rate can capture various confounding effects. For example, 
as shown in Appendix figure S19 to S21, the weekly testing rate positively correlates with medical 
aid spending at the state level, and may indirectly capture the effect of state-level healthcare 
expenditures on population level COVID-19 health outcomes.  

Limitations 

As with all modeling studies, this work is subject to several limitations. Firstly, this study was 
primarily designed to determine the association between various potential risk factors and COVID-
19 outcomes, rather than to establish causality between these variables. Thus, it is possible our 
findings may be reflecting the role of unobserved confounding factors that are excluded from our 
study. Another potential limitation is due to the application at the state-level. The aggregation of 
the data to the state-level is unable to capture the heterogeneities of the communities within each 
state, and it is possible different associations exists at the local level, than are identified at the state-
level. Additionally, while we believe the use of the hospitalization rate in a given state at a given 
time is a plausible choice as a proxy for COVID-19 severity, it is subject to variable case reporting 
and data quality across states, which may arise due to uneven testing capacity, reporting delays or 
at-home testing, among others.  

 

Conclusion 

This research utilizes publicly available real-world data to provide robust evidence of the efficacy 
of vaccines against COVID-19 severity across various variant waves in the United States. More 
importantly, this paper concludes that booster shots offer additional protection against severe 
COVID-19 during the Omicron waves. Despite the emergence of new variants, vaccines remain 
the most effective intervention for mitigating the severe effects of COVID-19. Therefore, given 
the ongoing threat posed by COVID-19 and its potential variants, vaccines continue to be the best 
line of defense for protecting public health and preventing the further spread of the virus. 
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1. Supplementary Data 
1.1 Preprocessing of genomic data 
All genomic data were collected from GISAID1 on October 27th, 2022. GISAID is a publicly accessible repository of 
dataset that sharing of genomic data on various pathogens, including influenza and COVID-19. We analyzed the 
available set of sequences, to determine the proportion of each variant theoretically in circulation. Specifically, we 
calculated the proportion of each variant for each week in each state from March 1st, 2021, to March 1st, 2022. To 
identify the most dominant variant for each state-week pair during the analyzed period, we labeled the state-week 
pairs based on the variant with the highest proportion. This enables us to track the dominant variant in each state and 
cluster the state-week pairs based on the most dominant variant. The assignment of state-week pairs is shown in 
Appendix figure S1 below: 

 
Appendix figure S1: State-week group assignment based on the dominant variant. The x-axis represents each week, 
the y-axis represents each state, and the color represents the assignment of each state-week pair. 
1.2 Distribution of outcome variables 
We selected Gamma distribution for the outcome variable to account for the right skewed distribution of the 
variable. We further verified the choose of Gamma distribution by fitting data with theoretical Gamma distribution. 
The results are shown in figures below: 
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Appendix figure S2: Comparing relative hospitalization rate distribution with a fitted Gamma distribution. The red 
line represents fitted Gamma distribution and green histogram is the distribution of relative hospitalization rate.  
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Appendix figure S3: Comparing relative infection rate distribution with a fitted Gamma distribution. The red line 
represents fitted Gamma distribution and blue histogram is the distribution of relative infection rate.  
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1.3 Variables description 
Outcome variable 

Hospitalization rates: In this study we used hospitalization rates (𝐻𝑅!") as a proxy for COVID-19 severity, and the 
outcome variable of interest for our model. COVID-19 hospitalization rates represent both the severity of COVID-19 
disease in a population and the burden it places on the healthcare system. Hospitalization rate (𝐻𝑅!") for each state 𝑖 
and week 𝑡 is defined as follow: 

𝐻𝑅!" =	
#!
"

$!
"#$, 

where 𝐻!" is the number of hospitalizations for state 𝑖 and week 𝑡 and 𝐶!"%& is the number of confirmed cases for state 
𝑖 and week 𝑡 − 1. We applied a one-week lag between reported confirmed cases and hospitalizations to account for 
the time between symptom onset and hospital admission.2 Weekly state-level 𝐻𝑅!" was treated as the outcome variable 
in this analysis and served as an indicator for the severity of COVID-19 for a given time and location. The infection 
rate is also modeled as an outcome variable, the related models are presented in Appendix section 2.7 and the results 
are presented in Appendix section 3.4 to 3.7.  
 
Time-dependent Covariates 

Vaccination rate: In this analysis, the weekly cumulative COVID-19 vaccination rate is the primary variable under 
examination, as we hypothesize it to be a critical determinant in protecting populations against severe COVID-19 
disease. The completed primary series rate was chosen over the partial vaccination rate because it represents the 
recommended dosage by the U.S. CDC. To address the fact that vaccine eligibility was not available to all U.S. adults 
until April 19th, 2021, we also ran the model using the partial vaccination rate for all variant waves, and the results are 
consistent with the completed primary series rate (results are presented in Appendix section 2.2). As booster shots 
became widely available during the Omicron wave, we also include the booster vaccination rate as a covariate to 
investigate its potential impact on COVID-19 health outcomes. Due to errors and anomalies in the data, the vaccination 
data excludes West Virginia and New Hampshire, while the booster vaccination data excludes West Virginia, New 
Hampshire, and North Carolina. As a result, West Virginia and New Hampshire are excluded from all analyses, and 
North Carolina is excluded from the booster analysis for the Omicron wave.  

Trip-purpose-specific mobility: We adapted multiple mobility-derived metrics from a previous study3 to represent 
destination-specific travel behaviors and engagement levels for specific types of activities, namely full-service 
restaurant, gym, university, and office of physician visits. Specifically, the mobility variables represent the weekly 
number of visits to a given destination of interest per person per week. This variable allows us to compare the relative 
frequency of visits to each point of interest across states and to investigate their potential impact on COVID-19 health 
outcomes. The metrics were generated based on anonymized mobility data from Safegraph4, which tracks the number 
of visits to different types of destinations for a sample of the population at the census tract level in the U.S. Examples 
of destinations include full-service restaurants, gyms, and grocery stores.  The original Safegraph dataset includes 
over 20 destination categories; thus, to reduce the complexity of the model we identified a smaller representative set 
of destinations to include as input in the final model. This was accomplished by first organizing the destination 
categories into six distinct destination groups based on the first two digits of the NAICS code,5 namely Retail Trade 
(44-45), Education Services (61), Healthcare and Social Assistance (62), Arts, Entertainment, and Recreation (71), 
Accommodation and Food Services (72), and Other Services (81). From each group, we selected one destination 
category as the representative variable for the group based on the correlations between other variables within the group 
(Details are documented in Appendix section 1.4). Subsequently, we conducted a model selection process to identify 
the most appropriate subset of mobility variables from these six to be included in the final model based on concurvity 
and explained model variance (details are documented in Appendix section 2.1). The destinations included in the final 
model are the office of physicians, gym, university, and full-service restaurants.  

Previous infection rates: Several studies have demonstrated the effectiveness of previous infections against 
reinfections and severe COVID-19 outcomes. Studies have illustrated that individuals retain a substantial level of 
natural immunity for six months after infection.6–8 To attempt to account for the role of recently acquired immunity 
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from infection in protecting from severe disease upon reinfection in our study we generate a variable to represent the 
total population infected and recovered within a recent window, i.e., the total infections reported between weeks (t-
16) and (t-4), which allows for time to recover and build up immunity9 by the time period t at which the hospitalizations 
are modeled, but short enough that immunity has not waned. These specific prior infections variable (𝑃𝐼!"), requires 
multiple parameters, namely the length of the interval that infections are summed over and the start and end period of 
the window. To identify the best window and evaluate the sensitivity of our analysis to the chosen window length, 
start and end time, we conducted a sensitivity analysis. The time window with the largest deviance explained in the 
GAMs was selected for the final model, which was a three-month window ranging from 4 to 16 weeks prior to time t. 
Additional details of this sensitivity analysis and the results are included in Appendix section 2.4. The mathematical 
formulation of this metric is defined as follows: 

𝑃𝐼!" 	= 	
∑ 𝐶!

'"%(
':"%&*

𝑝𝑜𝑝!
	 

where 𝑃𝐼!"  represents cumulative infection rate for state 𝑖  from 16 to 4 weeks prior of week t, 𝐶!
'  is the weekly 

confirmed cases for state 𝑖 at week 𝑗, and 𝑝𝑜𝑝! is the population for state 𝑖. The sum in the numerator defines the 
summation of 𝐶!

' for the 𝑡 − 16 to 𝑡 − 4 weeks prior to t.  

Government policy: The stringency and timing of implementing government policies to mitigate the impacts of 
COVID-19, such as school closure, cancellation of public events, and international travel controls, are associated with 
different measures of epidemic severity.10 We selected the government response index from Oxford Coronavirus 
Government Response Tracker (OxCGRT)11 as our indicator for government policy. The index tracks the diversity of 
government responses across various policies, ranging from containment measures and closures to healthcare systems, 
vaccination strategies, and economic policies. This index reflects the government’s response level with a number 
ranging from 0 to 100, the larger the number, the more substantial the response. It is available for all 50 states in the 
U.S. at a weekly timescale for the entire period of analysis.  

Weekly testing rate: The weekly testing rates were included in the model as a potential confounding factor for multiple 
reasons. Firstly, it represents a proxy input feature to capture the level of healthcare infrastructure available to a 
population. Second, it directly impacts the hospitalization rate through the denominator (i.e., total confirmed cases), 
as the number of reported cases in a region is a direct function of local testing availability, thus increased testing will 
lead to higher case rates, and lower hospitalization rates. For example, in two locations with the same true 
hospitalization rate (e.g., the likelihood of a COVID-19 infection needing admittance is equal), a location with twice 
as much testing will detect more cases, and therefore appear to have a lower hospitalization rate. Third, higher testing 
rates correlate to higher Medicaid and healthcare spending (see Appendix figure S19 to S21), which can play a critical 
role in how a population is impacted by a disease via access to treatment and vaccinations. Fourth, increased testing 
can lead to more cases being identified, and thus impact people’s awareness and behavior during an outbreak. For 
these reasons testing rate is included as a potential confounding factor in our model. We normalized the raw weekly 
total testing count by population to get the weekly testing rate.  
 
Static Covariates 

Black proportion: The proportion of the population identified as black.  

Social vulnerability index: The Social Vulnerability Index utilizes data from the U.S. Census to assess the relative 
level of social vulnerability in each census tract. By analyzing 14 social factors, the SVI categorizes tracts into four 
closely interrelated themes and then aggregates them as a single indicator of social vulnerability. 

Proportion of adults at high risk: The proportion of the population over 18 years old is at high risk of serious illness if 
infected with Coronavirus. 

Medicaid spending: Total Medicaid spending for each state normalized by the population. 
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1.4 Preprocessing of mobility data 
The 21 mobility destination categories from Safegraph were organized into six distinct industry groups based on the 
NAICS code. The relevant groups per the NAICS code are Retail Trade (44-45), Education Services (61), Healthcare 
and Social Assistance (62), Arts, Entertainment, and Recreation (71), Accommodation and Food Services (72), and 
Other Services (81).2 The details of generating visits to each POI are documented in previous publication.  
 
Appendix table S1: Description of each industry group and the corresponding destination categories. 

Retail Trade (44-45) Education 
Services (61) 

Healthcare and 
Social Assistance 
(62) 

Arts, Entertainment, 
and Recreation (71) 

Accommodation and 
Food Services (72) 

Other Services (81) 

Automotive Store 
(441310) 

Elementary 
School (611110) 

Office of Physician 
(621111) 

Parks (712190) Hotels (721110) Religious 
Organizations 
(813100) 

Hardware Store 
(444130) 

University 
(611310) 

Child Day Care 
(624410) 

Gym (713940) Full-Service Restaurant 
(722511) 

 

Grocery Store 
(445110) 

 
  

Cafes, Snacks, Bars 
(722515) 

 

Convenience 
Store (445120)  

  
Limited-Service 
Restaurant (722513) 

 

Pharmacies 
(446110)  

    

Gas Station 
(447110)  

    

Sporting Goods 
Store (451110)  

    

Department Store 
(452210)  

    

Other General Store 
(452319) 

 
    

Used Merchandise 
Store (453310)  

    

 
To reduce the complexity of the model, we selected one destination category as the representative variable for each 
industry group. For the industry groups with more than 3 destination categories, we conducted a Pearson’s correlation 
analysis and selected the variable that had the highest correlation to the other destination categories in each group. 
This method selected Gas Stations and Full-Service Restaurant from the Retail Trade (44-45) and Accommodation 
and Food Services (72) as the representative variable for each industry group. For the Educational Services (61) and 
Healthcare and Social Assistance (62) groups, we selected University and Office of Physician as the representative 
variables based on studies that indicated SARS-CoV-2 infection severity is lower in adolescents than adults.3 For the 
Arts, Entertainment, and Recreation (71) industry group, we selected Gym as the representative variable instead of 
Parks because studies have identified park use to have a minor effect on COVID-19 transmission compared to other 
mobility destinations.4 Religious Organizations was selected from the Other Services (81) industry group because it is 
the only destination category present. 

 

 

 

2. Supplementary Methods 
2.1 Dynamic mobility variables selection 
The GAMs fit outcome variables with smoothed independent variables, allowing the nonlinear relationships between 
input and output. However, the nonlinear variables smoothing sometimes can result in concurvity issues. Concurvity 
occurs when some smooth term in a model could be approximated by one or more of the other smooth terms, leading 
to inaccurate estimates of the effect for given variables. In this section, we conduct model selection to ensure the 
validity of our model and to detect and mitigate any concurvity issues that may arise, using mobility data selected 
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from Appendix section 1.4 and other independent variables. The significance level and the concurvity for each variable 
for every model are reported in table S2 below: 
 
Appendix table S2: Significance level and concurvity for all variables.  

All variants Pre-Delta wave Delta wave Omicron wave 
Variable Signif Concurvity Signif Concurvity Signif Concurvity Signif Concurvity 
Relative completed primary series rate **** 0.71 *** 0.70 *** 0.76 *** 0.79 
Relative previous infection rate (12 weeks) *** 0.12 *** 0.56 *** 0.28 *** 0.37 
Relative full-service restaurant rate *** 0.75 *** 0.75 *** 0.75 

 
0.81 

Relative university visits *** 0.48 
 

0.67 *** 0.49 *** 0.50 
Relative gas station visits * 0.81 

 
0.87 *** 0.80 

 
0.87 

Relative gym visits ** 0.60 ** 0.63 * 0.67 * 0.62 
Relative religious organization visits * 0.80 * 0.80 

 
0.82 ** 0.84 

Relative office of physician visits *** 0.45 *** 0.62 * 0.46 *** 0.52 
Relative weekly testing rate *** 0.44 *** 0.69 *** 0.45 *** 0.41 
Relative government response index *** 0.25 *** 0.76 *** 0.27 *** 0.23 

Significance codes: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘.’: 0.1, ‘’: > 0.1.  
 
The value of concurvity range from 0 to 1, the higher the concurvity the more a smooth variable can be approximated 
by the smooth of other variables. Based on the results form table S2, we removed relative gas station visits and relative 
religious organization visits from the model. This decision was based on their lack of significance and/or their high 
concurvity values. The equivalent results for selected variables are presented in table S3.  
 
Appendix table S3: Significance level and concurvity for selected variables.  

All variants Pre-Delta wave Delta wave Omicron wave 
Variable Signif Concurvity Signif Concurvity Signif Concurvity Signif Concurvity 
Relative completed primary series rate **** 0.53 *** 0.60 *** 0.56 *** 0.59 
Relative previous infection rate (12 weeks) *** 0.12 *** 0.49 *** 0.24 *** 0.34 
Relative full-service restaurant rate *** 0.57 *** 0.58 *** 0.55 

 
0.68 

Relative university visits *** 0.34 
 

0.53 *** 0.39 *** 0.35 
Relative gym visits *** 0.46 *** 0.54 ** 0.52 . 0.51 
Relative office of physician visits *** 0.43 *** 0.59 ** 0.43 *** 0.52 
Relative weekly testing rate *** 0.41 *** 0.69 *** 0.41 *** 0.37 
Relative government response index *** 0.24 *** 0.69 *** 0.25 *** 0.20 

Significance codes: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘.’: 0.1, ‘’: > 0.1.  
The results from table S3 reveal that each variable exhibits a concurvity value below 0.7 and is significant in at least 
three out of four models. 
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2.2 Robustness check of vaccination data 
We selected the completed primary series rate as the main vaccination variable in the main analysis. To assess the 
robustness and validity of our findings, we conducted additional analyses using different vaccination data (completed 
primary series rate, and partial vaccination rate) and varying starting dates (March 8th, 2021, and April 19th, 2021) 
for the analysis. We applied our sensitivity analysis to the models involving all variants and the pre-Delta waves, as 
these were the only ones that could be affected by the analysis. The results of four different combinations of 
vaccination data and analysis starting date for all variants are shown in Appendix figure S4 below: 

 
Appendix figure S4: Robustness check of vaccination rate with different vaccination data and varying starting date 
for the model of all variants. 
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The results of four different combination of vaccination data and starting date for the pre-Delta wave are shown in 
Appendix figure S5 below: 

 
Appendix figure S5: Robustness check of vaccination rate with different vaccination data and varying starting date 
for the model of the pre-Delta wave. 
 
The finding from this robustness check demonstrated a strong and consistent impact of vaccination, independent of 
the chosen vaccination data or the starting date of the analysis. This consistency suggests the robustness of our results 
and highlights the robustness of the completed primary series rate as the main vaccination variable. 
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2.3 Sensitivity analysis of smooth basis dimension (k) 
The parameter k controls the number of basis functions used to construct the smoothed curve. The larger the k, the 
more wiggles of the smoothed curve. We conduct the sensitivity analysis for all GAMs with k = 3 and k = 10. The 
results of the significance of smooth terms and estimated effects for all the GAMs are shown below: 
Appendix table S4. Approximate significance of smooth terms for the model of all variants:  

k = 3 k = 10 
Variable edf F p-value edf F p-value 
completed primary series rate 1.93 86.79 *** 7.68 32.10 *** 
Previous infection rates (12 weeks) 1.82 220.46 *** 7.43 64.36 *** 
Full-service restaurant visits 1.80 43.23 *** 8.92 32.61 *** 
University visits 1.87 12.93 *** 8.75 12.28 *** 
Gym visits 0.90 5.63 *** 6.35 9.81 *** 
Office_of_physician visits 1.55 7.88 *** 8.70 26.07 *** 
Weekly testing rate 1.96 89.51 *** 7.40 15.27 *** 
Government response index 1.91 42.10 *** 5.66 10.12 *** 

Significance codes: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘.’: 0.1, ‘’: > 0.1.  
 

 
Appendix figure S6: Comparison of the estimated partial effects for the model of all variants with different basis 
dimensions (k = 3 and k = 10). 
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Appendix table S5. Approximate significance of smooth terms for the model of the pre-Delta wave:  
k = 3 k = 10 

Variable edf F p-value edf F p-value 
completed primary series rate 0.95 10.37 *** 7.19 14.94 *** 
Previous infection rates (12 weeks) 0.94 18.75 *** 6.59 7.51 *** 
Full-service restaurant visits 1.00 40.58 *** 7.50 20.81 *** 
University visits 0.26 0.16 

 
8.80 6.36 *** 

Gym visits 0.97 7.35 *** 6.65 9.90 *** 
Office_of_physician visits 1.81 13.83 *** 7.63 7.18 *** 
Weekly testing rate 1.85 21.20 *** 2.47 6.58 *** 
Government response index 1.92 28.17 *** 3.50 6.36 *** 

Significance codes: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘.’: 0.1, ‘’: > 0.1.  
 

 
Appendix figure S7: Comparison of the estimated partial effects for the model the pre-Delta wave with different 
basis dimensions (k = 3 and k = 10). 
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Appendix table S6. Approximate significance of smooth terms for the model of the Delta wave:  
k = 3 k = 10 

Variable edf F p-value edf F p-value 
completed primary series rate 1.92 50.40 *** 8.50 24.93 *** 
Previous infection rates (12 weeks) 1.00 91.75 *** 5.79 29.62 *** 
Full-service restaurant visits 1.80 17.41 *** 7.88 19.89 *** 
University visits 1.67 12.40 *** 7.64 9.04 *** 
Gym visits 0.82 3.08 ** 6.04 8.99 *** 
Office_of_physician visits 1.12 3.72 * 8.70 15.56 *** 
Weekly testing rate 1.94 49.47 *** 7.66 7.71 *** 
Government response index 1.88 24.69 *** 4.82 4.74 *** 

Significance codes: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘.’: 0.1, ‘’: > 0.1.  
 

 
Appendix figure S8: Comparison of the estimated partial effects for the model the Delta wave with different basis 
dimensions (k = 3 and k = 10). 
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Appendix table S7. Approximate significance of smooth terms for the model of the Omicron wave:  
k = 3 k = 10 

Variable edf F p-value edf F p-value 
completed primary series rate 1.89 45.12 *** 8.63 18.36 *** 
Previous infection rates (12 weeks) 1.54 91.47 *** 1.00 25.94 *** 
Full-service restaurant visits 0.07 0.04 

 
8.74 18.61 *** 

University visits 0.95 13.28 *** 6.89 6.28 *** 
Gym visits 0.47 0.64 . 7.12 6.49 *** 
Office_of_physician visits 1.78 23.58 *** 6.93 11.54 *** 
Weekly testing rate 1.89 17.92 *** 1.30 0.54 * 
Government response index 1.33 6.42 *** 2.56 4.16 *** 

Significance codes: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘.’: 0.1, ‘’: > 0.1.  
 

 
Appendix figure S9: Comparison of the estimated partial effects for the model of the Omicron wave with different 
basis dimensions (k = 3 and k = 10). 
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2.4 Sensitivity analysis of prior window length for previous infection 
In this section, we presented a sensitivity analysis to assess the impact of the prior window length for the previous 
infection on our analysis. To ensure our results are robust, we fixed all other covariates and a lag of four weeks for 
previous infections while varying the prior window length for previous infections from 12 to 24 weeks. The results of 
this sensitivity analysis for each model are shown below: 

 

 
Appendix figure S10: Comparison of the estimated partial effect of the previous infection rate for the model of all 
variants with different prior window lengths (12, 16, 20 and 24 weeks). 
 

 
Appendix figure S11: Comparison of the estimated partial effect of the previous infection rate for the model of the 
pre-Delta wave with different prior window lengths (12, 16, 20 and 24 weeks). 
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Appendix figure S12: Comparison of the estimated partial effect of the previous infection rate for the model of the 
Delta wave with different prior window lengths (12, 16, 20 and 24 weeks). 
 

 
Appendix figure S13: Comparison of the estimated partial effect of the previous infection rate for the model of the 
Omicron wave with different prior window lengths (12, 16, 20 and 24 weeks). 
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2.5 Sensitivity analysis of lags for previous infection 
This section presents a sensitivity analysis to assess the impact of the prior window length for the previous infection 
on our analysis. To ensure our results are robust, we fixed all other covariates and a prior window length of 12 weeks 
for previous infections while varying the lag for previous infections from 4 to 16 weeks. The results of this sensitivity 
analysis for each model are shown below: 

 

 
Appendix figure S14: Comparison of the estimated partial effect of the previous infection rate for the model of all 
variants with different lags (4, 8, 12, and 16 weeks). 
 

 
Appendix figure S15: Comparison of the estimated partial effect of the previous infection rate for the model of the 
pre-Delta wave with different lags (4, 8, 12, and 16 weeks). 
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Appendix figure S16: Comparison of the estimated partial effect of the previous infection rate for the model of the 
Delta wave with different lags (4, 8, 12, and 16 weeks). 
 

 
Appendix figure S17: Comparison of the estimated partial effect of the previous infection rate for the model of the 
Omicron wave with different lags (4, 8, 12, and 16 weeks). 
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2.6 Static variables selection 
We selected state-level static variables that were found to have association with COVID-19 health outcomes in a 
recent study.12 These variables cover a ranging of different factors, such as socioeconomic indicators, racial 
demographics, age, proxy for comorbidities, political factors, and state-level healthcare expenditures. Then, a 
correlation analysis is performed within static variable and between static and dynamic variables to determine the 
suitable variables to be included in the model. Full list of static variables included in the correlation analysis are listed 
in Appendix table S8.  
 
Appendix table S8: Description of static variables included in the correlation analysis. 

Variable name Variable description  source 
Static variables 
Black proportion Proportion of the population identifying as Black. 13 
Medicaid spending Total Medicaid spending for each state normalized by the population. 14 
Healthcare spending Total Healthcare spending for each state normalized by the population. 15 
Poverty rate Percentage of population living below poverty line.  16 
Social Vulnerability Index A single metric based on the combination of 15 social factors, including poverty, lack of vehicle 

access, and crowded housing. 

17 

HAQI IHME’s healthcare access and quality index. 18 
Republican voters Percentage of a state’s voters who voted for the 2020 Republican presidential candidate.  19 
Percentage of adults at 
high risk 

Percent of adults at higher risk of serious illness if infected with COVID-19 due to age, heart disease, 
COPD, asthma, diabetes, or BMI.  

20 

Proportion over 65 Proportion of population age 65 and older. 20  

 

 
Appendix figure S18 illustrates the Pearson's correlation coefficient between each pair of static variables. 

 
Appendix figure S18. Pearson’s correlation heatmap between each pair of static variables.  
 

 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 15, 2023. ; https://doi.org/10.1101/2023.06.14.23291388doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.14.23291388
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix figure S19 illustrates the Pearson's correlation coefficient between static and dynamic variables during the 
pre-Delta wave. 

 
Appendix figure S19. Pearson’s correlation heatmap between static and dynamic variables during the pre-Delta 
wave.  
 
 
 
 

Appendix figure S20 illustrates the Pearson's correlation coefficient between static and dynamic variables during the 
Delta wave. 
 

 
Appendix figure S20. Pearson’s correlation heatmap between static and dynamic variables during the Delta wave.  
 

Appendix figure S21 illustrates the Pearson's correlation coefficient between static and dynamic variables during the 
Omicron wave. 
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Appendix figure S21. Pearson’s correlation heatmap between static and dynamic variables during the Omicron 
wave. 
Based on the correlation analysis presented earlier, the set of static variables to be incorporated into the models was 
determined. The most significant dynamic mobility variables (full-service restaurant visits and office of physician 
visits) exhibited a high correlation with SVI and black proportion during different waves. Therefore, to ensure the 
accuracy and reliability of the model, we excluded all dynamic mobility variables from the GAMs with static and 
dynamic input variables. Next, we evaluated the complete list of static variables. We selected the black proportion as 
a representative variable for the race group and the SVI as a proxy for the vulnerable population. The poverty rate was 
dropped due to its high correlation with SVI. Additionally, we selected adults at high risk as a control variable for 
population-level comorbidities and dropped the proportion over 65. We also decided to include Medicaid spending 
over healthcare spending as the state-level proxy for healthcare expenditures. Lastly, we dropped the HAQI and 
Republican voters variables due to their high correlation with the completed primary series rate. 
 

2.7 GAMs with infection rate as the outcome variable  
This section elucidates models 5 to 8, which employ the relative infection rate (𝑅𝐼𝑅!") as the dependent variable. These 
models share the same framework as models 1 to 4, while the outcome variable is the infection rate. Model 5, Dyn-
Inf, includes only dynamic covariates, namely relative completed primary series rate, relative weekly testing rate, 
relative full-service restaurant visits, relative gym visits, relative office of physician visits, relative university visits, 
relative government policy, and relative previous infections. Model 5 is presented in equation (S1): 

𝑅𝐼𝑅!" 	∼ 	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜙) 
log(𝜇) = 	𝑓&(𝑅𝐶𝑃𝑆𝑅!"%&) + 𝑓+(𝑅𝑊𝑇𝑅!"%&) +	𝑓,(𝑅𝐹𝑆𝑅𝑉!"%&) +	𝑓((𝑅𝐺𝑉!"%&) +	 

																																														𝑓-(𝑅𝑂𝑃𝑉!"%&) +	𝑓*(𝑅𝑈𝑉!"%&) 	+	𝑓.(𝑅𝐺𝑃!"%&) +	𝑓/(𝑅𝑃𝐼!")																																								(𝑆1)     
      
Model 6, Dyn-Inf-Booster is applied for only the Omicron wave and includes an interaction effect between the relative 
completed primary series rate (𝑅𝐶𝑃𝑆𝑅!")	and the relative booster rate (𝑅𝐵𝑅!"). Model 6 is presented in equation (S2): 

𝑅𝐼𝑅!" 	∼ 	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜙) 
𝑙𝑜𝑔(𝜇) 	= 	𝑓&(𝑅𝐶𝑃𝑆𝑅!"%&, 𝑅𝐵𝑅!"%&) 	+ 𝑓+(𝑅𝑊𝑇𝑅!"%&) 	+	𝑓,(𝑅𝐹𝑆𝑅𝑉!"%&) 	+	𝑓((𝑅𝐺𝑉!"%&)	 

																																								+	𝑓-(𝑅𝑂𝑃𝑉!"%&) +	𝑓*(𝑅𝑈𝑉!"%&) +	𝑓.(𝑅𝐺𝑃!"%&) 	+	𝑓/(𝑅𝑃𝐼!")																																(S2) 
 
Model 7, Int-Inf, includes both static and dynamic covariates, specifically removing the dynamic variables relative 
full-service restaurant visits, relative gym visits, relative office of physician visits, and relative university visits, and 
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including the static variables, black proportion, the social vulnerability index (SVI), the proportion of adults at high 
risk, and Medicaid spending. Model 7 is represented by equation (S3) as follows: 
 

𝑅𝐼𝑅!" 	∼ 	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜙) 
𝑙𝑜𝑔(𝜇) = 	𝑓&(𝑅𝐶𝑃𝑆𝑅!"%&) + 𝑓+(𝑅𝑊𝑇𝑅!"%&) +	𝑓.(𝑅𝐺𝑃!"%&) 	+	𝑓/(𝑅𝑃𝐼!") + 𝑓-(Black	proportion) 	+
													𝑓*(social	vulnerability	index) 	+	𝑓/(adults	at	high	risk) 	+ 𝑓.(Medicaid	spending)																								(𝑆3)	   
 
Model 8, Int-Hosp-Booster, is analogous to Dyn-Hosp-Booster, with an additional interaction effect between the 
relative completed primary series rate (𝑅𝐶𝑃𝑆𝑅!")	and the relative booster rate (𝑅𝐵𝑅!"). Model 8 is represented by 
equation (S4) as follows: 
 

𝑅𝐼𝑅!" 	∼ 	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜙) 
𝑙𝑜𝑔(𝜇) = 	𝑓&(𝑅𝐶𝑃𝑆𝑅!"%&, 𝑅𝐵𝑅!"%&) + 𝑓+(𝑅𝑊𝑇𝑅!"%&) +	𝑓.(𝑅𝐺𝑃!"%&) 	+	𝑓/(𝑅𝑃𝐼!") + 𝑓-(Black	proportion) 	+
													𝑓*(social	vulnerability	index) 	+	𝑓/(adults	at	high	risk) 	+ 𝑓.(Medicaid	spending)																								(𝑆4)	   
 
The results for Models 4-8, with infection rate as the outcome variable, are presented in Appendix section 3.3 and 3.4. 
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3. Supplementary Results 
3.1 Results for Model 1 (Dyn-Hosp) 
Appendix figure S22 displays the estimated partial effects obtained from the Model 1 (Dyn-Hosp) for all state-week 
pairs. Each subfigure corresponds to the estimated impact of an independent variable on the outcome variable. The x-
axis represents the values of the independent variable, while the y-axis represents its estimated effects. The dots plotted 
on the x-axis indicate the distribution of the independent variable. The magnitude of the y-axis is uniform across all 
subplots, allowing for a comparison of the relative impact of each variable on the outcome variable. 

 
Appendix figure S22. Estimated partial effects of dependent variables by all state-week pairs from Dyn-Hosp. The 
dots on the x-axis represent the distribution of the variables.  
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3.2 Results for Model 3 (Int-Hosp) 
Appendix figure S23 displays the estimated partial effects for hospitalization rate obtained from the Model 3 (Int-
Hosp) for all state-week pairs. Each subfigure corresponds to the estimated impact of an independent variable on the 
outcome variable. The x-axis represents the values of the independent variable, while the y-axis represents its 
estimated effects. The dots plotted on the x-axis indicate the distribution of the independent variable. The magnitude 
of the y-axis is uniform across all subplots, allowing for a comparison of the relative impact of each variable on the 
outcome variable (hospitalization rate). 
 

 
Appendix figure S23. Estimated partial effects of dependent variables by all state-week pairs from Int-Hosp. The 
dots on the x-axis represent the distribution of the variables.  
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Appendix figure S24 illustrates the results for Model 3 (Int-Hosp) for each variant, namely, the Pre-Delta (Blue), Delta 
(Orange), and Omicron waves (Red), respectively.  
 

 
Appendix figure S24. Estimated partial effects of dependent variables by different variant waves from Int-Hosp. The 
dots on the x-axis represent the distribution of the variables.  
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3.3 Results for Model 4 (Int-Hosp-Booster) 
Appendix figure S25 illustrates the results of Model 4 (Int-Hosp-Booster), for just the Omicron wave with the 
additional inclusion of an interaction effect between the completed primary series rate and the relative booster rate. 
This interaction effect is presented as a 3-dimensional surface and a 2-dimension contour map in Figure 25.a and 25.b. 

 
Appendix figure S25. Estimated partial effects of dependent variables for the Omicron wave from Int-Hosp-Booster. 
The figure 25.a shows a three-dimensional partial dependent plot for the interaction and figure 25.b shows the two-
dimensional contour plot. The dots on the x-axis represent the distribution of the variables. 
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3.4 Results for Model 5 (Dyn-Inf) 
Appendix figure S26 displays the estimated partial effects for infection rate obtained from the Model 5 (Dyn-Inf) for 
all state-week pairs. Each subfigure corresponds to the estimated impact of an independent variable on the outcome 
variable. The x-axis represents the values of the independent variable, while the y-axis represents its estimated effects. 
The dots plotted on the x-axis indicate the distribution of the independent variable. The magnitude of the y-axis is 
uniform across all subplots, allowing for a comparison of the relative impact of each variable on the outcome variable 
(hospitalization rate). 

 

 
Appendix figure S26: Estimated partial effects of dependent variables by all state-week pairs from Dyn-Inf. The dots 
on the x-axis represent the distribution of the variables.  
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Appendix figure S27 illustrates the results for Model 5 (Dyn-Inf) for each variant, namely, the Pre-Delta (Blue), Delta 
(Orange), and Omicron waves (Red), respectively. 
 

 
Appendix figure S27: Estimated partial effects of dependent variables by different variant waves from Dyn-Inf. The 
dots on the x-axis represent the distribution of the variables.  
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3.5 Results for Model 6 (Dyn-Inf-Booster) 
Appendix figure S28 illustrates the results of Model 6 (Dyn-Inf-Booster), for just the Omicron wave with the 
additional inclusion of an interaction effect between the completed primary series rate and the relative booster rate. 
This interaction effect is presented as a 3-dimensional surface and a 2-dimension contour map in Figure 28.a and 28.b. 
 

 
Appendix figure S28. Estimated partial effects of dependent variables for the Omicron wave from Dyn-Inf-Booster. 
The figure 28.a shows a three-dimensional partial dependent plot for the interaction and figure 28.b shows the two-
dimensional contour plot. The dots on the x-axis represent the distribution of the variables. 
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3.6 Results for Model 7 (Int-Inf) 
Appendix figure S29 displays the estimated partial effects for infection rate obtained from the Model 7 (Int-Inf) for 
all state-week pairs. Each subfigure corresponds to the estimated impact of an independent variable on the outcome 
variable. The x-axis represents the values of the independent variable, while the y-axis represents its estimated effects. 
The dots plotted on the x-axis indicate the distribution of the independent variable. The magnitude of the y-axis is 
uniform across all subplots, allowing for a comparison of the relative impact of each variable on the outcome variable 
(infection rate). 

 

 
Appendix figure S29. Estimated partial effects of dependent variables by all state-week pairs from Int-Inf. The dots 
on the x-axis represent the distribution of the variables. 
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Appendix figure S30 illustrates the results for Model 7 (Int-Inf) for each variant, namely, the Pre-Delta (Blue), Delta 
(Orange), and Omicron waves (Red), respectively. 
 

 
Appendix figure S30. Estimated partial effects of dependent variables by different variant waves from Int-Inf. The 
dots on the x-axis represent the distribution of the variables.  
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3.7 Results for Model 8 (Int-Inf-Booster) 
Appendix figure S31 illustrates the results of Model 8 (Int-Inf-Booster), for just the Omicron wave with the additional 
inclusion of an interaction effect between the completed primary series rate and the relative booster rate. This 
interaction effect is presented as a 3-dimensional surface and a 2-dimension contour map in Figure 32.a and 31.b. 

 
Appendix figure S31. Estimated partial effects of dependent variables for the Omicron wave from Int-Inf-Booster. 
The figure 31.a shows a three-dimensional partial dependent plot for the interaction and figure 31.b shows the two-
dimensional contour plot. The dots on the x-axis represent the distribution of the variables. 
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