
 1 

Gut microbiota dysbiosis observed in tuberculosis patients resolves partially with anti-

tuberculosis therapy.  

 

Sukanya Sahu1, Sandeep R. Kaushik1, Shweta Chaudhary,1 Amit kumar Mahapatra1, Rukuwe 

Kappa2, Wetesho Kapfo2, Sourav Saha3, Ranjit Das3, Anjan Das3, Vinotsole Khamo2, Ranjan 

Kumar Nanda1,* 

1Translational Health Group, International Centre for Genetic Engineering and Biotechnology, 

New Delhi, India.  
2Healthcare Laboratory and Research Centre, Naga Hospital Authority Kohima, Nagaland, 

India.  
3Department of Respiratory Medicine, Agartala Government Medical College, Agartala, India.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Correspondence and requests for materials should be addressed to R.K.N.  

Ranjan Kumar Nanda (PhD) 

Group Leader,  

Translational Health Group,  

International Centre for Genetic Engineering and Biotechnology, New Delhi, India.  

E. mail:  ranjan@icgeb.res.in 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 15, 2023. ; https://doi.org/10.1101/2023.06.14.23291387doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.06.14.23291387
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

ABSTRACT 

Objective: Mycobacterium tuberculosis (Mtb) primarily affects the lungs with involvement of 

other organs causing tuberculosis (TB) in humans. Since the lung-gut axis is bidirectional, and 

the gut microbiota contributes to metabolic and immune homeostasis, we looked at the gut 

microbiota and metabolites of TB patients and controls, and whether the perturbations, if any, 

resolve with anti-tuberculosis treatment. 

Methods: In this multicentric case-control study, a total of 107 fecal samples belonging to drug 

naïve active tuberculosis (ATB) patients and controls (non-tuberculosis: NTB and healthy), 

were collected from two clinical sites in India. A group of drug-naïve ATB patients (n=10) 

from one site was followed-up and monitored at 2, 4, 6, and 8 months of their anti-tuberculosis 

treatment. The fecal microbiome and metabolome of these study participants were 

characterized by 300 bp pair end sequencing of the V3-V4 region of 16S rRNA gene and gas 

chromatography-time of flight-mass spectrometry (GC-TOF-MS) respectively to identify 

disease and treatment-specific variations, if any. 

Results: Drug naïve ATB and NTB patients showed a significant reduction of gut microbial 

diversity with respect to age matched healthy controls in both the clinical sites. ATB patient’s 

had underrepresentation of gut commensals such as Faecalibacterium prausnitzii, Prevotella 

copri DSM 18205, Coprococcus catus, and overrepresentation of Clostridium difficile ATCC 

9689 = DSM 1296. Longitudinally followed-up ATB patients showed elimination of 

Alkalihalobacillus with treatment initiation, whereas harmful taxa such as Stenotrophomonas 

and Klebsiella pneumoniae appeared in treatment-completed subjects. Interestingly, the fecal 

metabolites also showed group-specific differences, clustering ATB patients away from the 

controls irrespective of the study sites. Consistently, fecal 2-piperidinone abundance was 

higher in ATB patients compared to healthy controls. The fecal metabolome of longitudinally 

followed-up ATB patients showed a gradual shift towards healthy during the course of 

treatment completion. 

Conclusion: Gut microbial dysbiosis observed in tuberculosis patients at case presentation is 

partially resolved with 6 months of treatment completion and also reflected in their metabolite 

level. The observed microbial and metabolite imbalance in these ATB patients could explain 

disease pathology which needs further exploration to exploit their translational potential for 

therapeutics development.  

Keywords: Tuberculosis, Gut microbiota, Dysbiosis, Fecal metabolite, GC-TOF-MS.  
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INTRODUCTION 

Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) infection and still a major 

global health problem. In 2021, ~10.6 million new TB cases with ~1.6 million deaths associated 

with it were reported worldwide (WHO report, 2022). [1] About one-third of the world’s total 

population is latently infected with TB and ~10% of them may develop active TB (ATB) in 

their lifetime. [2] 

The Mtb pathogenesis and disease outcome depends on multiple host and environmental 

factors including the host gut microbiome. Recent technological advances in the field of 

genomics have allowed us to detect the presence of numerous difficult to culture microbes in 

biological matrices. The presence of Mtb in the lungs alter the sputum microbiome composition 

in TB patients. The gut microbiota plays a critical role in maintaining a healthy 

immune/metabolic system and in many systemic and respiratory disease conditions including 

TB, it shows alteration. [3] [4] [5] [6] The immunomodulatory functions of the gut microbiota 

and its metabolites may prove to be critical in identifying targets that could modulate the host 

response against TB, in terms of reducing progression from latency, mitigating disease severity, 

and lowering the incidence of drug resistance and co-infection. [7] [8] 

The current knowledge on gut microbiota dysbiosis in TB is limited to murine models and 

patients from specific settings with limited information on the effect of long anti-tuberculosis 

therapy.  Multicentric studies may address the role of dietary habits and environmental factors 

in shaping the composition of the gut microbiota. Also documented were the effects of 

antibiotic and non-antibiotic medications on the gut microbial composition. [9] [10] In the 

current study, we aimed to identify deregulated fecal microbiome and metabolome in drug-

naïve pulmonary ATB patients with respect to healthy and non-tuberculosis (NTB) controls, 

along with longitudinally followed-up ATB patients completing 6 months of treatment from 

two different clinical sites in India.  

MATERIALS AND METHODS 

Subject recruitment and classification: In this multi-centric, cross-sectional study, subjects 

were recruited from Nagaland (site-I) and Tripura (site-II) following the approved protocols of 

Nagaland Hospital Authority, Kohima (NHAK); Agartala Government Medical College, 

Agartala (AGMC); and International Centre for Genetic Engineering and Biotechnology, New 

Delhi. Subjects reporting symptoms of 2 weeks or more of cough, fever, weight loss, and night 

sweat to the outpatient departments of NHAK and AGMC and heathy subjects from these sites 

were enrolled. After receiving written signed informed consent forms, sputum samples (days 

1 and 2) and fecal samples were collected at the day of reporting. Sputum samples were 
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subjected to Ziehl-Nielsen acid-fast bacilli (AFB) sputum microscopy, culture, and GeneXpert 

(Cepheid, USA) analyses following WHO guidelines in Thyrocare Technologies, Navi 

Mumbai, a National Accreditation Board for Testing and Calibration Laboratory. Subjects with 

positive microscopy and culture or GeneXpert test results were grouped as active tuberculosis 

patients (ATB), and with all negative test results were grouped as non-tuberculosis patients 

(NTB) (Figure 1A). These NTB subjects were clinically diagnosed with other pulmonary 

disease conditions like asthma, chronic obstructive pulmonary diseases (COPD), lung cancer, 

pneumonia, or suffering from more than one complication. The ATB patients received anti-

tuberculosis treatment with 2 months of intensive (Isoniazid, Rifampin, Pyrazinamide, 

Ethambutol; HRZE) and 4 months of continuation phase as per the drug dose recommended 

by Revised National TB Control Programme (RNTCP) guidelines. A subset of ATB patients 

from site-I was longitudinally followed up at 2, 4, 6, and 8 months of initiating treatment and 

fecal samples were collected (Figure 1B). Fecal samples were stored at -80oC within 4 hours 

of collection for further processing.  

DNA extraction and 16SrRNA gene amplicon sequencing: Genomic DNA from fecal 

samples were extracted following the earlier reported methods with minor modifications and 

stored at -20°C prior to analysis. [11] Quality of the extracted genomic DNA was monitored 

by agarose gel electrophoresis and gel eluted fractions were sent to a commercial laboratory 

(Macrogen, South Korea), for library preparation and sequencing. Briefly, the hypervariable 

region V3-V4 of bacterial 16S rRNA gene was amplified with the forward (Bakt_341F: 

CCTACGGGNGGCWGCAG) and the reverse primer (Bakt_805R: 

GACTACHVGGGTATCTAATCC). These 300bp PE V3-V4 amplicon libraries were 

sequenced using Illumina MiSeq. The detailed method of DNA extraction and library 

preparation is described in Supplemental Experimental Procedures. Raw sequence data 

generated in this study are assessable using the Sequence Read Archive under BioProject 

accession PRJNA972267. 

Sequence data processing, inferring gut microbiota composition, and statistical analyses: 

Quantitative Insights into Microbial Ecology (QIIME2 v.2022.2) tool was used for the 16S 

rRNA sequencing data analysis. [12] Non-singleton amplicon sequence variants (ASVs) were 

generated after quality filter, denoising, merging, and chimera removal using DADA2 plugin. 

Taxonomy was annotated with NCBI-Refseq database and classified at the level of phylum, 

class, order, family, genus, and species. Alpha diversity was characterized by Shannon and 

Faith PD indexes. The Kruskal-Wallis (KW) H test was used to assess the group specific 

differences. Beta diversity was described using unweighted and weighted UniFrac distance 
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metrices and Permutational Analysis of Variance Analysis (PERMANOVA) was used to 

validate the differences between study groups. For the non-parametric test, Linear Discriminant 

Analysis with Effect Size (LEfSe) was used on the relatively normalized ASV table. [13] LefSe 

uses KW sum-rank test, pairwise Wilcoxon rank-sum test, and Linear discriminant analysis 

(LDA). Prediction of functional profiles from 16S rRNA datasets was conducted using 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

(PICRUSt2) software and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. 

[14] Metabolic pathway analysis was performed using PICRUSt2 to predict perturbed 

KEGG pathways in samples. These pathways were grouped into parent classes based on the 

KEGG BRITE hierarchy using R (v 4.2.1). Differential abundance analysis of KEGG pathways 

between groups was conducted using STAMP by KW H-test, followed by post-hoc Tukey-

Kramer's multiple comparison test, without any multiple test correction. [15] 

Faecal metabolite extraction and derivatization for GC-MS: To the lyophilized faecal 

samples (10.0 ± 0.3 mg; mean ± standard deviation, n=103), chilled methanol (1 ± 0.3 ml, −20 

°C) along with lysine D4 (5 µl of 10 mg/ml) as a spike in standard was added. The sample 

mixture was vortexed (1 min), followed by ultrasonication at 20% amplitude (30 sec on/off 

cycle, total time 3 min), using QSonica Q500 sonicators (USA). Then the samples were 

vortexed, followed by centrifugation at 16,000 g for 15 min at 4 ºC. A fraction of the 

supernatant (300 µl) was transferred to a micro centrifuge tube (MCT) and vacuum dried at 40 

ºC in SpeedVac vaccum concentrator (Labconco, USA). Aliquots of extracted metabolites from 

all the fecal samples (n=103) were pooled to prepare a quality control (QC). Derivatization of 

the fecal metabolites was carried out using earlier reported methods, and explained in detail in 

Supplemental Experimental Procedures. [16] 

GC-MS data acquisition: Using an automated multipurpose sample introduction system 

(MPS, Gerstel, Germany), the derivatized fecal metabolites (1 µl) were loaded into the column 

attached to GC-time of flight (TOF)-MS instrument (Pegasus 4D; Leco, USA) in splitless 

injection mode. Helium was used as a carrier gas with a constant flow rate of 0.5 ml/min for 

each run. Metabolite separation was carried out in an HP-5MS column (30 m× 0.25 mm × 0.25 

µm; Agilent Technologies) with a temperature gradient from 60 ºC to 300 ºC at a ramp of 10 

ºC/min (60 to 220 ºC) and 5 ºC/min (220 to 300 ºC). Hold times of 1 min and 5 min were kept 

at the start and end of the run, respectively. The injection port temperature was set at 250 °C 

throughout the analysis. Mass spectrometric data acquisition was carried out at -70 eV, and a 

mass range of 50-550 m/z was scanned with a rate of 50 spectra/sec. A 575 sec solvent delay 
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was used and the source temperature was set at 220 ºC. All GC-MS parameters were controlled 

using ChromaTOF software (V.4.50.8.0; Leco, USA) and data acquisition was completed. 

GC-MS data processing: Raw GC-MS data files (n=112) of all the QC (n=9) and study 

samples (n=103) were pre-processed and aligned using the "Statistical Compare" feature of 

ChromaTOF. For peak picking, the minimum peak width was set at 1.3 sec, and the signal-to-

noise ratio (S/N) threshold was 75. For tentative molecular feature identification, mainlib, 

nist_ri, nist_msms2, nist_msms, and replib libraries from NIST were used. The maximum 

retention time difference was set at 0 sec, and for mass spectral match, the minimum spectral 

similarity was set at 600. Aligned peak information was exported to a ".csv" format, and 

molecules present in more than 50% of samples in at least one study group were included for 

the analysis. Manual data curation was carried out to align peaks and remove unsilylated 

molecules and silanes from the data matrix. 

Chemometric analysis: Metaboanalyst 5.0 was used for carrying out the univariate and 

multivariate statistical analyses using the identified molecular features as variables with their 

abundance. Missing values of variables were imputed with one-fifth of the minimum positive 

values. Normalization by reference feature, i.e. lysine D4 with auto-scaling, was carried out to 

obtain a near-normal distribution. A partial least square discriminant analysis (PLS-DA) model 

was built using metadata containing all the study samples and all qualifying molecular features. 

Analytes with a Variable Importance projection (VIP) score >1.0 from the PLS-DA were 

selected as important features to classify the study groups. For important feature selection, a 

fold change (FC) of at least 2.0 (log2FC>±1.0), with a student’s t-test with p-value<0.05 

parameters were selected. Majority of the identified important features were validated by 

running commercial standards following similar pre-processing and GC-MS methods. 

Metabolomics—Microbiome data integration: The microbiome and metabolome data of the 

study subjects were integrated using the mixOmics R package (version 6.20.0). [17] 

Differential metabolites and microbial taxa at genus level identified in ATB, NTB, and healthy 

groups were correlated. The mixOmics regularised canonical correlation analysis (rCCA) 

function was used to generate clustered heatmaps. Euclidean distance was used to cluster the 

microbiome data in the rows and the metabolome data in the columns.  

Patient and public involvement: Patients or the public were not involved in the design, 

conduct, reporting or dissemination plans of this study. 

RESULTS 
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Socio-demographic and sequencing characteristics of the study subjects: A total of 107 

fecal samples of ATB, NTB and healthy groups were used for metagenomics (site-I: 

Nagaland, n = 45; site-II: Tripura, n = 31; followed-up, n = 31), and a subset of 94 samples was 

used for metabolomics (site-I: Nagaland, n = 40; site-II: Tripura, n = 30; followed-up, n = 24). 

Demographic details of the study subjects are presented in Supplementary Table S1 and S2. In 

site-I, the ATB subjects were younger than healthy controls whereas all study groups from site-

II had similar age distribution (Supplementary Figure S1A, S1B).  

Microbial diversity differs in tuberculosis patients (ATB) from non-tuberculosis (NTB)  

and healthy controls: In total, 13,804,505 paired-end sequencing reads obtained from 107 

fecal samples (an average of 1,27,894/sample) were processed (Supplementary Table S3, S4, 

S5). A significantly reduced alpha diversity was observed in ATB and NTB patients compared 

to healthy subjects, using Shannon and faith PD index, whereas ATB and NTB showed 

comparable diversity (Figure 2A, 2B). Furthermore, unweighted and weighted UniFrac 

analyses showed separate clustering of ATB and NTB from healthy subjects, which was 

statistically significant (Unweighted; ATB/healthy: p = 0.005, NTB/healthy: p = 0.002; 

Weighted; ATB/healthy p = 0.003, NTB/healthy p = 0.005) (Figure 2C, 2D), whereas 

comparable diversity was observed between ATB and NTB subjects (p = 0.303, p= 0.442, 

respectively). In site-II, a significantly lower Faith PD index was observed in ATB compared 

to the healthy controls (Figure 3A). Unweighted UniFrac analysis revealed a significant 

(p=0.003) difference in b diversity between ATB and healthy subjects, while it was comparable 

between ATB and NTB groups (Figure 3B).  

With respect to healthy controls, in ATB patients, relative abundance of Collinsella, 

Holdemanella, Bifidobacterium, and Veillonella genera was lower and Escherichia was higher 

in NTB in site-I (Figure S2A). A similar taxa abundance at genus level was observed between 

the study groups of site-II (Figure S2B). In site-I, Gemmiger formicilis, Bifidobacterium 

stercosis JCM 15918, Prevotella copri DSM 18205, and Romboutsia timonensis were 

relatively lower in ATB and NTB with respect to healthy, whereas Faecalibacterium 

prausnitzii, Holdemanella biformis were reduced in ATB. Cetobacterium somerae was higher 

in ATB; and Bacteroides caccae, Klebsiella pneumoniae were higher in NTB (Figure 2E). In 

site-II, Erysipelatoclostridium ramosum, Mediterraneibacter [Ruminococcus] torques were 

higher in ATB, whereas Enterococcus faecalis and Phacaeicola dorei were relatively low in 

ATB and NTB compared to healthy (Figure 3C).  
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Discrimination of ATB, healthy, and NTB subjects by gut bacterial markers: LEfSe 

analysis of study subjects from site-I revealed that Dorea, Intestinibacter, Coprococcus, 

Prevotella, Collinsella, and Terrisporobacter were depleted in ATB and NTB subjects with 

respect to healthy controls (Figure 4A, S3). Alkalihalobacillus was higher in ATB patients, 

whereas an increased abundance of Klebsiella, Megamonas, Roseburia, Peptoniphilus, and 

Tyzzerella was observed in NTB subjects (Figure 4A). A lower abundance of Coprococcus 

catus, Prevotella copri DSM 18205, Lactobacillus rogosae, Collinsella bouchesdurhonensis, 

Collinsella aerofaciens, Senegalimassilia anaerobia JC 110, Intestinibacter bartletti, and 

Dorea longicatena were observed in ATB and NTB subjects compared to healthy (Figure 4B, 

Supplementary Figure S4).  

 In site-II, Erysipelatoclostridium and Clostridiodes were higher in ATB, whereas 

Faecalibacterium, Gemmiger, Blautia, Parabacteroides, Collinsella, Paludicola, Aminipila, 

Anaeromassilibacillus, Allistipes, and Peptococcus were abundant including others in healthy 

(Figure 3D, S5). Clostridium difficile ATCC 9689 = DSM 1296 showed higher abundance in 

ATB subjects, whereas Bacteroides thetaiotamicron, Faecalibacterium prausnitzii, and 

Parabacteroides merdae were reduced in ATB compared to healthy (Figure 3E, S5).  

Prediction of functional potential: Variance analysis of KEGG metabolic pathways reflected 

differences in the functional genes in the microbiota of ATB and NTB from healthy groups of 

site-I (Figure 5A). Out of 39 active KEGG pathways identified at level 2, 12 pathways showed 

significant differences between ATB and healthy (p<0.05), and differences in 18 pathways 

were observed between healthy and NTB groups (Figure 5C). In site-II, study subjects showed 

similar clusters with a significant difference in the energy metabolism pathway between NTB 

and healthy (Figure 5B, 5D).  

The fecal metabolome of ATB patients showed significant differences from controls: 

Global fecal metabolome analysis of ATB, healthy, and NTB groups, showed separate clusters 

between study groups from both the sites (Figure 6A, 6B). Set of differentially (FC ≥ 2, p ≤ 

0.05) regulated metabolites between the study groups  in site-I: ATB/healthy (low/high:11/13), 

ATB/NTB (low/high:11/3), NTB/healthy (low/high:8/14); and site-II: ATB/healthy 

(low/high:3/22), ATB/NTB (low/high: 6/2), NTB/healthy (low/high:1/22)  were identified 

(Supplementary Figure S6A, S6C, S6E; S7A, S7C, S7E; Table S6-S11). A set of top 25 

molecular features qualifying a VIP score > 1.0 and identified as important (Figure S6B, S6D, 

S6F; S7B, S7D, S7F). Elevated levels of 2-piperidinone were observed in ATB compared to 

healthy controls in both the study sites (Figure S6B, S7B). 
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Integrating microbiome and metabolome profile of ATB patients and controls: In site-I, 

dipterin, succinic acid, N-acetyl-L-Aspartic acid, and KGDS/1 showed a strong positive 

correlation with Sarcina. Similarly, Romboustia, Senegalimassilia, Intestinibacter showed a 

strong positive correlation (r2>0.8) with dihydrocinnamic acid and valeric acid in the healthy 

group. Intestinibacter negatively correlated with metronidazole, methylmalonic acid, DL-

ornithine, and N-acetyl putrescine (Figure 7A). In site-II, Erysipelatoclostridium, enriched in 

ATB, showed a strong positive correlation (r2>0.8) with proline, 2-piperidinone, 4E-1-PDH-

4(axial)-ol, 2,3-2H-Quinolin-2-one and Tris(hydroxymethyl)aminomethane, and was 

negatively correlated with tetradecanoic acid. Amino acids such as serine, L-ornithine, I-

isoleucine, L-valine, DL-Phenylalanine, and I-aspartic acid showed a high negative correlation 

with Faecalibacterium abundance (Figure 7B). Other significant correlations between 

variables from both the study sites are detailed in the clustered image map (Figure 7A, 7B). 

Tuberculosis patients receiving treatment revealed differential microbial and metabolite 

composition: Shannon index showed a time-dependent minor decrease in the α diversity of 

ATB subjects receiving anti-tuberculosis treatment (Figure 8A). β diversity analysis using 

unweighted UniFrac metric revealed comparable diversity of the study groups (Figure 8B) and 

PERMANOVA revealed significant differences between the 6 and 8 months of followed up 

subjects (p = 0.026). Alkalihalobacillus was abundant in drug-naïve ATB subjects, and 

significantly reduced upon treatment (Figure 8C). Whereas genera Soonwooa, 

Stenotrophomonas, Diaphorobacter, and Agriterribacter were observed in 8-month follow-up 

subjects, which was absent in drug-naïve ATB patients (Figure 8C, S8). Ligilactobacillus 

ruminis, Diaphorabacter aerolatus, Actinomyces graevenitzii, Klebsiella pneumoniae and 

Agiterribacter humi were observed in the 8-month follow-up subjects (Figure S8). Soonwoa 

buanensis was increased in 8-month followed-up subjects compared to drug-naïve ATB 

subjects (Figure S8). Multivariate analysis of the fecal metabolites of ATB patients at 0, 2, 4, 

6, and 8 months of treatment completion and healthy subjects showed distinct clusters in PLS-

DA analysis (Figure 8D). A set of 8 analytes, qualifying VIP score > 1.0, were selected as 

important features to group treatment specific variations in followed up cases (Figure S9). It 

was also observed that with treatment, the fecal metabolic profile of ATB subjects shifted 

towards the  healthy group and may need longer time for complete overlapping (Figure 8D). 

DISCUSSION 

Since most of the studies have focussed on a single population, a multicentric study on the gut 

microbiota association with TB is the need of the hour. It is well established that gut dysbiosis 

in host negatively impacts the physiology and homeostatic processes. Earlier reports 
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demonstrated significant loss of gut microbial diversity and taxonomic numbers in patients 

with pulmonary TB than those in healthy controls. [18] [19] In this study, we described the 

diversity, taxonomic composition of microbes, their predicted metabolic function, global 

metabolome differences in the gut microbiota of drug naive ATB patients compared to other 

disease (as NTB) or healthy controls and in a set of longitudinally followed up patients.   

Our gut microbiome analysis of ATB and NTB patients revealed a significantly low 

a-diversity compared to healthy controls. The ATB and NTB groups had comparable 

microbial diversity whereas in site-I, NTB group presented with reduced diversity compared 

to healthy controls. b-diversity also demonstrated significant differences in the gut taxonomic 

composition, confirming intestinal microbiome changes in ATB. The richness in bacterial 

diversity is considered to have protective effects on metabolic and inflammatory diseases. [20] 

Therefore, the alterations in the intestinal flora of TB patients may be a signal for weakened 

anti-inflammatory ability. 

Earlier reports demonstrated a significant loss of Firmicutes and an increased relative 

abundance of Bacteroides in the pulmonary TB group. [21] In contrast, we observed a 

comparable abundance of Firmicutes and Bacteroides in the ATB study groups. Proteobacteria 

were higher in NTB group. In addition, Actinobacteria is reduced in ATB compared to healthy 

and NTB, opposing earlier reports which may be partly be associated with the food habits, 

geographical origin of these subjects. [21] 

At the genus level, higher abundance of SCFAs producing genera  Roseburia, Romboutsia, 

Butyribacter, Coprococcus, Lactobacillus were observed in the healthy group. SCFAs are 

essential in maintaining a homeostatic environment, as they can induce either pro- or anti-

inflammatory responses, depending on the signal transduction pathway. [22] Roseburia is 

reported to influence the production of SCFAs, namely, acetic, propionic and butyric acids and 

these metabolites protect the body from pathogens and inflammation. [23] [24] [25] In this 

study, Roseburia was reduced in the ATB patients, a result consistent with the study by Luo et 

al. [26] Thus, this underpin the likely involvement of SCFAs in TB pathogenesis. Decreased 

Dorea, Roseburia and Ruminococcus abundance was earlier reported in  pulmonary TB 

patients. [19] Species level gut microbiota differences in TB  patients have little been explored. 

Our study revealed the depletion of Coprococcus catus and Collinsella aerofaciens in ATB 

compared to healthy, which have been reported to produce propionate and butyrate, 

respectively.  
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The communication between the host and microbiome are partly contributed by metabolites, 

which profoundly influence the host physiology. Recent studies have uncovered that microbial 

metabolites play an important role in regulating the immune system. [27] By altering the 

production of butyric acid and propionic acid, the intestinal microbiota leads to impaired 

immune function in TB patients. [19] Reports revealed that the intestinal microbial metabolite 

indolepropionic acid (IPA) targets tryptophan to interfere with the metabolic activities of Mtb. 

[28] Fecal metabolome profile of ATB, healthy and NTB subjects from both the study sites 

showed distinct group specific clusters and a significant metabolic shift in ATB patients which 

corroborates earlier reports. [19] A set of 24 fecal metabolites showed significant alteration in 

ATB patients from both the sites with respect to healthy controls. One of them is 2-

piperidinone, which showed significantly high abundance in ATB patients compared to healthy 

ones, and may have association with TB.  ATB patients from site-I  presented with reduction 

of valeric acid that corroborates an earlier report. [19] A set of 11 metabolites significantly 

altered in both ATB and NTB patients from healthy controls. Higher abundance of 

Hydrocinnamic acid, N-acetyl putrescine, Propanoic acid, methylmalonic acid and 

metronidazole and a significantly lower KGDS/1, N-acetyl-L-Aspartic acid, Hexanedioic acid, 

Dihydrocinnamic acid, succinic acid and valeric acid was observed between  ATB and NTB 

subjects. Some drugs like metronidazole has been identified in the fecal samples and may be 

certain study subjects might have taken these drugs for resolving other issues.    

Limited reports on the effect of anti-TB drugs on gut microbiota are available in literature and 

we monitored the gut microbiota in a set of longitudinally followed up drug-naïve TB patients. 

The clearance of Alkalihalobacillus along with appearance of certain opportunistic and harmful 

pathogens like Stenotrophomonas and Klebsiella pneumoniae indicates a partial restoration of 

gut microbiota in treatment completed TB patients. Further, metabolomics study revealed 

restoration of succinate, proline with treatment. Succinate, which is reported as the major 

metabolite of Prevotella copri could be the reason for the observed restoration of succinate 

with treatment. [29]  

CONCLUSION 

Our findings provide direct first-hand evidence supporting gut microbial dysbiosis in drug 

naïve ATB patients with and without anti-tuberculosis treatment compared to healthy and other 

disease controls (NTB). However, the possibility that the gut microbiota dysbiosis precedes 

and contributes to the M. tuberculosis infection cannot be excluded. These findings need further 

validation in a larger population size from diverse patient population from developed, 

developing and underdeveloped countries to identify important microbes and their by-products, 
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which may have translational potential in terms of pro- or post-biotics to manage TB patients 

for better therapeutic outcomes. 
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studies.  
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Figure 2 Gut microbial diversity analysis  and taxonomic composition of drug naïve active tuberculosis patients (ATB),  
healthy and  non-tuberculosis (NTB) controls from site-I. Alpha diversity comparisons based on  A) Shannon and B) Faith 
PD index. Principal coordinate analysis (PCoA) of C) unweighted and D) weighted Unifrac distances. *: p<0.05; **: 
p<0.01; ***: p<0.001; ns: non-significant. E) Stacked bar plots representing the average percentage of top most taxa 
collapsed up to species level. Species that remained unclassified or with lesser abundance are grouped as others. 
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Figure 3 Gut microbial diversity analysis  and taxonomic composition of drug naïve active tuberculosis patients (ATB),  
healthy and  non-tuberculosis (NTB) controls from site-II. A) Alpha diversity comparisons based on Shannon index B) 
Principal coordinate analysis (PCoA) of unweighted Unifrac distance. *: p<0.05; **: p<0.01; ***: p<0.001; ns: non-
significant. C) Stacked bar plots representing the average percentage of top most taxa collapsed up to species level. Species 
that remained unclassified or with lesser abundance are grouped as others. D) Cladogram representation of LEfSe analysis  
based on effect size (LDA score [log 10] threshold of 2. Differences among study groups were obtained by the Kruskal-Wallis 
test (α = 0.05) and Wilcoxon test (α = 0.05) with less strict parameter for multi-class analysis. E) Histogram of the relative 
abundances of identified species. The mean and median relative abundance are indicated with solid and dashed lines, 
respectively. 
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Figure 5 PICRUSt 2 analysis of study groups (active tuberculosis: ATB, healthy and non-tuberculosis: NTB) Statistical analysis 
was done using STAMP software. Principal Component Analysis plot of KEGG metabolic pathways in the second level, for 
multiple groups, applying Kruskal-Wallis H test, post-hoc Tukey-Kramer test for confidence interval method of  study groups 
from A) site-I and B)Site-II. Extended error bar plot showed the mean proportions (%) of significantly different predicted 
functional categories at level 2 between study groups of C) site-I and D) site-II , applying Welch’s t-test, DP: Welch’s inverted 
test for confidence interval method. Variance analysis showed the abundance ratio of different functions in two groups of samples. 
The point showed the difference between proportions of functional abundance in the 95% confidence interval, and the value at 
the rightmost is the p-value. p<0.05 presents statistical significance. 
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Figure 6 Fecal metabolites of active tuberculosis patients (ATB) showed significant variations from control (non-
tuberculosis: NTB and healthy) subjects. PLS-DA score plot showing group specific clusters of fecal metabolites 
between ATB, Healthy and NTB Subjects of  A) site-I and B) site-II. Coloured circles represent 95% confidence 
intervals. Coloured dots represent individual samples. 
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Figure 7 MixOmics analysis of  study subjects from A) site-I and B) site-II. Clustered Image Map depicting 
correlation between differential fecal metabolic patterns and bacteria genera in ATB, healthy, and NTB 
subjects. Regularised canonical correlation coefficients between the level of reliable and markedly different 
fecal metabolic patterns and the abundance of the differentially enriched bacteria were calculated. Blue: 
negative correlation; Red: positive correlation. 
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Figure 8 Fecal microbiota and metabolite study of longitudinally followed-up tuberculosis patients. A) Alpha diversity 
comparisons based on Shannon index B) Principal coordinate analysis (PCoA) of unweighted Unifrac distance. C) Cladogram 
representation of LEfSe analysis  based on effect size (LDA score [log 10] threshold of 2. Differences among study groups were 
obtained by the Kruskal-Wallis test (α = 0.05) and Wilcoxon test (α = 0.05) with less strict parameter for multi-class analysis. 
Histogram of the relative abundances of Alkalihalobacillus. The mean and median relative abundance are indicated with solid 
and dashed lines, respectively. D) PLS-DA score plot for comparison of the global fecal metabolite profiles between 0,2,4,6,8 
month and healthy subjects. Coloured circles represent 95% confidence intervals. Coloured dots represent individual samples. 
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