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Abstract 30 

Obesity is a major risk factor for many common diseases and has a significant heritable 31 

component. While clinical and large-scale population studies have identified several genes 32 

harbouring rare alleles with large effects on obesity risk, there are likely many unknown 33 

genes with highly penetrant effects remaining. To this end, we performed whole exome-34 

sequence analyses for adult body mass index (BMI) in up to 587,027 individuals. We 35 

identified rare, loss of function variants in two genes – BSN and APBA1 – with effects on 36 

BMI substantially larger than well-established obesity genes such as MC4R. One in ~6500 37 

individuals carry a heterozygous protein truncating variant (PTV) in BSN, which confers a 38 

6.6, 3.7 and 3-fold higher risk of severe obesity (BMI >40kg/m2), non-alcoholic fatty liver 39 

disease and type 2 diabetes, respectively. In contrast to most other obesity-related genes, 40 

rare variants in BSN and APBA1 had no apparent effect on childhood adiposity. 41 

Furthermore, BSN PTVs magnified the influence of common genetic variants associated with 42 

BMI, with a common polygenic score exhibiting an effect on BMI twice as large in BSN PTV 43 

carriers than non-carriers. Finally, we explored the plasma proteomic signatures of BSN PTV 44 

carriers as well as the functional consequences of BSN deletion in human iPSC-derived 45 

hypothalamic neurons. These approaches highlighted a network of differentially expressed 46 

genes that were collectively enriched for genomic regions associated with BMI, and suggest 47 

a role for degenerative neuronal synaptic function and neurotransmitter release in the 48 

etiology of obesity. 49 
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Introduction 51 

Over one billion people worldwide live with obesity, a global health challenge that is rapidly 52 

increasing in scale1,2. Obesity is the second leading cause of preventable death, increasing 53 

the risks of diseases such as type 2 diabetes, cardiovascular disease and cancer1,3. 54 

Understanding the full range of social, psychological, and biological determinants of energy 55 

intake and expenditure will be key to tackling this epidemic. 56 

Early studies in mice highlighted the role of the leptin-melanocortin pathway in appetite and 57 

body weight regulation4, which led to candidate gene sequencing studies of rare individuals 58 

with severe early-onset obesity. Those studies identified rare loss of function mutations in 59 

key components of this pathway as causes of severe, early-onset obesity5, the most 60 

common of which impact the melanocortin 4 receptor (MC4R)6,7. In parallel, using a 61 

‘hypothesis-free’ approach, large-scale population-based genome-wide association studies 62 

(GWAS) have identified hundreds of common genetic variants associated with body mass 63 

index (BMI) in adults8. Those variants are mostly non-coding and are enriched near genes 64 

expressed in the brain9. Individually, the effect of each variant is small, and cumulatively the 65 

~1000 common variants identified to date explain only ~6% of the population variance in 66 

BMI8. The recent emergence of whole exome sequence (WES) data at the population scale 67 

has enabled exome-wide association studies (ExWAS), leading to a convergence of 68 

common and rare variant discoveries. In a landmark study, Akbari et al used WES data in 69 

~640,000 individuals to identify rare protein-coding variants in 16 genes associated with 70 

BMI10. These included genes with established roles in weight regulation (MC4R, GIPR and 71 

PCSK1) in addition to novel targets, such as GPR75, in which loss-of-function mutations are 72 

protective against obesity in humans and mice10.  73 

The current study is an ExWAS for BMI using WES data of 419,668 UK Biobank 74 

participants. Although this represents a subset of the exomes previously reported by Akbari 75 

et al10, we were motivated by recent work demonstrating that in the context of gene-burden 76 

analysis11, the various choices around how one could define a qualifying rare variant can 77 

highlight biologically relevant genes at exome-wide significance missed using alternative 78 

definitions12. Consistent with this, our approach identified novel rare variant associations with 79 

BSN and APBA1, which we replicated in independent WES data from 167,359 individuals of 80 

non-European genetic ancestries. The detected rare protein truncating variants in BSN and 81 

APBA1 have larger effects than other previously reported ExWAS genes10, and our findings 82 

collectively suggest an emerging role for degenerative neuronal synaptic function and 83 

neurotransmitter release in the etiology of obesity. 84 

 85 
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Results 87 

To identify rare variants associated with adult BMI, we performed an ExWAS using genotype 88 

and phenotype data from 419,668 individuals of European ancestry from the UK Biobank 89 

study13. Individual gene-burden tests were performed by collapsing rare (MAF<0.1%) 90 

genetic variants across 18,658 protein-coding genes. We tested three categories of variants 91 

based on their predicted functional impact: high-confidence Protein Truncating Variants 92 

(PTVs), and two overlapping missense masks that used a REVEL14 score threshold of 0.5 or 93 

0.7. This yielded a total of 37,691 gene tests with at least 30 informative rare allele carriers, 94 

corresponding to a multiple-test corrected statistical significance threshold of P<1.33x10-6 95 

(0.05/37,691). 96 

Genetic association testing was performed using BOLT-LMM15, which identified a total of 97 

nine genes meeting this threshold for significant association with adult BMI (Table S1). Our 98 

gene-burden ExWAS appeared statistically well-calibrated, as indicated by low exome-wide 99 

test statistic inflation [λGC=1.05-1.15] and by the absence of significant associations with any 100 

synonymous variant masks (Figure S1-2). Five of our identified associations were previously 101 

reported – PTVs in MC4R, UBR2, KIAA1109, SLTM and PCSK110. At the other four genes, 102 

heterozygous PTVs conferred higher risk for adult BMI: BSN (effect=3.05 kg/m2, se=0.54, 103 

P=2x10-8, carrier N=65), TOX4 (3.61, se=0.71, P=3.1x10-7, carrier N=39), APBA1 (2.08, 104 

se=0.42, P=6.1x10-7, carrier N=111) and ATP13A1 (1.82, se=0.37, P=1.1x10-6, carrier 105 

N=139). For two of these genes, BSN and ATP13A1, we also found supporting evidence 106 

from common genetic variants at the same locus associated with BMI (Figure S3) – non-107 

coding alleles ~200kb upstream of BSN (rs9843653, MAF=0.49, beta=-0.13 kg/m2, 108 

P=9.5x10-46) and 400kb upstream of ATP13A1 (rs72999063, MAF=0.16, beta=0.09 kg/m2, 109 

P= 3.2x10-13, Table S2). Both of these GWAS signals were also associated with blood 110 

expression levels of BSN and ATP13A1, respectively16 (Table S2), and the BMI associations 111 

were replicated in independent GWAS data from the GIANT consortium9 (Figure S4, Table 112 

S2). We found no evidence of rare variant associations with BMI for any other genes at 113 

these GWAS loci (Table S3). 114 

We aimed to replicate our novel gene-burden rare variant associations in independent WES 115 

data from 167,359 individuals of non-European ancestry from the Mexico City Prospective 116 

Study (MCPS)17,18 and the Pakistan Genomic Resource (PGR) study (Table S4, Figure 1). 117 

We observed supportive evidence for two of the four novel genes identified above – 32 BSN 118 

PTV carriers had a mean 2.8 kg/m2 (se=0.84, P=9.4x10-4) higher BMI than non-carriers, and 119 

20 APBA1 PTV carriers had a mean 2.33 kg/m2 (se=1.05, P=0.03) higher BMI. These effect 120 

sizes were remarkably similar to those observed in UK Biobank (3.05 kg/m2 and 2.08 kg/m2 121 

for BSN and APBA1, respectively).  122 
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The effect of BSN is larger than any previously reported ExWAS gene on BMI (Figure 2), 123 

and substantially increased the risks of obesity in UK Biobank; (BSN OR=3.04 [95% 124 

confidence interval 1.87-4.94], P=7.7x10-6 , 49% case prevalence; APBA1 OR=2.14 [1.46-125 

3.13], P=8.5x10-5, 41% case prevalence) and for BSN also increased the risk of severe 126 

obesity (OR=6.61 [3.01-14.55], P=2.6 x10-6, 11% case prevalence) but not for APBA1 127 

(OR=1.91 [0.70-5.19], P=0.20 , 4% case prevalence, Figure 3). Association statistics for 128 

individual variants in BSN and APBA1 in UK Biobank are shown in Figure 1B and Table S5. 129 

The gene-level associations between BSN and APBA1 and BMI were not driven by single 130 

high-confidence (HC) PTVs (Table S6), and carriers appeared to be geographically 131 

dispersed across the UK (Figure S5).  132 

We next sought to understand the broader phenotypic profile of carriers of PTVs in BSN and 133 

APBA1. Both genes showed diverse associations with body composition, with higher fat and 134 

lean mass across body compartments (Table S7), but no association with adult height 135 

(P>0.05) or waist-to-hip ratio adjusted for BMI (P>0.05). In contrast to almost all previously 136 

reported obesity-associated genes, neither BSN or APBA1 exhibited any association with 137 

childhood body size or puberty timing (P>0.05), suggesting adult-onset effects on body 138 

weight based on the phenotypes available in UK Biobank. In UK Biobank, carriers of PTVs in 139 

BSN also had higher risk of type 2 diabetes (T2D) – BSN OR=3.03 (95% CI [1.60-5.76], P= 140 

7.1x10-4, 18% case prevalence) – an effect size comparable to previously reported genes for 141 

T2D19,20. A broader phenome-wide analysis across 11,693 traits revealed a number of other 142 

associations (Table S8); notably BSN PTV carriers had a substantially higher risk of non-143 

alcoholic fatty liver disease (NAFLD) - as defined by a Fatty Liver Index (FLI) ≥ 6021 or 144 

Hepatic Steatosis Index (HSI) > 3622 – compared to non-carriers (OR=3.73 (95% CI [2.26-145 

6.16], P=8.4x10-7, 45% case prevalence). 146 

Previous studies reported that common BMI-associated alleles did not modify the 147 

penetrance of rare variants on BMI or obesity10 . To evaluate whether this was true also for 148 

BSN and APBA1, we created a common variant polygenic score (PGS) in UK Biobank, using 149 

individual variant effect estimates obtained from independent GIANT consortium GWAS 150 

data9. By testing the interaction between the PGS and rare variant carrier status in a linear 151 

regression model, we observed significant effect modification by BSN PTVs (P= 0.01, 152 

Figure S6), but not APBA1 (P=0.22). Carriers of BSN PTVs showed double the effect size of 153 

the PGS on BMI (0.6 BMI standard deviations per unit increase in PGS, equivalent to 2.9 154 

kg/m2) than non-carriers (0.3 standard deviations, equivalent to 1.4 kg/m2). 155 

To explore the putative biological mechanisms through which BSN and APBA1 might exert 156 

their effects, we first characterized the plasma proteomic signature of PTV carriers using 157 
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Olink data on 1,463 circulating proteins available in ~50,000 UK Biobank participants23,24. 158 

We identified 6 and 17 PTV carriers with available proteomics data for BSN and APBA1, 159 

respectively. No plasma proteins were associated with APBA1 carrier status after multiple-160 

test correction (P<3.42 x10-5 (0.05/1,463)), however BSN PTV carriers had higher levels of 161 

lymphotoxin alpha (LT-α, previously known as TNF-β) than non-carriers (effect=1.07, 162 

se=0.183, P=5.3x10-9) (Table S9). Furthermore, circulating LT-α levels were positively 163 

associated with BMI (1.18 kg/m2 per 1 SD higher LT-α, P=7.6x10-122) and common genetic 164 

variants at the LTA locus were associated with BMI (rs3130048, MAF=0.72, beta=-0.10 165 

kg/m2/allele, P=1.10x10-23). We repeated these analyses using the common BMI-associated 166 

variant (rs9843653) at BSN and identified 23 associated proteins, the most significant of 167 

which was Semaphorin-3F (-0.03 SD per BMI-increasing allele, P=6.7x10-45), a member of 168 

the semaphorin family which has been previously implicated in obesity etiology25. In total, 10 169 

of these 24 protein-encoded genes (including SEMA3F and LTA) were also implicated by 170 

common variant signals for BMI (Table S10). 171 

Finally, we explored the functional consequences of BSN deletion, which is highly expressed 172 

in the brain, by generating CRISPR-Cas9 edited human iPSC hypothalamic neurons that 173 

were heterozygous for BSN loss of function (Methods). Numbers of differentiated BSN+/- 174 

cells were lower than WT cells (2,924 BSN+/- and 18,010 WT); however, on visual inspection 175 

there was no apparent morphological effect on neuronal differentiation (Figure S7). To 176 

assess transcriptional differences between these cell populations, we performed single 177 

nucleus RNAseq across all 20,934 hypothalamic cells differentiated from human iPSCs. A 178 

UMAP plot of the cells identified eight distinct clusters (Figure S8), of which two clusters 179 

(clusters 1 and 5, encompassing 4,991 cells) were enriched for RBFOX3 (NeuN) expression, 180 

a marker for mature neurons. These two clusters were also enriched for expression of BSN 181 

and its binding partner Piccolo (PCLO), and were therefore separated and re-clustered for 182 

further analysis (Figure S8). This produced a further five clusters, including 2,712 WT and 183 

343 BSN+/- cells, which we selected for analysis of differential gene expression (defined by 184 

corrected P<0.05 and Log2FC > 1 or < -1). These analyses highlighted 251 differentially-185 

expressed genes across one or more of the five clusters (Table S11), including genes with 186 

established roles in obesity regulation, such as members of the semaphorin gene family25 187 

and ALK26. Pathway enrichment analyses across differentially-expressed genes highlighted 188 

a number of biological processes (Table S12), with ‘synapse organization’ and ‘negative 189 

regulation of neuron projection development’ the most significantly enriched pathways in 190 

clusters 1 and 2, respectively. Collectively, differentially-expressed genes within these two 191 

clusters (1 & 2) were also enriched for common variant associations with BMI (Table S13-192 

14). 193 
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Discussion 194 

We identified that rare PTVs in APBA1 and BSN are associated with a substantial increase 195 

in adult BMI and higher risk of obesity in adults, but not in childhood. Rare PTVs in BSN 196 

were also found to be associated with higher risks for T2D and NAFLD. The associations 197 

with adult BMI were confirmed in independent cohorts and also supported by mapping of 198 

common variant signal to whole-blood eQTLs for APBA1 and BSN.  199 

APBA1 and BSN are among the few genetic determinants of adult-onset obesity.  Although 200 

childhood adiposity was assessed here by subjective recall, this trait is reported to show high 201 

genetic correlation with measured childhood BMI and hence is a valid indicator for genetic 202 

analyses27. APBA1 encodes a neuronal adapter protein that interacts with the Alzheimer's 203 

disease-associated gene amyloid precursor protein (APP). It has a putative role in signal 204 

transduction as a vesicular trafficking protein with the potential to couple synaptic vesicle 205 

exocytosis to neuronal cell adhesion28. BSN encodes Bassoon, a scaffolding protein 206 

essential for the organization of the presynaptic cytoskeleton and for exocytosis-mediated 207 

neurotransmitter release29. Bsn knockout in mice reduces excitatory synaptic transmission 208 

because vesicles are unable to efficiently fuse with the synaptic membrane30. BSN is 209 

expressed primarily in the brain and is reportedly upregulated in frontal lobes of patients with 210 

multiple system atrophy, a progressive neurodegenerative disease31. Furthermore, rare 211 

predicted-damaging missense mutations in BSN were reported in four patients with 212 

progressive supranuclear palsy-like syndrome with features of multiple system atrophy and 213 

Alzheimer's disease32. Hence, the links we identify here with adult-onset (rather than 214 

childhood-onset) obesity may be consistent with the putative roles of APBA1 and BSN in 215 

ageing-related neurosecretory vesicle dysfunction and neurodegenerative disorders.  216 

Previous studies reported additive effects of common and rare susceptibility alleles on BMI10, 217 

but no evidence for epistatic interactions that are indicative of biological interaction. Notably, 218 

we found that carriers of rare PTVs in BSN showed enhanced susceptibility to the influence 219 

of a common genetic polygenic risk score for adult BMI. The mechanistic basis for this 220 

statistical interaction is unclear. However, as the common genetic susceptibility to obesity is 221 

thought to act predominantly via the central regulation of food intake9,33, we hypothesize that 222 

BSN might have widespread involvement in the synaptic secretion of neurotransmitters that 223 

suppress appetite and increase satiety.  224 

In conclusion, rare genetic disruption of APBA1 and BSN have larger impacts on adult BMI 225 

and obesity risk than heterozygous disruption of any other described obesity risk gene. Rare 226 

PTVs in APBA1 and BSN appear to preferentially confer risk to adult-onset obesity, which 227 
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we propose might be due to widespread vesicular dysfunction leading to reduced synaptic 228 

secretion of neurotransmitters that suppress food intake. 229 
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Figures 231 

 232 

 233 

 234 

Figure 1 | Discovery and replication of novel rare variant associations with BMI in UK 235 

Biobank. (a) Effect size estimates have been converted to kg/m2. Extended data can be 236 

found in Table S1 and S4. (b) Variant-level associations between HC PTVs in BSN and 237 

APBA1 and BMI. The Y-axis shows trait increasing effects with a -1*log (10) p-value and trait 238 

decreasing effects with a log(10) p-value. Dashed line denotes variants reaching a nominal 239 

significance threshold P<0.05.  240 
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 241 

 242 

Figure 2 | Comparison of effect between replicated associations and previously 243 

reported associations10. The BMI effect size estimates are based on UK Biobank 244 

participants only. 245 
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 247 

Figure 3 | Distribution in BMI categories for the carriers and non-carriers of BSN, 248 

APBA1 or MC4R HC PTV carriers. The BMI categories are classified according to the 249 

WHO’s guidance. 250 
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Methods 286 

UK biobank data processing and quality control 287 

We employed the same processing strategies as outlined in our previous paper to analyse 288 

the whole-exome sequencing data and perform quality control steps19. We queried whole-289 

exome sequencing data from 454,787 individuals in the UK Biobank34, excluding those with 290 

excess heterozygosity, autosomal variant missingness on genotyping arrays >= 5%, or those 291 

not included in the subset of phased samples as defined by Bycroft et al13. 292 

The whole-exome sequencing data was stored as population-level VCF files, aligned to 293 

GRCh38, and accessed through the UKBB RAP. In addition to the quality control measures 294 

already applied to the released data, which were described by Backman et al.34, we 295 

conducted several extra QC procedures. Firstly, we used ‘bcftools norm’ 35 to split the 296 

multiallelic sites and left-correct and normalise InDels. Next, we filtered out variants that 297 

failed our QC criteria, including: 1) read depth < 7, 2) genotype quality < 20, and 3) binomial 298 

test p-value for alternate allele reads versus reference allele reads <= 0.001 for 299 

heterozygous genotypes. For InDel genotypes, we only kept variants with read depth >= 10 300 

and genotype quality >= 20. Variants that failed QC criteria were marked as missing (i.e., ./.). 301 

After filtering, variants where more than 50% of genotypes were missing were excluded from 302 

downstream analyses19.  303 

The remaining variants underwent annotation using ENSEMBL Variant Effect Predictor 304 

(VEP) v10436 with the ‘-everything’ flag, and additional plugins for REVEL14, CADD37, and 305 

LOFTEE38. For each variant, a single ENSEMBL transcript was prioritised based on whether 306 

the annotated transcript was protein-coding, MANE select v0.9739, or the VEP Canonical 307 

transcript. The individual consequence for each variant was then prioritised based on 308 

severity as defined by VEP. Stop-gained, splice acceptor, and splice donor variants were 309 

merged into a combined Protein Truncating Variant category, while annotations for missense 310 

and synonymous variants were adopted directly from VEP. We only included variants on 311 

autosomes and the X chromosome that were within ENSEMBL protein-coding transcripts 312 

and within transcripts included on the UKBB WES assay in our downstream analysis. 313 

Our analyses focused primarily on individuals of European genetic ancestry, and we 314 

excluded those who withdrew consent from the study, resulting in a final cohort of 419,668 315 

individuals. 316 

Exome-wide gene burden testing in the UK Biobank 317 
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We used BOLT-LMM v2.3.615 as our primary analytical tool to conduct the gene burden test. 318 

To run BOLT-LMM, we first queried a set of genotypes with MAC > 100 which derived from 319 

the genotyping arrays for the individuals with the WES data to build the null model. To 320 

accommodate BOLT-LMM's requirement for imputed genotyping data rather than per-gene 321 

carrier status, we developed dummy genotype files where each gene was represented by a 322 

single variant. We then coded individuals with a qualifying variant within a gene as 323 

heterozygous, regardless of the total number of variants they carried in that gene. We then 324 

created the dummy genotypes for the MAF < 0.1% high confidence PTVs as defined by 325 

LOFTEE, missense variants with REVEL > 0.5 and missense variants with REVEL > 0.7. We 326 

then used BOLT-LMM to analyse phenotypes, using default parameters except for the 327 

inclusion of the 'lmmInfOnly' flag. In addition to the dummy genotypes, we also included all 328 

individual markers contained in WES data to generate the association test statistics for 329 

individual variants. We used age, age2, sex, the first 10 principal components as calculated 330 

by Bycroft et al.13, and the WES released batch (50k, 200k, 450k) as covariates. 331 

To check whether there is a single variant driving the association, we performed a leave-332 

one-out analysis for BSN and APBA1 using linear regression in R v3.6.3 by dropping the HC 333 

PTV variants contained in our analysis one by one. In addition, we also checked the 334 

geographic distribution of APBA1 and BSN HC PTV carriers.   335 

Replication of the findings in two independent non-European cohorts 336 

We tried to replicate our findings for the four novel genes in two independent non-European 337 

exome-sequenced cohorts: Mexico City Prospective Study (MCPS) and The Pakistan 338 

Genomic Resource (PGR) study.  339 

Mexico City Prospective Study is a cohort study of 159,755 adults of predominantly Admixed 340 

American ancestry. Participants were recruited between 1998 and 2004 aged 35 years or 341 

older from two adjacent urban districts of Mexico City. Phenotypic data were recorded during 342 

household visits, including height, weight, and waist and hip circumferences. Disease history 343 

was self-reported at baseline, and participants are linked to Mexican national mortality 344 

records. The cohort has been described in detail elsewhere17,18. The MCPS study was 345 

approved by the Mexican Ministry of Health, the Mexican National Council for Science and 346 

Technology, and the University of Oxford. 347 

The Pakistan Genomic Resource study has been recruiting participants aged 15-100 years 348 

as cases or controls via clinical audits for specific conditions since 2005 from over 40 349 

centres around Pakistan. Participants were recruited from clinics treating patients with 350 

cardiometabolic, inflammatory, respiratory, or ophthalmological conditions. Information on 351 
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lifestyle habits, medical and medication history, family history of diseases, exposure to 352 

smoking and tobacco consumption, physical activity, dietary habits, anthropometry, basic 353 

blood biochemistry and ECG traits were recorded during clinic visits. DNA, serum, plasma, 354 

and whole-blood samples were also collected from all study participants. The institutional 355 

review board at the Center for Non-Communicable Diseases (IRB: 00007048, 356 

IORG0005843, FWAS00014490) approved the study and all participants gave informed 357 

consent. 358 

Exome sequencing data for 141,046 MCPS and 37,800 PGR participants were generated at 359 

the Regeneron Genetics Center and passed Regeneron’s initial quality control (QC) that 360 

included identifying sex discordance, contamination, unresolved duplicate sequences, and, 361 

for MCPS, discordance with microarray genotype data. Genomic DNA underwent paired-end 362 

75–base pair whole-exome sequencing at Regeneron Pharmaceuticals using the IDT xGen 363 

v1 capture kit on the NovaSeq6000 platform. Conversion of sequencing data in BCL format 364 

to FASTQ format and the assignments of paired-end sequence reads to samples were 365 

based on 10-base barcodes, using bcl2fastq v2.19.0.  366 

These exome sequences were processed at AstraZeneca from their unaligned FASTQ state. 367 

A custom-built Amazon Web Services cloud computing platform running Illumina DRAGEN 368 

Bio-IT Platform Germline Pipeline v3.0.7 was used to align the reads to the GRCh38 369 

genome reference and perform single-nucleotide variant (SNV) and insertion and deletion 370 

(indel) calling. SNVs and indels were annotated using SnpEff v4.340 against Ensembl Build 371 

38.92. All variants were additionally annotated with their gnomAD MAFs (gnomAD v2.1.1 372 

mapped to GRCh38)38. 373 

 374 

To further QC the sequence data, all MCPS and PGR exomes underwent a second screen 375 

using AstraZeneca’s bioinformatics pipeline which has been described in detail previously41. 376 

Briefly, we excluded from analysis sequences that achieved a VerifyBamID freemix 377 

(contamination) level of more than 4%, where inferred karyotypic sex did not match self-378 

reported gender, or where less than 94.5% of the consensus coding sequence (CCDS 379 

release 22) achieved a minimum tenfold read depth. We further removed one individual from 380 

every pair of genetic duplicates or monozygotic twins with a kinship coefficient > 0.45. 381 

Kinship coefficients were estimated from exome genotypes using the --kinship function from 382 

KING v2.2.342. For MCPS we additionally excluded sequences with an average CCDS read 383 

depth at least two standard deviations (SD) below the mean. After the above quality control 384 

steps, there remained 139,603 (99.0%) MCPS and 37,727 (99.3%) PGR exomes.  385 
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In MCPS, we predicted the genetic ancestry of participants using PEDDY v0.4.243, with 1000 386 

Genomes Project sequences as population references44 and retain individuals with a 387 

predicted probability of Admixed American ancestry ≥ 0.95 who were within 4 SD of the 388 

means for the top four principal components (PCs). In PGR we retained individuals with a 389 

predicted probability of South Asian ancestry ≥ 0.95 who were within 4 SD of the means for 390 

the top four PCs. Following ancestry filtering, 137,059 (97.2%) MCPS and 36,280 (95.5%) 391 

PGR exomes remained. 392 

We assessed the association between BMI and weight quantitative traits with genotypes at 393 

the four proposed novel genes of interest using a previously described gene-level collapsing 394 

analysis framework, implementing a protein truncating variant (PTV) collapsing analysis 395 

model41. We classified variants as PTVs if they had been annotated by SnpEff as: 396 

exon_loss_variant, frameshift_variant, start_lost, stop_gained, stop_lost, 397 

splice_acceptor_variant, splice_donor_variant, gene_fusion, bidirectional_gene_fusion, 398 

rare_amino_acid_variant, and transcript_ablation.  399 

We applied minor allele frequency filters to target rare variants; MAF < 0.001 in gnomAD 400 

(overall and every population except OTH) and a leave-one-out MAF < 0.001 among our 401 

combined case and control test cohort. For variants to qualify they had to also meet the 402 

following QC filters: minimum site coverage 10X; annotation in CCDS transcripts (release 403 

22); at least 80% alternate reads in homozygous genotypes; percent of alternate reads in 404 

heterozygous variants ≥ 0.25 and ≤ 0.8; binomial test of alternate allele proportion departure 405 

from 50% in heterozygous state P > 1 × 10−6; GQ ≥ 20; FS ≤ 200 (indels) ≤ 60 (SNVs); 406 

MQ ≥ 40; QUAL ≥ 30; read position rank sum score ≥ −2; MQRS ≥ −8; DRAGEN variant 407 

status = PASS and <0.5% test cohort carrier QC failure. If the variant was observed in 408 

gnomAD exomes, we also applied the filters: variant site achieved tenfold coverage in ≥ 25% 409 

of gnomAD exomes; achieved exome z-score ≥ −2.0; exome MQ ≥ 30 and random forest 410 

probability that the given variant is a true SNV or indel > 0.02 and > 0.01 respectively45. 411 

For the quantitative traits, and for each gene, the difference in mean between the carriers 412 

and noncarriers of PTVs was determined by fitting a linear regression model, correcting for 413 

age and sex. In addition to calculating individual statistics for MCPS and PGR, we also 414 

meta-analysed the individual study effect sizes to generate a combined replication statistic 415 

by using an inverse-variance fixed effect meta-analysis implemented in R using the rma.uni() 416 

function from the package ‘metafor’ v3,8-146  417 

Phenome-wide analysis in UKBB 418 

We included binary and quantitative traits made available in the June 2022 UKB data 419 

release, harmonizing the phenotype data as previously described41. This resulted in 11,690 420 
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phenotypes for analysis; as available on https://azphewas.com. Based on clinical relevance 421 

we derived an additional three phenotypes.  422 

For the purposes of UKB phenome-wide analyses of the four putatively novel genes, the 423 

same data generation and QC processes described for MCPS and PGR were applied to 424 

UKB exomes. Following Regeneron and AstraZeneca QC steps, 445,570 UKB exomes 425 

remained. The phenome-wide analysis was performed in UKB participants of predominately 426 

EUR descent, whom we identified based on a PEDDY-derived predicted probability of 427 

European ancestry ≥ 0.95 who were within 4 SD of the means for the top four PCs. Based 428 

on the predicted ancestry pruning, 419,391 UKB exomes were included in the phenome-429 

wide analyses of the four priority genes.   430 

As described previously, we assessed the association between the 11,693 phenotypes with 431 

genotypes at the four genes of interest, again using a PTV collapsing analysis model41, 432 

classifying variants as PTVs using the same SnpEff definitions as described for the MCPS 433 

and PGR analysis. For variants to qualify for inclusion in the model, we applied the same 434 

MAF and QC filters used in MCPS and PGR, with the exception that due to the larger 435 

sample size of UKB, only <0.01% of the test cohort carriers were permitted to fail QC. 436 

Association testing for other anthropometry phenotypes and protein expression level. 437 

We ran association tests between APBA1 and BSN HC PTV carriers and BMI-associated 438 

common variant (rs9843653) at the BSN locus carriers and a list of anthropometry 439 

phenotypes in R v3.6.3 (Table S5) including the same covariates we used in our exome-440 

wide gene burden tests. We acquired the normalised protein expression data generated by 441 

the Olink platform from the UKBB RAP23,24. The detailed Olink proteomics assay, data 442 

processing and quality control were described by Sun et al. 23 For the association tests 443 

between APBA1 and BSN PTV carriers and BMI-associated common variant (rs9843653) at 444 

the BSN locus carriers and 1,463 protein expression levels, we added age2, age*sex, 445 

age2*sex, Olink batch, UK Biobank centre, UK Biobank genetic array, number of proteins 446 

measured and the first 20 genetic principal components (PCs) as covariates as suggested 447 

by Sun et al.23 We chose the Bonferroni corrected p-value (P<3.42 x10-5 (0.05/1,463)) as the 448 

threshold for the significant associations.  449 

BMI GWAS lookup and downstream analyses 450 

Identified genes were queried for proximal BMI GWAS signals, using data from the UK 451 

Biobank, if within 500kb up- or downstream of the gene’s start or end site. Any such signals 452 

were further replicated in an independent BMI GWAS9. 453 
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We also performed colocalisation tests, using the Approximate Bayes Factor (ABF) method 454 

in the R package “coloc” (version 5.1.0, 8) and blood gene expression level data from the 455 

eQTLGen study16. Genomic regions were defined as ±500kb around each gene and loci 456 

exhibiting an H4 posterior probability >0.5 were considered to show evidence of 457 

colocalisation.  458 

Finally, we also used the GWAS data to calculate gene-level common variant associations, 459 

using MAGMA47. To do this, we used all common but non-synonymous (coding) variants 460 

within a given gene. Gene-level scores were further collapsed into pathway-level 461 

associations where appropriate. 462 

Interaction effect between PGS and PTV carrier status   463 

To examine whether there is an interaction effect between the PTV carrier status of BSN and 464 

APBA1, we included an interaction term between PGS and the carrier status of BSN and 465 

APBA1 PTVs in a linear regression adjusted for sex, age and age squared and the first 10 466 

PCs.  467 

The polygenic score (PGS) was constructed for 419,581 individuals of white European 468 

ancestry who had both genotype and exome sequencing data and a BMI record in the 469 

UKBB. We used summary statistics of BMI from Locke et al.9, which included samples not in 470 

the UKBB. Data was downloaded from the GIANT consortium. The summary statistics 471 

included 2,113,400 SNPs with at least 50,0000 samples in a cohort of 322,154 participants 472 

of European ancestry. For the genotype data of UKBB participants, a light quality check 473 

procedure was applied, where SNPs were removed if they had a MAF <0.1%, HWE <1e-6 or 474 

variants with more than 10% missingness genotypes. Additionally, SNPs that were 475 

mismatched with those in the summary statistics (same rsID but different chromosome or 476 

positions) were excluded. We used lassosum v4.0.548 to construct the PGS. The R squared 477 

of the model including the PGS regressed on rank-based inverse normal transformed BMI 478 

and adjusted for sex, age and age squared and the first 10 PCs as covariates was 11%.  479 

 480 

Cell lines and routine cell culture   481 

 482 

The KOLF2.1J human-induced pluripotent stem cell line and its derivatives49 were 483 

maintained on Geltrex (Thermo Fisher Scientific A1413202) coated plates in supplemented 484 

StemFlex media (Thermo Fisher Scientific A3349401) with daily medium changes. For 485 

passaging, the cells were washed with PBS and treated with TrypLE Express (Gibco, 486 

12604021) at 37℃ for 3 min. The cells were re-suspended in StemFlex media supplemented 487 
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with 10 μM ROCK Inhibitor Y-27632 dihydrochloride (Stemcell Technologies, 72304). ROCK 488 

inhibitor was removed the following day with growth medium without the Y-27632. Unless 489 

otherwise stated, cells were split at a 1:5 ratio. The absence of mycoplasma was confirmed 490 

using an EZ-PCR Mycoplasma Test Kit (Biological Industries, 20-700-20) following the 491 

manufacturer's instructions.  492 

 493 

CRISPR-Cas9-mediated targeting of BSN  494 

 495 

Two different small guide RNAs (sgRNA) with high predicted on-target and low predicted off-496 

target activity were designed using CRISPick 497 

(https://portals.broadinstitute.org/gppx/crispick/public). For the production of sgRNAs, a 120 498 

nucleotide oligo (Integrated DNA Technologies Inc.) including the SP6 promoter, sgRNA 499 

sequences, and scaffold region were used as a template for synthesis by in vitro 500 

transcription using the MEGAscript SP6 kit (Thermo Fisher, AM1330) as previously 501 

described50. The resulting sgRNAs were purified using the E.Z.N.A miRNA purification kit 502 

(Omega Bio-tek, R7034-01), eluted in RNase-free water, and stored at -80℃. Since sgRNAs 503 

vary in their efficacy, the relative cutting efficiencies of the two sgRNAs were tested in in vitro 504 

cleavage assays as previously described50. We selected the sgRNAs that showed activity at 505 

the lowest Cas9 concentration for transfection into hPSC cells. Single-stranded 506 

oligodeoxynucleotides (ssODN) templates (100bp) were constructed by IDT containing 507 

target mutations in the middle and silent mutations within PAM sites.  All sequences of the 508 

primers, sgRNA, ssODN donors used in the study are listed in (Table S15). 509 

 510 

CRISPR-Cas9 ribonucleoprotein (RNP) complex-mediated editing in hESCs 511 

 512 

To genetically edit the KOLF2.1J cells by homology-directed repair (HDR)51,52, 3 μg purified 513 

sgRNA was mixed with 4 μg of recombinant Cas9 nuclease (IDT 1081060) for 45 min at 514 

room temperature to form stable ribonucleoprotein (RNP) complexes. The complex together 515 

with 1μl of 100 μM ssODN was then transferred to a 20μl single-cell suspension of 2 × 105  516 

hESCs in P3 nucleofection solution and electroporated using Amaxa 4D-Nucleofector™ 517 

(Lonza) with program CA137. Transfected cells were seeded onto Geltrex-coated 24 well 518 

plates containing a pre-warmed StemFlex medium containing Revitacell (100x, Gibco 519 

A2644501) and Penicillin/Streptavidin (ThermoFisher Scientific, 15140-122). HDR enhancer 520 

(IDT 1081072) was added to the cells at a 30μM final concentration for each well. The 521 

following day medium was changed to growth medium without Pen/Strep and Revitacell. To 522 

increase HDR efficiency, cells were cultured under cold shock conditions (32°C at 5% CO2 in 523 

air atmosphere) for 48hr post transfection. Cells were given approximately 5-6 days to 524 
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recover before single cells were then distributed into multiple Geltrex (1:40)-coated 96 well 525 

plates by an Aria-Fusion sorter with a 100 μm nozzle. After ~2 weeks, viable clonally-derived 526 

colonies were consolidated into duplicate 96 well plates to allow parallel cell 527 

cryopreservation and genomic DNA extraction as previously described50,52.  528 

 529 

Generation and sequencing of pooled amplicons 530 

 531 

Genomic DNA (gDNA) was extracted using HotShot buffer as previously described50. The 532 

target regions were amplified from gDNA using locus-specific primers to generate amplicons 533 

approximately 150-200 bp in length. These “first-round” primers contained universal Fluidigm 534 

linker sequences at their 5’-end with the following sequences: Forward primer: 5’- 535 

acactgacgacatggttctaca -3’, Reverse primer: 5’- tacggtagcagagacttggtct-3’. Specifically, 20 μl 536 

PCR reactions were set up in 96 well plates using 0.5U Phusion Hot Start II High-Fidelity 537 

DNA Polymerase (ThermoFisher Scientific, F-549L), 2 μl of extracted gDNA as template, 2 538 

μl 5x GC buffer, 0.2 mM dNTPs, 2μM primers, and 3% DMSO, and run on the following 539 

programme: 98°C 30sec, followed by 24 cycles of (95°C 10 sec, 72°C 20 sec/ decreased by 540 

0.5°C per cycle,  72°C 15 sec) than 12 cycles of (98°C 10sec, 60°C 30 sec, 72°C 15 sec) 541 

and 72°C 5 min. In the second round of PCR (indexing PCR), Fluidigm barcoding primers 542 

were attached to the amplicons to uniquely identify each clone. 2 μl linker PCR product 543 

diluted 1:10 was transferred to another 96-well PCR plate to perform this indexing PCR in 10 544 

μl reactions containing 0.8 μM of Fluidigm barcoding primers, 2 μl 10x GC buffer, 0.2 mM 545 

dNTPs 3% DMSO and 0.5U Phusion Hot Start II polymerase. The PCR programme was 546 

95°C 2 min, 16 cycles of (95°C 20 sec, 60°C 20 sec, 72°C 25 sec), 72°C 3 min. For 547 

sequencing library preparation, barcoded PCR products were combined in equal proportion 548 

based on estimation of band intensity on a 2% agarose gel, and the combined pool of PCR 549 

products was purified in a single tube using Ampure XP beads (Invitrogen 123.21D) at 1:1 550 

(V/V) to the pooled sample and eluted in 25 μl of water according to the manufacturer’s 551 

instructions. Library purity was confirmed by nanodrop, and final library concentration was 552 

measured using the Agilent Bioanalyzer (High Sensitivity Kit, Agilent 5067-4626) and diluted 553 

to 20 nM. Pooled libraries could be combined with other library pools adjusted to 20 nM, and 554 

the resulting “superpool” volume was adjusted to a final volume of 20 μl before sequencing 555 

which is performed by the Genomics Core, Cancer Research UK Cambridge Institute. 556 

GenEditID platform52 was used for identification of the BSN P399X heterozygous and wild 557 

type (WT) clones.  558 

 559 

 560 

 561 
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Hypothalamic neuron differentiation protocol 562 

 563 

Gene edited BSN P399X heterozygous and WT clones were differentiated into 564 

hypothalamic-like neurons as previously described53,54. Briefly, cells were cultured overnight 565 

on 10cm plate Geltrex coated plates (9.5 x105 cells/well for 6-well plates) in StemflexTM with 566 

10 μM ROCK inhibitor. Next day, neuroectoderm differentiation was initiated by dual SMAD 567 

inhibition using XAV939 (Stemgent 04-1946), LDN 193289 (Stemgent 04-0074) and SB 568 

431542 (Sigma Aldrich S4317) and Wnt signaling inhibition using XAV939 (Stemgent 04-569 

1946) in an in-house neural differentiation N2B27 medium54. From day 2 to day 7, cells were 570 

directed ‘towards ventral diencephalon’ with Sonic hedgehog activation, by the addition of 571 

Smoothened agonist SAG (1μM Thermo Fisher Scientific 56-666) and purmorphamine 572 

(PMC, 1 μM Thermo Fisher Scientific 54-022), with SMAD and Wnt inhibition molecules 573 

gradually replaced with N2 B27 medium changed every 2 days. At Day 8, the cells were 574 

switched into N2B27 with 5 μM DAPT (Sigma Aldrich D5942) to exit cell cycle. On Day 14, 575 

the cells were harvested with TrypLETM supplemented with papain (Worthington LK003176) 576 

and re-plated onto laminin–coated 6-well plates at a density of 3x106 cells per well in the 577 

presence of maturation medium containing brain-derived neurotrophic factor BDNF 578 

(10ng/ml, Sigma) containing N2B27.  On day 16 media was changed to Synaptojuice 1 579 

(N2B27, 10ng/ml BDNF, 2 μM PD0332991 (Sigma Aldrich, PZ0199), 5 μM DAPT, 370 μM 580 

CaCl2 (Sigma Aldrich, 21115), 1 μM LM22A4 (Tocris, 4607), 2 μM CHIR99021 (Cell 581 

Guidance Systems, SM13), 300 μM GABA (Tocris, 0344), 10 μM NKH447 (Sigma Aldrich, 582 

N3290)). Cells were maintained in Synaptojuice 1 for a week before being changed to 583 

Synaptojuice 2 (N2B27, 10ng/ml BDNF, 2 μM, 370 μM CaCl2 1 μM LM22A4, 2 μM 584 

CHIR99021). Cells were then maintained in Synaptojuice 2 until day 36, with media renewal 585 

every second day throughout the differentiation and maturation period. 586 

 587 

Single nucleus RNA-sequencing 588 

 589 

On day 36, cells were dissociated using TrypLE™ and papain mixture, pelleted, and nuclei 590 

were isolated following a 10x Genomics standardised protocol for single nucleus RNA 591 

Sequencing (NucSeq) as previously reported55. Sequencing libraries for the 6 (3 x wild type 592 

and 3 x BSN P399X Het) single-nuclei suspension samples were generated using 10X 593 

Genomics Chromium Single-Cell 3′ Reagent kits (Pleasanton, CA, USA, version 3) 594 

according to the standardised protocol. Briefly, nuclear suspensions were loaded onto the 595 

chromium chip along with gel beads, partitioning oil, and master mix to generate GEMs 596 

containing free RNA. RNA from lysed nuclei was reverse transcribed and cDNA was PCR 597 

amplified for 19 cycles. The amplified cDNA was used to generate a barcoded 3′ library 598 
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according to the manufacturer's protocol, and paired-end sequencing was performed using 599 

an Illumina NovaSeq 6000 (San Diego, CA, USA, read 1: 28 bp and read 2: 91 bp). Library 600 

preparation and sequencing was performed by the Genomics Core, Cancer Research UK 601 

Cambridge Institute. 602 

 603 

Single-cell clustering and differential gene expression analysis.  604 

 605 

For the 10X generated NucSeq datasets, Cellranger Version 6.0.1 was used to map 606 

sequence reads to the human genome GRCh38 and perform the UMI and gene-level counts 607 

against Ensembl gene model V100. The raw count matrices generated by the software were 608 

then used for downstream analyses. A downstream analysis on the raw count matrices was 609 

performed using the Seurat package version 4.0.3.56. Nuclei expressing less than 500 610 

features, or less than 800 transcripts were removed as low-quality reads. Nuclei with more 611 

than 10000 different features were removed as these were likely doublets. Any nuclei 612 

expressing more than 5% mitochondrial RNA were excluded from the analysis. The 613 

SCTransform package was used for normalization and variance stabilization of the data, 614 

using regularized negative binomial regression57. The data was integrated prior to PCA, 615 

followed by unsupervised clustering analysis using the Louvain algorithm and Uniform 616 

Manifold Approximation and Projection (UMAP) dimension reduction. Marker genes for each 617 

cluster were identified using Wilcoxon's rank-sum test and receiver-operating curve (ROC) 618 

analyses. Adjustment of p-values was performed using Bonferroni correction based on the 619 

total number of genes in the dataset. Clusters with a high expression of a conventional 620 

neuronal marker RBFOX3 were separated into a new object and PCA, followed by 621 

unsupervised clustering analysis using the Louvain algorithm and Uniform Manifold 622 

Approximation and Projection (UMAP) dimension reduction was repeated. After that 623 

differential expression of genes between nuclei from the wild type and BSN P399X Het 624 

nuclei within each cluster was analysed using Negative Binomial GLM fitting and Wald 625 

statistics with the help of the DESeq2 package58. The p-values attained by the Wald test 626 

were corrected for multiple testing using the Benjamini and Hochberg method to generate 627 

adjusted p-values. Genes with a Log2FC of <-1 or >1 and with a p-value adjusted < 0.05 628 

were selected for performing pathway analysis. The Metascape59 pathway analysis was 629 

used to identify pathways that were either upregulated or downregulated between the wild 630 

type and BSN P399X Het nuclei. 631 

 632 

 633 
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