
  Page 1 of 26 

Prediction models for post-discharge mortality among under-five 
children with suspected sepsis in Uganda: A multicohort analysis  
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Abstract 

Background: In many low-income countries, more than five percent of hospitalized children die 

following hospital discharge. The identification of those at risk has limited progress to improve 

outcomes. We aimed to develop algorithms to predict post-discharge mortality among children 

admitted with suspected sepsis. 

Methods: Four prospective cohort studies were conducted at six hospitals in Uganda between 

2012 and 2021. Death occurring within six months of discharge was the primary outcome. 

Separate models were developed for children 0-6 months of age and for those 6-60 months of 

age, based on candidate predictors collected at admission. Within each age group, three models 

were derived, each with a maximum of eight variables based on variable importance.  Deriving 

parsimonious models with different sets of predictors was prioritized to improve usability and 

support implementation in settings where some data elements are unavailable. All models were 

internally validated using 10-fold cross validation. 

Findings: 8,810 children were prospectively enrolled, of whom 470 died in hospital and 161 

(1·9%) were lost to follow-up; 257 (7·7%) and 233 (4·8%) post-discharge deaths occurred in the 

0-6-month and 6-60-month age groups, respectively. The primary models had an area under the 

receiver operating characteristic curve (AUROC) of 0·77 (95%CI 0·74-0·80) for 0-6-month-olds 

and 0·75 (95%CI 0·72-0·79) for 6-60-month-olds; mean AUROCs among the 10 cross-validation 

folds were 0·75 and 0·73, respectively. Calibration across risk strata were good with Brier scores 

of 0·07 and 0·04, respectively. The most important variables included anthropometry and oxygen 

saturation. Additional variables included duration of illness, jaundice-age interaction, and a 

bulging fontanelle among 0-6-month-olds; and prior admissions, coma score, temperature, age-

respiratory rate interaction, and HIV status among 6-60-month-olds.  
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Interpretation: Simple prediction models at admission with suspected sepsis can identify 

children at risk of post-discharge mortality. Further external validation is recommended for 

different contexts. Models can be integrated into existing processes to improve peri-discharge 

care as children transition from the hospital to the community.  

Funding: Grand Challenges Canada (#TTS-1809-1939), Thrasher Research Fund (#13878), BC 

Children’s Hospital Foundation, and Mining4Life. 
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Introduction 

Morbidity and mortality secondary to sepsis disproportionately affect children, especially those 

in low- and middle-income countries, where over 85% of global cases and deaths occur.1 Lower 

income regions are plagued by poorly resilient health systems, widespread socio-economic 

deprivation and unique vulnerabilities such as malnutrition. In this context, reducing the overall 

burden of sepsis requires a multi-pronged strategy that addresses all three periods along the 

sepsis care continuum – pre-facility, facility and post-facility.2 Of these aspects, post-facility 

issues have been largely neglected in research, policy, and practice.3 

Robust epidemiological data for paediatric post-discharge mortality in the context of sepsis and 

severe infection have been limited. A growing evidence base clearly points to a significant 

burden of post-discharge mortality, which usually accounts for as many deaths as the acute 

hospital phase of illness.4,5 While comorbid conditions such as malnutrition and anaemia have 

been clearly linked to risk, other factors such as illness severity (both at admission and 

discharge), prior hospitalizations, and underlying social vulnerability, have also been 

independently associated with poor post-discharge outcomes.6 However, we lack simple data-

driven methods to identify those at highest risk of mortality. 

Current epidemiological evidence has clearly demonstrated critical gaps in care following 

discharge.7 Most post-discharge deaths occur at home, rather than during a subsequent 

readmission, indicating poor health utilization among the most vulnerable. Effective health care 

utilization is often hampered by poverty, social dynamics within the community and the family, 

as well as poorly linked and unresponsive health facilities.8–10 The provision of quality care 

during and after discharge has also been shown to be a significant challenge in many facilities, at 

least in part due to severely strained human and material resources. 
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Thus, effective solutions to improving the transition of care from hospital to home within poorly 

resourced health systems must be child centred and focused on the identification of the most 

vulnerable children.11 In this study, we aim to update the development and validation of 

previously derived clinical prediction models that identify children, admitted with suspected 

sepsis, who are at risk of post-discharge mortality.12 
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Methods 

Study design and approvals 

Four independently funded, prospective observational cohort studies were conducted with a 

primary objective of generating data for model building: two were among children less than six 

months of age and two were among children 6-60 months of age.  

These studies were approved by the institutional review boards of the Mbarara University of 

Science and Technology in Mbarara, Uganda (No. 15/10-16) and the University of British 

Columbia in Vancouver, Canada (H16-02679). This study was also approved by the Uganda 

National Council for Science and Technology (HS 2207). This manuscript adheres to the 

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis 

(TRIPOD) statement.13  

Study setting and population 

Subjects were enrolled from six hospitals in Uganda: the Mbarara Regional Referral Hospital 

(Southwestern Uganda), the Holy Innocents Children’s Hospital (Southwestern Uganda), the 

Uganda Ibanda Martyrs Hospital (Western Uganda), the Masaka Regional Referral Hospital 

(Central Uganda), the Villa Maria Hospital (Central Uganda) and the Jinja Regional Referral 

Hospital (Eastern Uganda) (see Supplementary Material S1 and Supplementary Table S1.1). 

These facilities serve the catchments of 30 districts with a total population of approximately 8·2 

million individuals, including approximately 1·4 million children under five years of age.14 With 

a mix of urban and rural participants, this reflects a representative sampling of the Ugandan 

paediatric population.  

Within each age cohort, all had identical eligibility criteria. All children who were admitted with 

suspected sepsis were eligible for enrolment. Suspected sepsis was defined as children who were 
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admitted with a proven or suspected infection (as determined by the treating medical team). We 

have previously demonstrated that 90% of children enrolled using these criteria meet the 

international paediatric sepsis consensus conference (IPSCC) definition.15 The IPSCC defines 

sepsis as the presence of the systemic inflammatory response syndrome alongside a suspected or 

proven infection.   

Enrolment in the first cohort occurred between 13 March 2012 and 13 January 2014 and was 

used in an earlier report of a predictive model for post-discharge mortality for children 6-60 

months of age.12 The second and third cohorts, enrolled for this present analysis (primary study 

enrolment), were defined by their age ranges (0-6 months and 6-60 months) and have also been 

previously reported:5 0-6-month-olds were enrolled between 11 January 2018 and 30 March 

2020; 6-60-month-olds were enrolled between 13 July 2017 and 02 July 2019. The fourth cohort 

was enrolled only among children 0-6 months of age, for the purpose of understanding how the 

early period of the COVID-19 epidemic impacted post-discharge outcomes; this cohort enrolled 

children from 31 March 2020 until 05 August 2021. Protocols and procedures were largely 

overlapping, and the same group of research staff were involved in data collection during all four 

periods of enrolment.16  

Data collection procedures 

All data collection tools are available through the Smart Discharges study Dataverse.16 Data 

collection procedures have been previously described (see also Supplementary Material S1).5,12 

Briefly, trained study nurses collected clinical, social, and demographic data from consented 

participants at the point of hospital admission. Though largely overlapping between the two age 

groups, some variables were specific to children less than 6 months. These variables were the 

candidate predictors for our models and were selected based on clinical and contextual 
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knowledge of possible factors relating to post-discharge mortality. We used a modified Delphi 

process to identify the most promising candidate variables to be collected and used for model 

development in each age group.17,18  

At discharge, study nurses recorded discharge status (died, discharged, discharged against 

medical advice, referred) and discharge diagnosis. A field officer contacted enrolled children by 

phone at two and four months after discharge, and with an in-person visit at six months to 

determine mortality status and, if applicable, date of death. All data were collected using 

encrypted study tablets and then uploaded to a Research Electronic Data Capture (REDCap) 

database hosted at the BC Children’s Hospital Research Institute (Vancouver, Canada).19,20  

Model development 

Outcome definition and ascertainment  

The primary outcome of the prediction model was post-discharge mortality within six months of 

discharge.  

Variable selection 

Recognising the challenges of implementing large prediction models in resource constrained 

settings, we determined a priori to develop three models for each age group (0-6-month-olds and 

6-60-month-olds) and restricted each model to eight variables drawing from a different pool of 

available predictors: one model focused solely on commonly-available clinical variables; one 

model focused solely on commonly-available clinical and social variables; and one model that 

used any of the candidate predictor variables (Figure 1). A feature of our modelling approach 

(elastic net regression) is that the final model size could not be pre-specified, often resulting in 

large models. Therefore, we conducted two rounds of variable selection to achieve the desired 

model size.  
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To prioritize maximal parsimony, the first round of variable selection reduced the list of all 

possible candidate predictors to two smaller subsets: one subset including only the most relevant 

clinical variables; and a second subset including only the most relevant clinical and social 

variables. The variables included in these subsets were determined a priori by the investigators, 

based primarily on clinical significance and ease of measurement in low-resource settings. These 

subsets were used to derive the intermediary models that were either clinically-focused or 

clinically- and socially-focused; the full list of candidate predictor variables for each age group 

was also used to derive intermediary models that used any of the available variables. The full 

lists of candidate predictors used during the first round of variable selection in these 

intermediary models is given in Supplementary Tables S1.2 and S1.3.  

The second round of variable selection involved calculating and ranking the importance of 

variables from each of the intermediary models: variable importance was calculated as the 

weighted sums of the absolute regression coefficients.21 The top eight unique variables (e.g., 

temperature and its quadratic term were considered as a single unique variable) were selected 

based on the average rank of 10-fold cross-validation of the intermediary models. If an 

interaction term was ranked as one of the top eight variables, then both terms in the interaction 

were included. The second round of variable selection  produced a family of final models to 

predict mortality within six months post-discharge (M6PD) that used only the eight top-ranked 

variables in each age group: that is, models using only clinical variables, denoted by M6PD-C0-6 

for the 0-6-month age group and M6PD-C6-60 for the 6-60-month age group; models using both 

clinical and social variables, denoted by M6PD-CS0-6 and M6PD-CS6-60; and models using any 

of the available predictor variables, denoted by M6PD-A0-6 and M6PD-A6-60 (Figure 1).  

Adjustment and transformation of candidate predictors 
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All continuous variables were centred and scaled, and categorical variables converted to 

indicators (i.e. dummy variables). In addition to the raw oxygen saturation (SpO2) measurement, 

we used the transformation for SpO2 proposed by Zhou et al. to improve model prediction and 

calibration.22 Z-scored variables, including body mass index (BMI) z-scores, weight-for-age z-

scores, and weight-for-length z-scores were calculated according to the World Health 

Organization (WHO) Child Growth Standards.23 Dehydration in the 0-6-month age group was 

determined using the WHO assessment criteria for dehydration.24 We included a quadratic term 

for temperature since both high and low temperatures may increase risk. Other nonlinearities 

were not considered due to risk of overfitting with the limited number of available events per 

variable.  

Statistical analysis  

Sample size  

The sample size for the primary study enrolment was determined to accomplish three primary 

aims. First, to explore the epidemiology of post-discharge mortality, which has been previously 

reported.5 Second, to develop prediction models. Third to act as a control period for a later 

interventional phase. For the present analysis, we determined the sample size required to develop 

a prediction model based on criteria proposed by Riley et al., 2020.25 For binary outcomes, three 

criteria are recommended based on: 1) reducing overfitting (caused by small sample sizes or too 

many candidate predictors relative to the sample size or number of events), defined by an 

expected shrinkage of predictor effects by ≤10%; 2) a small absolute difference of 0.05 in the 

apparent and adjusted Nagelkerke’s R2 value of the model, whereby the apparent R2 reflects the 

model performance in the same way that was used to develop the model and the adjusted R2 is an 

approximately unbiased estimate of the model fit;26 and 3) estimating the outcome proportion to 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2023. ; https://doi.org/10.1101/2023.06.14.23291343doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.14.23291343
http://creativecommons.org/licenses/by/4.0/


  Page 11 of 26 

within ±5% precision. The estimated sample size required to satisfy the three criteria was 2,117 

and 1,551 for the 0-6-month and 6-60-month cohorts, respectively.  

We also created post hoc learning curves of the sample size used to develop the model versus the 

area under the receiver operating characteristic curve (AUROC) when tested against a 20% hold-

out set using the full set of variable predictors (Supplementary Figure S2.1).27 This involved 

building models using an increasing subset of the population (up to 80% of the total sample) and 

evaluating their performance against the hold-out set. For the 6-60-month learning curve, we 

started with the initial 1,242 children from 2012-2014,12 followed by the first 258 children 

recruited starting from July 2017 (n=1,500) and thereafter added groups of 500 consecutively 

recruited children until 80% (n=3,864) of the available population was reached. For the 0-6-

month learning curve, we started with the first 500 children recruited starting from January 2018 

and continued to add groups of 500 consecutively recruited children until 80% (n=2,679) of the 

available population was reached.  

The performance of the 6-60-month derivation model increased with increasing sample size up 

to approximately 2,500 children after which the AUROC stabilized. The AUROC for the 0-6-

month derivation model stabilized at approximately 1,000 children. This suggests that increasing 

our sample sizes beyond what we have currently collected would not result in further 

improvement of model performance. 

Statistical methods and tools 

All candidate predictors were summarised with means and standard deviations for continuous 

variables and counts and percentages for categorical variables. Kaplan-Meier survival curves 

were used to report the time to post-discharge death. As the amount of missing data overall and 

on any individual predictor was low, we used single-imputation with K-nearest neighbours 
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imputation to replace missing values.28 Multiple imputation was considered, but not used, as this 

leads to additional complexity in the model building and validation steps.29  

Elastic net regression was used to estimate coefficients for the prediction model.30 In sample 

sizes similar to ours, elastic net has been shown to perform similarly to more data-driven 

machine learning algorithms.31,32 Optimal penalty terms were selected via 10-fold nested cross 

validation across a pre-specified grid of possible values. We developed full variable, 

intermediary, and final models utilizing the subset of variables as described in the previous 

section on model development.  

Internal validation of the models was conducted using 10-fold cross validation of the model 

building process outlined above.33 This process consists of splitting the data into 10 ‘folds’, each 

one consisting of 90% of the original sample. The model is then built on each fold and tested on 

the held-out 10%. For each fold, we estimated the AUROC, the specificity, positive predictive 

value, and negative predictive value, using the probability threshold that gives 80% sensitivity, 

area under the precision recall curve, and Brier score. Internal model performance was assessed 

based on the cross-validated mean of the selected performance metrics. These performance 

metrics were also calculated on the entire dataset without cross-validation. We included 

additional plots for the gain curve, calibration, and the distribution of predicted probabilities 

stratified by mortality.  

All analyses were conducted using R statistical software version 4.2.2 (R Foundation for 

Statistical Computing, Vienna, Austria) with the caret package (version 6.0-93) for model 

building and validation.21,34   
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Results 

During the enrolment periods, a total of 22,166 consecutively admitted children were screened 

and 8,810 were enrolled (Figure 2). Among 0-6-month-olds (n=3,665), a total of 3,424 (93·4%) 

infants survived to discharge. Complete 6-month outcome data were available for 3,349 (97·8%) 

of these children, which formed the full dataset for model derivation and validation in this age 

group. Among 6-60-month-olds (n=5,145), a total of 4,916 (95·5%) children survived to 

discharge. Complete 6-month outcome data were available for 4,830 (98·2%) of these children, 

which formed the full dataset for model derivation and validation in this age group.  

Mortality within 6 months of discharge occurred in 257 (7·7%) of those in the 0-6-month age 

group, with median (interquartile range [IQR]) time to death of 31 (9 – 80) days, and in 233 

(4·8%) of the 6-60-month age group, with time to death of 36 (11 – 105) days (Figure 3). 

Missing data were minimal (Table 1, Table 2).  

Clinical and demographic details of these cohorts have been previously described (see also 

Table 1, Table 2).5,12 The mean ±standard deviation [SD] age was 2·1 ±1·8 months in the 0-6-

month age group and 21·7 ±13·7 months in the 6-60-month age group; 1,884 (56·3%) 0-6-month-

olds were male and 2,670 (55·3%) 6-60-month-olds were male. Poor growth/malnutrition was 

common in both age groups, with 463 (13·8%) 0-6-month-olds and 668 (13·8%) 6-60-month-

olds classified as severely underweight (weight for age z-score <-3) and similar weight-for-age 

z-score distribution in the two groups. Discharge diagnoses made by the clinical team were 

recorded and could be overlapping in the case of multiple diagnoses (Supplementary Table 

S1.4). Most variables considered in the modelling were associated with post-discharge mortality 

(Table 1, Table 2) 
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The intermediary variable models were large (see Supplementary Material S3 – S5). The models 

derived using all potential candidate predictors (intermediary any variable model) included 41 

unique variables in the 0-6-month model and 19 unique variables in the 6-60-month model; 

coefficients, performance metrics, and variable importance are reported in Supplementary 

Material S5. When applied to the entire dataset for each age group, the AUROC was 0·81 

(95%CI 0·79 to 0·84) for 0-6-month model and 0·79 (95%CI 0·77 to 0·82) for the 6-60-month 

model, with average AUROCs of 0·77 (range 0·69 to 0·87) and 0·76 (range 0·71 to 0·81) across 

the 10 cross-validations, respectively. Calibration was good in both age groups at low predicted 

probabilities, with a Brier score of 0·07 (range 0·06 to 0·07) for the 0-6-month model and 0·04 

(range 0·04 to 0·05) for the 6-60-month models. Calibration decreased at higher predicted 

probabilities, although there were almost no individuals with probabilities exceeding 40%. In 

both age groups, mid-upper arm circumference (MUAC) was identified as the variable with the 

highest importance.  

A summary of all final models is reported in Table 3 and Table 4, and in detail in the 

Supplementary Material S6 – S8, which includes all model terms, their coefficients and variable 

importance plots outlining the relative importance of all coefficients in each of the models. 

The M6PD-C0-6 model, using only simple clinical variables, included weight-for-age z-score 

(mean rank 1·4, selection frequency 10), MUAC (mean rank 1·6, selection frequency 10), 

feeding status (mean rank 3·4, selection frequency 10), SpO2 (mean rank 5·8, selection frequency 

9), duration of illness (mean rank 6·2, selection frequency 9), age × jaundice (mean rank 7·8, 

selection frequency 7), and bulging fontanelle (mean rank 8·3, selection frequency 8). This 

model had an AUROC of 0·77 (95%CI 0·74 to 0·80) when applied to the entire 0-6-month 

dataset (Figure 4), while the average AUROC across the internal 10 cross-validations was 0·75 
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(range 0·63 to 0·85). Setting the sensitivity to 80%, the corresponding probability threshold was 

0·058; at this threshold, the positive and negative predictive values were 14% and 97% 

respectively. Calibration at low predicted probabilities was good, with a Brier score of 0·07. 

Calibration at probabilities beyond 30-40% was poor, but sample sizes were very small at this 

range.  

The M6PD-CS0-6 model, using social and clinical variables, was nearly identical in performance 

to M6PD-C0-6; the variables were largely overlapping with only fontanelle status replaced by 

travel time required to reach hospital (Table 3; Supplementary Material S7). The M6PD-A0-6 

model that used any available variable, was identical to M6PD-CS0-6 (Table 3; Supplementary 

Material S8).  

The M6PD-C6-60 model, using only clinical predictors, included nine variables (the 8th best 

performing variable included an interaction with a new variable; Supplementary Material S3). 

These variables included MUAC (mean rank 1, selection frequency 10), SpO2 (mean rank 2·7, 

selection frequency 10), weight-for-age z-score (mean rank 2·8, selection frequency 10), time 

since prior admission (mean rank 4·7, selection frequency 10), abnormal coma score (mean rank 

5·8, selection frequency 9), temperature (mean rank 6·4, selection frequency 9), HIV status 

(mean rank 6·5, selection frequency 9) and age × respiratory rate (mean rank 9·1, selection 

frequency 2). This model had an AUROC of 0·74 (95% CI 0·72 to 0·79) when applied to the 

entire 6-60-month dataset (Figure 5), with an average AUROC of 0·73 (range 0·67 to 0·77) 

across the 10 cross-validations (Table 4; Supplementary Material S6). Setting sensitivity to 80%, 

the corresponding probability threshold was 0·036; at this threshold, the positive and negative 

predictive values were 0·08 and 0·98, respectively. Calibration across risk strata was good with a 

Brier score of 0·04.  
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The M6PD-CS6-60 model, which used clinical and social variables, performed nearly the same as 

M6PD-C6-60, with only home water source and water disinfection practices replacing coma score 

(Table 4; Supplementary Material S7). M6PD-A6-60 was similar to M6PD-CS6-60, except that 

water disinfection practices was replaced by haemoglobin; performance metrics were nearly 

identical (Table 4; Supplementary material S8). 
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Discussion 

Using four large, objective driven, prospective cohorts of under-5 children admitted with 

suspected sepsis, we derived and internally validated prediction models for post-discharge 

mortality using only admission data. The performance of these models to predict mortality out to 

6 months post-discharge was good, suggesting their potential utility to link individual risk to the 

interventional intensity of a program to improve post-discharge outcomes among children.35 

Data-driven, child-centred approaches to post-discharge care have been strongly advocated for 

recently.4,36,37 Utilizing data from multiple sites, captured over an 8-year timespan, we created 

robust, cross-validated models that should spur focus on external validation outside of a Ugandan 

context. 

These results point not only to the high rates of post-discharge mortality, which have been 

previously demonstrated,4,5 but also to the fact that those at highest risk can be reasonably 

identified using varied sets of simple and easy-to-collect variables. The development of multiple 

simplified models within each cohort may help alleviate the logistical barriers to implementation 

in different contexts. The required predictors are often routinely collected in similarly austere 

settings where such models could provide significant benefit. Notably, we observed similar 

between-model performance (within each cohort) and minimal reduction in performance in the 

intermediary models compared to the full models, which would themselves be logistically 

challenging to implement. Collinearity within the large sets of predictors may have accounted for 

this minimal loss in performance. Though our models do not accommodate missing data for 

predictor variables, the development of a family of models, varying in the number and identity of 

predictors, and producing similar performance, is possible, and could accommodate nearly every 

conceivable individual prediction scenario. 
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In the absence of an effective intervention, risk prediction has limited utility. An understanding 

of discharge as a dynamic process encompassing the time between admission and re-integration 

into community care is integral to our decision to focus on admission factors in model 

development. Early identification allows post-discharge risk to be incorporated into discharge 

planning from the earliest stages of admission. Prior work on understanding barriers to paediatric 

discharges have noted significant challenges related to preparing caregivers for discharge and the 

transition home, suggesting that early planning will be an essential component of effective peri-

discharge care.38 

Choosing risk probability thresholds to classify a binary outcome, such as post-discharge 

mortality, is dependent on many factors, including availability of human resources, baseline risk, 

risk tolerance, and impact on patients/caregivers. Though the risk classification thresholds 

chosen in this study may prove useful in some settings, the choice of both the threshold and the 

number of thresholds must be informed by the local context and constitutes a critically important 

consideration for the deployment of this, or any other, risk model.39  

Although internal validation can justify the use of models within the region from which they are 

derived, external validation using different data sources (ideally several) for regions that differ 

from those where the models were derived is also important.40 We consider such validation 

exercises a high priority, using both existing and future data.4 To this end, we have several 

prospective studies currently underway, and plan to establish data sharing agreements with other 

collaborators to enable use of data collected by others. However, even under the most optimistic 

scenario not every conceivable implementation region for any given model will be subjected to 

external validation. A more pragmatic and relevant approach is therefore the development of a 

region-specific model updating process, integrated over the life-course of the model. Calibration 
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drift due to secular trends, the measured impact of the model itself, and peculiarities of each 

individual site are key considerations in model deployment.41 Digitization of the healthcare 

system will aid in establishing these processes.42  

As health systems in low-income country settings increasingly move towards the use of 

electronic health records, the incorporation of algorithms to augment care decisions has 

tremendous potential to both improve outcomes and to facilitate the adoption of these digital 

systems.43,44 Use of routinely collected variables can allow models to run in the absence of any 

additional user input and thus automatically prompt follow-up guidance to both the medical team 

and the patient, encouraging adoption and linkage to interventional programs. Furthermore, use 

of such systems can also report baseline risk data and, when linked to follow-up programs, data 

on readmission and mortality to national-level health management information systems, such as 

DHIS2.45 These data can be used in model calibration and updating, ensuring site-specific 

validity.   

This study is subject to several limitations. While our models performed reasonably well when 

assessed with cross validation, it remains to be seen how well they perform under external 

validation. Demonstrating good external performance will be helpful to encourage adoption, and 

will occur in due course. Second, these models were developed in the absence of a proven 

program to utilize a risk-based approach to care, limiting their current utility. While merely 

knowledge of individual risk can change behaviour and may influence the provision of discharge 

and post-discharge care, risk-informed approaches to follow-up care are also currently under 

investigation and will be reported once complete.46 Third, calibration was good at most observed 

risks but there were very few patients with predicted risks greater than 40-50% so calibration 

beyond these risk probabilities could not be measured adequately. Regardless, our models should 
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perform well for implementation purposes using the optimal threshold cut-offs identified. 

Finally, the added value of these models may be questioned in the light of previously developed 

and published models.46–48 However, our models were based on purposively built cohorts, with a 

priori stakeholder engagement regarding relevant variables and their measurement timing. 

Furthermore, these models were uniquely developed within the clinical rubric of suspected 

sepsis, which is increasingly recognized as a global health priority. 

Post-discharge mortality in the context of suspected sepsis occurs frequently, but those at highest 

risk can be identified using simple clinical criteria, measured at admission. Though future 

external validation is required, the use of these models within the context where they were 

collected can begin to transform discharge and post-discharge care. 
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Table 1. Demographics and univariable odds ratios for the risk of post-discharge infant mortality.  

 0-6 month (n = 3349) 6-60 month (n = 4830) 

Variable n (%)/Mean (SD) n Missing (%) OR (95%CI) P-value n (%)/Mean (SD) n Missing (%) OR (95%CI) P-value 

A) Demographics 

Sex, male 1884 (56·3%) 0 (0%) 1·18 (0·91, 1·53) 0·218 2670 (55·3%) 0 (0%) 0·9 (0·69, 1·17) 0·433 

Age, months 2·1 (1·8) 0 (0%) 1·05 (0·98, 1·12) 0·188 21·7 (13·7) 1 (0·02%) 1 (0·99, 1·01) 0·471 

B) Admission Anthropometry 

BMI Z-scores -1 (2·2) 5 (0·15%) 0·78 (0·74, 0·82) <0·001 -1 (9·8) 32 (0·66%) 0·86 (0·81, 0·91) <0·001 

< -3  565 (16·9%)  4·31 (3·24, 5·75) <0·001 775 (16%)  2·31 (1·68, 3·16) <0·001 

-3 to -2 399 (11·9%)  2·36 (1·61, 3·40) <0·001 684 (14·2%)  1·84 (1·28, 2·60) 0·001 

> -2 2380 (71·1%)  ref. <0·001 3339 (69·1%)  ref. <0·001 

MUAC, mm * 113·7 (17·7) 3 (0·09%) 0·96 (0·96, 0·97) <0·001 139·2 (16·1) 18 (0·37%) 0·96 (0·95, 0·97) <0·001 

<110 / <115 1304 (38·9%)  3·81 (2·7, 5·51) <0·001 321 (6·6%)  6·66 (4·76, 9·25) <0·001 

110-120 / 115-125 942 (28·1%)  1·58 (1·04, 2·42) 0·033 514 (10·6%)  2·77 (1·92, 3·92) <0·001 

 >120 / >125 1100 (32·8%)  ref. <0·001 3977 (82·3%)  ref. <0·001 

Weight for age Z-scores -1·1 (2) 2 (0·06%) 0·71 (0·67, 0·75) <0·001 -1·3 (1·7) 12 (0·25%) 0·71 (0·66, 0·76) <0·001 

< -3  463 (13·8%)  6·15 (4·58, 8·26) <0·001 668 (13·8%)  4·58 (3·40, 6·17) <0·001 

 -3 to -2 356 (10·6%)  3·61 (2·51, 5·14) <0·001 723 (15%)  1·77 (1·20, 2·55) 0·003 

> -2 2528 (75·5%)  ref. <0·001 3427 (71%)  ref. <0·001 

Weight for length Z-scores -1 (2·6) 5 (0·15%) 0·87 (0·84, 0·91) <0·001 -1·2 (2) 30 (0·62%) 0·83 (0·78, 0·89) <0·001 

< -3  627 (18·7%)  2·52 (1·88, 3·35) <0·001 725 (15%)  2·52 (1·83, 3·45) <0·001 

 -3 to -2 365 (10·9%)  1·73 (1·16, 2·52) 0·006 718 (14·9%)  1·86 (1·30, 2·61) <0·001 

 > -2 2352 (70·2%)  ref. <0·001 3357 (69·5%)  ref. <0·001 

C) Admission Clinical Assessment 

How long ago since last admission
 

 20 (0·6%)    20 (0·41%)   

Never 2848 (85%)  ref. <0·001 2647 (54·8%)  ref. <0·001 

< 7days 122 (3·6%)  2·04 (1·12, 3·47) 0·013 191 (4%)  2·37 (1·34, 3·94) 0·002 

7 days to <1 month 180 (5·4%)  2·68 (1·71, 4·06) <0·001 400 (8·3%)  2·39 (1·60, 3·52) <0·001 

1 month to <1 year 179 (5·3%)  2·47 (1·56, 3·79) <0·001 1175 (24·3%)  1·42 (1·03, 1·94) 0·031 

≥1 year 0 (0%)    397 (8·2%)  0·50 (0·22, 0·97) 0·06 

SpO2 93·8 (6·8) 9 (0·27%) 0·96 (0·95, 0·98) <0·001 94·2 (6·5) 22 (0·46%) 0·95 (0·94, 0·97) <0·001 

< 90% 598 (17·9%)  1·78 (1·31, 2·41) <0·001 774 (16%)  2·07 (1·49, 2·84) <0·001 

90% to 95% 891 (26·6%)  0·87 (0·62, 1·20) 0·406 1236 (25·6%)  1·15 (0·82, 1·58) 0·404 

> 95% 1851 (55·3%)  ref. <0·001 2798 (57·9%)  ref. <0·001 

Heart rate, beats per minute 149·2 (23·6) 3 (0·09%) 1·00 (0·99, 1·00) 0·276 144·8 (25·5) 3 (0·06%) 1·00 (0·99, 1·00) 0·599 

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted June 16, 2023. 
; 

https://doi.org/10.1101/2023.06.14.23291343
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.06.14.23291343
http://creativecommons.org/licenses/by/4.0/


 0-6 month (n = 3349) 6-60 month (n = 4830) 

Variable n (%)/Mean (SD) n Missing (%) OR (95%CI) P-value n (%)/Mean (SD) n Missing (%) OR (95%CI) P-value 

Respiratory rate, breaths per minute 57·4 (17) 5 (0·15%) 1 (0·99, 1·01) 0·875 48·1 (15·7) 7 (0·14%) 1·01 (1·00, 1·02) 0·003 

Systolic blood pressure 85·1 (16·5) 10 (0·3%) 0·99 (0·99, 1·00) 0·08 95·2 (13·4) 8 (0·17%) 0·99 (0·98, 1·00) 0·028 

Diastolic blood pressure 46·3 (12·8) 10 (0·3%) 0·99 (0·98, 1·00) 0·213 54·4 (11·6) 8 (0·17%) 0·99 (0·98, 1·00) 0·079 

Temperature, °C 37·4 (0·9) 1 (0·03%) 0·90 (0·78, 1·04) 0·167 37·7 (1·2) 3 (0·06%) 0·81 (0·72, 0·91) <0·001 

< 36·5 386 (11·5%)  0·96 (0·62, 1·43) 0·835 505 (10·5%)  1·28 (0·84, 1·89) 0·234 

36·5 to 37·5 1699 (50·7%)  ref. 0·581 1868 (38·7%)  ref. 0·014 

37·6 to 39 1072 (32%)  1·01 (0·76, 1·34) 0·923 1638 (33·9%)  0·82 (0·6, 1·12) 0·222 

> 39 191 (5·7%)  0·65 (0·32, 1·20) 0·202 816 (16·9%)  0·58 (0·37, 0·89) 0·016 

Abnormal BCS score 285 (8·5%) 0 (0%) 2·37 (1·64, 3·34) <0·001 408 (8·4%) 0 (0%) 1·93 (1·30, 2·78) 0·001 

Malaria test positive 324 (9·7%) 1 (0·03%) 0·56 (0·31, 0·92) 0·032 1480 (30·6%) 11 (0·23%) 0·76 (0·56, 1·02) 0·075 

HIV+ 119 (3·6%) 2 (0·06%) 1·37 (0·70, 2·42) 0·317 144 (3%) 22 (0·46%) 3·81 (2·31, 6·00) <0·001 

Haemoglobin, g/dL 13 (3·3) 4 (0·12%) 0·96 (0·92, 1·00) 0·036 10·4 (3·2) 608 (12·59%) 0·88 (0·85, 0·92) <0·001 

No anaemia 2435 (72·7%)  ref. 0·003 1983 (41·1%)  ref. <0·001 

Mild anaemia 788 (23·5%)  1·29 (0·96, 1·72) 0·091 1535 (31·8%)  1·59 (1·15, 2·21) 0·006 

Severe anaemia 122 (3·6%)  2·47 (1·44, 4·04) 0·001 704 (14·6%)  2·67 (1·87, 3·82) <0·001 

D) Maternal and Social Characteristics 

Time it took to reach hospital
 

 0 (0%)    1 (0·02%)   

<30 minutes 806 (24·1%)  ref. <0·001 1015 (21%)  ref. <0·001 

30 minutes to <1 hour 1224 (36·5%)  1·15 (0·77, 1·75) 0·498 1519 (31·4%)  1·67 (1·04, 2·75) 0·037 

≥1 hour 1319 (39·4%)  2·65 (1·86, 3·88) <0·001 2295 (47·5%)  2·89 (1·90, 4·58) <0·001 

Maternal age, years 26·3 (5·7) 50 (1·49%) 1·00 (0·98, 1·02) 0·871 27·9 (6·4) 167 (3·46%) 1·00 (0·98, 1·02) 0·899 

Number of children 2·8 (1·8) 1 (0·03%) 1·01 (0·94, 1·08) 0·87 3·2 (2·1) 3 (0·06%) 1·04 (0·98, 1·10) 0·228 

Had a child who died previously 577 (17·2%) 1 (0·03%) 1·21 (0·87, 1·65) 0·249 1066 (22·1%) 3 (0·06%) 1·27 (0·93, 1·70) 0·123 

Maternal education
 

 16 (0·48%)    49 (1·01%)   

No school 105 (3·1%)  ref. 0·001 334 (6·9%)  ref. <0·001 

≤P3 207 (6·2%)  1·16 (0·57, 2·48) 0·684 345 (7·1%)  1·30 (0·70, 2·43) 0·411 

P4-P7 1327 (39·6%)  0·71 (0·39, 1·41) 0·297 2088 (43·2%)  0·98 (0·61, 1·65) 0·922 

S1-S6 1175 (35·1%)  0·58 (0·32, 1·16) 0·098 1517 (31·4%)  0·61 (0·36, 1·07) 0·073 

Post-Secondary 519 (15·5%)  0·36 (0·18, 0·77) 0·006 497 (10·3%)  0·41 (0·19, 0·85) 0·018 

Maternal HIV  1 (0·03%)    6 (0·12%)   

No 3052 (91·1%)  ref. 0·125 3915 (81·1%)  ref. 0·012 

Yes 246 (7·3%)  1·48 (0·95, 2·24) 0·071 432 (8·9%)  1·63 (1·07, 2·40) 0·016 

Unknown 50 (1·5%)  1·71 (0·65, 3·77) 0·222 477 (9·9%)  1·57 (1·05, 2·29) 0·023 
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 0-6 month (n = 3349) 6-60 month (n = 4830) 

Variable n (%)/Mean (SD) n Missing (%) OR (95%CI) P-value n (%)/Mean (SD) n Missing (%) OR (95%CI) P-value 

Bed net use 
 

 1 (0·03%)    3 (0·06%)   

Never 2809 (83·9%)  0·85 (0·44, 1·57) 0·611 3630 (75·2%)  1·05 (0·64, 1·73) 0·841 

Sometimes 337 (10·1%)  ref. 0·544 631 (13·1%)  ref. 0·443 

Always  202 (6%)  0·80 (0·55, 1·20) 0·262 566 (11·7%)  0·85 (0·59, 1·26) 0·389 

Water source  0 (0%)    3 (0·06%)   

Bore hole 655 (19·6%)  1·72 (1·22, 2·4) 0·002 1042 (21·6%)  2·61 (1·84, 3·72) <0·001 

Fast running water 21 (0·6%)  0·84 (0·05, 4·08) 0·862 515 (10·7%)  1·76 (1·08, 2·80) 0·019 

Municipal water 1630 (48·7%)  ref. <0·001 1981 (41%)  ref. <0·001 

Open source 541 (16·2%)  2·12 (1·51, 2·98) <0·001 558 (11·6%)  1·88 (1·19, 2·93) 0·006 

Protected spring 392 (11·7%)  1·49 (0·97, 2·23) 0·063 590 (12·2%)  2·03 (1·30, 3·11) 0·001 

Slow running water 110 (3·3%)  1·67 (0·80, 3·16) 0·14 141 (2·9%)  1·99 (0·86, 4·03) 0·075 

Boil/disinfect/filter water 2526 (75·4%) 0 (0%) 0·84 (0·64, 1·13) 0·237 3402 (70·4%) 2 (0·04%) 0·51 (0·39, 0·67) <0·001 

E) Discharge Characteristics 

Length of stay (days) 5·6 (4·4) 0 (0%)   5·1 (8·2) 0 (0%)   

Discharge status  2 (0·06%)    0 (0%)   

Referred to higher level of care  164 (4·9%)    101 (2·1%)    

Routine discharge  2810 (83·9%)    4143 (85·8%)    

Unplanned discharge 373 (11·1%)    586 (12·1%)    

For non-binary categorical variables, the p-value for the reference group (labelled ref.) indicates the global p-value. Odds ratios and p-values 

were not calculated for discharge variables.  

Abbreviations: BCS = Blantyre coma scale; BMI = body mass index; HIV+ = human immunodeficiency virus positive; MUAC = mid-upper arm 

circumference; OR = odds ratio; SpO2 = oxygen saturation 

*  MUAC thresholds given for 0-6-month / 6-60-month cohorts
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Table 2. Univariable odds ratios for post-discharge mortality for variables only collected among those 

<6m of age.  

Variable n (%)/Mean (SD) n Missing OR (95%CI) P-value 

Abdominal distension 217 (6·5%) 2 (0·06%) 1·79 (1·15, 2·70) 0·007 

Antenatal visits 4·9 (1) 48 (1·43%) 0·89 (0·78, 1·01) 0·066 

Dehydration, WHO categories  11 (0·33%)   

No dehydration 2844 (84·9%)  ref. <0·001 

Some dehydration 399 (11·9%)  1·64 (1·15, 2·30) 0·005 

Severe dehydration 95 (2·8%)  3·40 (1·96, 5·62) <0·001 

Delivery method, caesarean 497 (14·8%) 4 (0·12%) 0·74 (0·49, 1·08) 0·136 

Duration of present illness  4 (0·12%)   

<48 hours 957 (28·6%)  ref. <0·001 

48 hours to 7 days 60 (1·8%)  1·46 (1·05, 2·06) 0·026 

8 days to 1 month 1985 (59·3%)  3·16 (2·09, 4·80) <0·001 

>1 month 343 (10·2%)  5·13 (2·52, 9·87) <0·001 

Fontanelle 132 (3·9%) 6 (0·18%) 2·4 (1·44, 3·81) <0·001 

Glucose, mmol/L 5·7 (2·5) 2 (0·06%) 1·03 (0·98, 1·08) 0·188 

Not previously tested for HIV 2968 (88·6%) 0 (0%) 0·93 (0·64, 1·40) 0·719 

Referral visit 1056 (31·5%) 1 (0·03%) 1·70 (1·31, 2·20) <0·001 

Neonatal jaundice 261 (7·8%) 34 (1·02%) 1·31 (0·83, 1·99) 0·219 

Lactate level, mmol/L 2·5 (1·6) 9 (0·27%) 1·10 (1·03, 1·18) 0·003 

Mother currently acutely ill 132 (3·9%) 13 (0·39%) 0·56 (0·22, 1·18) 0·171 

Mother has chronic illness 251 (7·5%) 19 (0·57%) 1·29 (0·81, 1·97) 0·256 

Child less than 30 days old 1353 (40·4%) 2 (0·06%) 0·68 (0·52, 0·89) 0·006 

Pallor 307 (9·2%) 2 (0·06%) 2·15 (1·50, 3·03) <0·001 

Premature birth 210 (6·3%) 6 (0·18%) 2·05 (1·33, 3·06) 0·001 

Prior care sought for current illness 1995 (59·6%) 0 (0%) 1·82 (1·38, 2·42) <0·001 

Sucking well when breastfeeding, or feeding 

well if not breastfed 
1956 (58·4%) 8 (0·24%) 0·47 (0·36, 0·61) <0·001 

Sucking well when breastfeeding, or feeding 

well if not breastfed, prior to illness 
2589 (77·3%) 

392 

(11·7%) 
0·59 (0·42, 0·85) 0·004 

When did the baby cry after birth  97 (2·9%)   

Immediately 2805 (83·8%)  ref. 0·041 

<5 minutes 138 (4·1%)  1·83 (1·04, 3·02) 0·025 

5 to 10 minutes 141 (4·2%)  1·32 (0·70, 2·30) 0·351 

11 to 30 minutes 68 (2%)  1·26 (0·48, 2·72) 0·594 

>30 minutes 100 (3%)  2·12 (1·14, 3·68) 0·011 

Abnormal tone 285 (8·5%) 2 (0·06%) 3·11 (2·21, 4·31) <0·001 

Decreased urine production 677 (20·2%) 99 (2·96%) 1·91 (1·43, 2·52) <0·001 

For non-binary categorical variables, the p-value for the reference group (labelled ref.) indicates the 

global p-value. 

Abbreviations: CI = confidence interval; HIV = human immunodeficiency virus; OR = odds ratio; WHO = 

World Health Organization  
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Table 3. Summary of performance and variables included in the set of final 0-6-month models with 

reduced number of variables using the probability threshold that gave a sensitivity of 0·8.  

 M6PD-C0-6 

Model 

M6PD-CS0-6 

Model 

M6PD-A0-6 

Model 

Average CV Performance    

Specificity 0·60 0·61 0·61 

AUROC 0·75 0·76 0·76 

PPV 0·15 0·16 0·16 

NPV 0·97 0·97 0·97 

PRAUC 0·23 0·23 0·23 

Brier Score 0·07 0·07 0·07 

Full Dataset Performance    

Specificity 0·58 0·62 0·62 

AUROC 0·77 0·77 0·77 

PPV 0·14 0·15 0·15 

NPV 0·97 0·97 0·97 

PRAUC 0·23 0·22 0·22 

Brier Score 0·07 0·07 0·07 

Variables    

Age, months � � � 

Duration of present illness, categorical � � � 

MUAC, mm � � � 

Neonatal jaundice, binary � � � 

Sucking well when breastfeeding, binary � � � 

SpO2, % � � � 

Time to reach hospital, categorical  � � 

Weight for age z-score � � � 

Fontanelle, binary �   

Note, the final reduced and final clinical and social model are identical since the same variables were 

selected. 

Abbreviations: AUROC = area under the receiver operating curve; MUAC = mid-upper arm 

circumference; NPV = negative predictive value; PPV = positive predictive value; PRAUC = area under the 

precision-recall curve; SpO2 = oxygen saturation  
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Table 4. Summary of performance and variables included in the set of final 6-60-month models with 

reduced number of variables using the probability threshold that gave a sensitivity of 0·8.   

 M6PD-C6-60 

Model 

M6PD-CS6-60 

Model 

M6PD-A6-60 

Model 

Average CV Performance    

Specificity 0·57 0·59 0·54 

AUROC 0·73 0·74 0·75 

PPV 0·09 0·09 0·08 

NPV 0·98 0·98 0·98 

PRAUC 0·16 0·15 0·15 

Brier Score 0·04 0·04 0·04 

Full Dataset Performance    

Specificity 0·53 0·58 0·55 

AUROC 0·75 0·76 0·77 

PPV 0·08 0·09 0·08 

NPV 0·98 0·98 0·98 

PRAUC 0·17 0·16 0·17 

Brier Score 0·04 0·04 0·04 

Variables    

Age, months � � � 

Haemoglobin, g/dl   � 

HIV, binary  � � 

How long since last admission, categorical � � � 

MUAC, mm � � � 

SpO2, % � � � 

Water source, categorical  � � 

Weight for age z-score � � � 

Abnormal BCS, binary �   

Respiratory rate, bpm �   

Temperature, °C �   

Boil/disinfect/filter water  �  

Abbreviations: AUROC = area under the receiver operating curve; BCS = Blantyre coma scale; bpm = 

breaths per minute; MUAC = mid-upper arm circumference; NPV = negative predictive value; PPV = 

positive predictive value; PRAUC = area under the precision-recall curve; SpO2 = oxygen saturation 
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Figure 1. Variable selection for model development  
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Figure 2. Study enrolment flow diagram 
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Figure 3. Post-discharge mortality by age cohort. Both the derivation and validation cohorts were 

combined for each of the age cohorts.  
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Figure 4. Performance of the M6PD-C0-6 model tested on the entire dataset after restricting the 

predictors to the eight unique variables from the intermediate clinical variable model with the highest 

average variable importance. The point on the receiver operating characteristic (ROC) plot, precision 

recall (PR) plot, and gain curve indicates the co-ordinates when using the probability threshold that gives 

a sensitivity of 80% (probability threshold = 0·058). The positive predictive value (PPV) and negative 

predictive value (NPV) are also reported in the ROC plot using this threshold. 
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Figure 5. Performance of the M6PD-C6-60 model tested on the entire dataset after restricting the 

predictors to the nine unique variables from the intermediate clinical variable model with the highest 

average variable importance. The point on the receiver operating characteristic (ROC) plot, precision 

recall (PR) plot, and gain curve indicates the co-ordinates when using the probability threshold that gives 

a sensitivity of 80% (probability threshold = 0·036). The positive predictive value (PPV) and negative 

predictive value (NPV) are also reported in the ROC plot using this threshold. 
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