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Abstract

Since COVID-19 was first identified in China in 2019, the SARS-CoV-2 virus has mutated
and given rise to a large number of variants. A range of non-pharmaceutical interventions
have been deployed against the virus in an effort to save lives and reduce pressure on health-
care systems. These interventions may have favoured some variants over others. Despite
this possibility, there has thus far been very little work investigating the impact of such
interventions on the evolution of the virus.

Using mathematical and computational models, we investigate the impact of a lockdown
specifically, for the case in which two SARS-CoV-2 variants are circulating simultaneously
in a population. We find that under certain conditions, lockdowns disrupt the competition
between variants in such a way that highly transmissible variants with long infectious periods
are selected for, ultimately leading to more cases overall than would have occurred without
the lockdown, due to larger second waves of cases.

These are the results of a modelling study and we do not claim to have found evi-
dence of such unfavourable selection effects occurring in reality. On the other hand, our
results are consistent with evolutionary theory and suggest that the selective effects of non-
pharmaceutical interventions deserve greater scrutiny.

Introduction

The first COVID-19 lockdown was implemented in Wuhan, on 23rd January 2020, result-
ing in travel restrictions, non-essential business closures and stay-at-home orders for all 11
million inhabitants of the city. Similar restrictions were soon after imposed in many other
parts of China and across the world. These lockdowns were of unprecedented length, lasting
in some cases many months. While a lockdown was implemented in Mexico in 2009, in
response to the swine flu outbreak [4], and another in Sierra Leone in 2015, in response to
the Ebola outbreak [5, 17], these lockdowns lasted only 5 and 3 days, respectively. Even
during the 1918-1919 influenza pandemic, restrictions on mobility in cities across the United
States were less stringent than those imposed by the COVID-19 lockdowns [13]. Moreover,
literature on lockdowns dating from before the COVID-19 pandemic is extremely limited.
For example, searching PubMed and the preprint servers medRxiv and bioRxiv for items
containing the keyword ‘lockdown’ yields 24375 results at the time of writing, but only 89
of these results date from 2019 or earlier, with only 1 result being related to the control
of infectious diseases. Pandemic preparedness studies typically considered social distancing
interventions far less stringent than the COVID-19 lockdowns [1, 10, 11, 14], due in part to
ethical considerations [3]. The COVID-19 lockdowns were, therefore, implemented without
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precedent and before a deep scientific understanding of their impact and long-term conse-
quences had been established.

Social interaction is reduced for the duration of a lockdown, thereby reducing transmis-
sion and temporarily easing pressure on healthcare systems. On the other hand, lockdowns
incur substantial social and economic costs. In this article we ignore such costs, focussing
instead on the claimed public health benefit of lockdowns against an evolving virus such as
SARS-CoV-2.

Very little attention has been given to the evolutionary impact of non-pharmaceutical
interventions in general. Recent works addressing this topic in the context of the COVID-19
pandemic include the articles of Gurevich et al. [7], Ashby and Thompson [2] and Nielsen
et al. [15]. Gurevich et al. [7] examined the effect of testing and isolation on the evolution
of SARS-CoV-2, finding that testing and isolation may act to reduce virulence. They found
that a higher testing rate can select for a test-evasive viral strain, even if that strain is less
infectious than the competing detectable strain. Ashby and Thompson [2] argued that while
stronger and timelier non-pharmacheutical interventions generally reduce the likelihood of
variant emergence, it is possible for more transmissible variants to have a greater probability
of emerging at intermediate levels of these interventions. Nielsen et al. [15] considered the
impact of lockdowns specifically, and found that lockdowns exert an evolutionary pressure
which favours variants with lower levels of overdispersion.

We will investigate the impact of lockdowns using both an SIR model and an agent-based
model. The equation-based SIR model is simple and offers generality, while the agent-based
model is more detailed and realistic. The latter has been validated using COVID-19 clinical
monitoring data collected in Luxembourg and is the model used previously by the authors
in Thompson and Wattam [20].

In each model, we suppose that two viral strains are circulating simultaneously in a
population. We assume that individuals cannot be simultaneously infected with both strains
and that recovery from one strain implies immunity to both strains. The properties of the
reference strain are determined using real-world data, while the properties of the alternative
strain are determined by modifying those of the reference strain. For a range of such
modifications, we simulate a lockdown and compare the final outcome to that of the baseline
scenario in which no interventions are active. We verify using both the equation-based and
agent-based modelling approaches and obtain consistent results.

Our modelling suggests that, in certain circumstances, a lockdown can disrupt the com-
petition between strains in such a way that ultimately results in more cases than would have
occurred without the lockdown. This effect can be understood in terms of r/K selection the-
ory. With the strains engaged in an exploitative competition for hosts, the lockdown shifts
the selection regime from r-selection, which favours high growth rates, to K-selection, which
favours high carrying capacities. With limited access to hosts during a lockdown, strains
with longer infectious periods are favoured, even at the expense of lower transmission prob-
abilities. This may ultimately lead to more infections overall through larger second waves,
since the strains selected for have a higher R0. These are only the results of a modelling
study, so further investigation is required to determine if the lockdowns against COVID-19
did in fact cause or accelerate the selection of more transmissible variants.
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Materials and Methods

SIR Model

The SIR model is an epidemic model based on homogeneous mixing. It is given by the
system of ordinary differential equations

d

dt
S(t) = −β

I(t)

N
S(t)

d

dt
I(t) = β

I(t)

N
S(t)− γI(t)

d

dt
R(t) = γI(t)

for which we set (S(0), I(0), R(0)) = (625640, 320, 0). Here S(t), I(t) and R(t) denote the
number of individuals susceptible, infected and recovered, respectively, at time t, while
N = S(t) + I(t) + R(t) denotes the total population size. We set N = 625960 since this is
approximately the size of the resident population of Luxembourg, on which the agent-based
model has been validated, and to which we will later compare the SIR model. We have set
I(0) = 320 for similar reasons. The parameter β denotes the average contact rate multiplied
by the transmission probability, while the parameter γ denotes the recovery rate. In the
context of COVID-19, social distancing restrictions (which reduce the contact rate) and the
wearing of face masks (which reduce the transmission probability) can be represented as
temporary reductions in β.

Now let us introduce a second strain, referring to the two strains as Strain 1 and Strain
2, and consider the following two-strain SIR model:

d

dt
S(t) = −β1

I1(t)

N
S(t)− β2

I2(t)

N
S(t)

d

dt
I1(t) = β1

I1(t)

N
S(t)− γ1I1(t)

d

dt
I2(t) = β2

I2(t)

N
S(t)− γ2I2(t)

d

dt
R(t) = γ1I1(t) + γ2I2(t) (1)

with initial conditions (S(0), I1(0), I2(0), R(0)) = (625320, 320, 320, 0). Here I1(t) and I2(t)
denote the number of individuals infected with Strain 1 and Strain 2, respectively, at time
t. The parameters β1 and β2 denote the transmission rates for the two strains, while γ1 and
γ2 denote the recovery rates.

Agent-Based Model

If the equation-based approach of the SIR model is top-down, then the agent-based approach
is bottom-up. Together these two approaches provide a more complete analysis than would
have been obtained using only one or the other. In an agent-based model, the simultaneous
actions and interactions of multiple individuals are simulated in an attempt to re-create and
predict the appearance of complex phenomena resulting from their collective behaviour.
Such models have been used extensively to study the spread of infectious diseases such as
COVID-19. The basic features of our model have already been described, in some detail,
in Thompson and Wattam [20]. It is a highly heterogeneous stochastic model based on
collocation, in which agents move between locations inside a procedurally generated random
environment.
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Code

The model is written mainly in Python, with the code being open-source and publicly
available on GitHub. The original version can be found here:

https://github.com/abm-covid-lux/abmlux

and the version of it modified to accommodate multiple strain can be found here:

https://github.com/abm-covid-lux/multi_strain_abmlux

A faster version of the latter, partially rewritten in C++ and containing tools to generate
each of the plots found in this article, can be found here:

https://github.com/abm-covid-lux/multi_strain_abmlux_fast

The file config.yaml, found in the States folder of the multi strain abmlux fast repos-
itory, indicates precisely which values are taken by each of the parameters appearing in the
model.

Model Description

We start with the following basic assumptions on human behaviour:

1. Individuals perform sequences of activities.

2. Individuals perform these activities at particular locations.

By an activity we mean anything that an individual does, for example cooking, driving to
work, or shopping. By a location we simply mean somewhere such as a house, restaurant,
shop or school classroom. Denoting by A the set of all activities, we assign to each individual
i a sequence

αi : N0 → A

with αi(t) denoting the activity being performed by individual i at time t. Here N0 is the
set of natural numbers {0, 1, 2, . . .}. Denoting by L the set of all locations, we then assign
to each individual i a map

λi : A → P(L)

from A to the power set of L. By the power set of L, we mean the set of all subsets of L.
For each activity, the map λi determines a set of locations at which individual i can perform
that activity. It follows that λi(αi(t)) is the set of locations at which individual i could be
located at time t. Our model assumes that individuals choose from within this set uniformly
at random whenever a change of activity occurs, with the maps λi being independent of t
to ease the computational burden of the model.

We suppose that several strains of a virus are circulating in the population and that the
health of an individual can be described by one of a finite number of health states. The
health state of a individual is initially Susceptible and after infection ultimately becomes
either Recovered or Dead, passing through a number of intermediate states along the way
and spending a certain amount of time in each, according to a uniquely determined disease
progression defined for that individual. Let us denote by H the set of all health states and
by S the set of all strains. We then have a function

c : L×H × S × N0 → N0

where c(l, h, s, t) is by definition the number of individuals in location l infected with strain
s in health state h at time t.

To each location l we also assign a transmission probability multiplier µ(l) ∈ [0, 1],
representing the fact that some locations are less conducive to disease transmission than
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others. For example, we suppose µ(l) = 0 for all outdoor locations. To each health state h
and a strain s we assign a transmission probability p(h, s) ∈ [0, 1], such that if precisely two
individuals are in location l at time t, with one individual susceptible and the other infected
with strain s and in health state h, then µ(l)p(h, s) is the probability that the susceptible
individual contracts the virus at time t. More generally, for any location l, the probability
that a susceptible individual contracts the virus while in location l at time t is given by the
expression

1−
∏

h∈H, s∈S

(1− µ(l)p(h, s))c(l,h,s,t).

If such an individual contracts the virus, then to determine which strain that individual is
infected with, we assume that the expression∑

h∈H p(h, s) c(l, h, s, t)∑
h∈H,s∈S p(h, s) c(l, h, s, t)

gives the probability that they are infected with strain s, for each s ∈ S.

Input Data

The agent-based model has been configured to represent the small western European coun-
try of Luxembourg, together with populations of cross-border workers in the neighbouring
countries of Belgium, France and Germany. As described in [20], the sequences of activities
α and location maps λ are configured using data collected by STATEC, the government
statistics service of Luxembourg [18], and MMTP, the Ministry of Mobility and Public
Transport of the government of Luxembourg, respectively. In particular, behavioural data
comes from the 2014 Luxembourg Time Use Survey [19] while mobility data comes from
the 2017 Luxmobil Survey [12]. Location data come from STATEC and OpenStreetMap
[16]. Population grid data comes from the 2011 GEOSTAT study, organized by Eurostat
[6]. Census data, collected by STATEC, was used to configure population age structure and
household composition. COVID-19 clinical monitoring data comes from IGSS, the General
Inspectorate of Social Security of Luxembourg [8]. We validated the model using data on
COVID-19 hospitalizations and deaths in Luxembourg for the period February 2020 to July
2020. The reference strain appearing in our agent-based model therefore reflects the average
of all SARS-CoV-2 variants circulating in Luxembourg during that specific period of time.
Simulations begin with 320 randomly selected initial cases for each strain.

Results

We first present the results of the SIR model, after which we verify them using the agent-
based model.

SIR Model

To assess the impact of a lockdown, we consider the following two scenarios:

• Baseline: No interventions are active.

• Lockdown: Contact rates are reduced by 90% for 28 days, starting on day 21.

We fix Strain 1, with a mean infectious period of 9 days and R0 = 2.45. In the two-strain
SIR model, Strain 1 is therefore specified by the parameters β1 = 0.2723 and γ−1

1 = 9,
with the units of these parameters being days−1 and days, respectively. For Strain 2, we
suppose β2 = aβ1 and γ2 = b−1γ1 for constants a > 0 and b > 0. Then a represents the
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transmission probability ratio and b the infectious period ratio. We allow a and b to vary
over a range of values, given by a discretization of the square

{(a, b) : 0 < a < 5, 0 < b < 5}. (2)

We set equal numbers of initial cases for each strain, and for each pair (a, b) we solve the
two-strain SIR system (1) numerically using a forwards Euler scheme, over a period of 400
days, and calculate the final difference in R between the two scenarios. That is, we subtract
the total number of recovered individuals after 400 days of the Lockdown scenario from
the total number of recovered individuals after 400 days of the Baseline scenario. We plot
these differences in Figure 1. If the difference is positive, then the lockdown has reduced
total cumulative cases and we colour the square purple. If the difference is negative, then
the lockdown has increased total cumulative cases, and we colour the square orange. The
white squares indicate regions of the parameter space in which the difference is close to zero.

Figure 1: The impact of a lockdown in the two-strain SIR model. The thin orange regions
are subsets of the parameter space in which the lockdown results in more cases than would
have occurred without the lockdown. On the plotted curve a = 1/b the R0’s of the two
strains are identical. At the point (1.0, 1.0), the strains themselves are identical.

For the region above the curve a = 1/b in Figure 1, Strain 2 has the higher R0, due to
its longer infectious period outweighing its smaller transmission probability. For the orange
region below the curve a = 1/b, the same is true of Strain 1. Let us consider for example
the pair (a, b) = (3.0, 0.2). In this case, Strain 2 has a transmission probability 3 times that
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of Strain 1, while Strain 1 has an infectious period 5 times that of Strain 2, meaning
that Strain 1 has a larger basic reproduction number R0 than Strain 2. In Figure 2, we
plot daily cases and cumulative cases for these two strains, with Strain 1 coloured red and
Strain 2 coloured blue.

Figure 2: The impact of a lockdown in the two strain SIR model for (a, b) = (3.0, 0.2).

It is clear from Figure 2 that the lockdown, while temporarily reducing cases, later results
a large second wave of Strain 1 cases, thereby increasing the overall case count. Such effects
are not visible in models that neglect the existence of multiple strains.

Moreover the existence of orange regions in Figure 1 is not sensitive to the initial ratio
of cases between the two strains. Nor is it sensitive to the ratio of contact rates between
the two scenarios, with the orange regions consistently appearing under variations of these
parameters.

Lockdown Timing

Instead of fixing the start of the lockdown and varying the disease parameters, let us now
fix the disease parameters and vary the start of the lockdown. Assuming one initial case for
each strain, with now β1 = 0.35 and γ−1

1 = 6 and ratios a = 3.6 and b = 0.2, we illustrate in
Figure 3 the reduction in total cumulative cases resulting from a 28-day lockdown, with the
lockdown starting on a range of different days. A positive reduction means the lockdown
decreased total cases, while a negative reduction means the lockdown increased total cases.

Figure 3: The impact of a 28-day lockdown in the two strain SIR model, with the lockdown
starting on a range of different days.
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Figure 3 shows that, for these particular parameters, the impact of the lockdown is very
sensitive to timing. In particular, it shows that while starting the lockdown on day 33 results
in the maximum reduction in cases, starting the lockdown earlier on day 25 results in a
substantial increase in cases and the worst possible outcome. The dynamics of the system
for these two start days are illustrated in Figure 4.

Figure 4: The impact of a 28-day lockdown in the two strain SIR model. On the left, the
lockdown starts on day 25. On the right, the lockdown starts on day 33.

Figure 4 can be understood as follows. Starting the lockdown on day 25, Strain 2 is
quickly suppressed, giving Strain 1 the advantage once the lockdown is lifted. On the
other hand, starting the lockdown later on day 33 means that once the lockdown is lifted,
sufficiently many individuals have already been infected with Strain 2 that the population
now has herd immunity against Strain 1, making the second wave impossible.

Multiple Regions

The situation is even more complex if multiple regions are involved. For example, given two
identical copies of the population considered above, with a small amount of mixing between
the two populations and with all initial cases located in only one region, the sensitivity to
lockdown timing is even more pronounced, as illustrated in Figure 5.

Figure 5: The impact of a 28-day lockdown in the two strain SIR model with two weakly
interacting populations, with the lockdown starting on a range of different days.

A lockdown in one region might suppress the least transmissible variants there, allowing
only the most transmissible ones to spread to neighbouring regions once the lockdown is
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lifted. A system consisting of multiple regions and multiple strains, with lockdowns for each
region and travel restrictions for each pair of regions, with the timing of these interventions
potentially variable, can be configured to produce even more undesirable outcomes.

Agent-Based Model

We now turn to the agent-based model, where the lockdown can be implemented more
realistically, to verify that our findings are not unique to the SIR model. In particular, we
consider the following two scenarios:

• Baseline: No interventions are active.

• Lockdown: For a period of 28 days starting on day 21, individuals must stay at home
unless in need of hospitalization.

We again consider the case of two strains, Strain 1 and Strain 2, where as for the SIR
model we assume that individuals cannot be simultaneously infected with both strains and
that recovery from one strain implies immunity to both.

Figure 6: The impact of a lockdown in the two strain agent-based model. Orange regions
are subsets of the parameter space in which the lockdown results in more cases than would
have occurred without a lockdown.

We randomly select equal numbers of initial cases for each strain. The reference Strain
1 is configured using clinical monitoring data collected in Luxembourg between February
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2020 and July 2020. The alternative Strain 2 is configured by modifying the parameters of
Strain 1. The transmission probabilities corresponding to Strain 2 are given by multiplying
the transmission probabilities of Strain 1 by the transmission probability ratio a. The
duration of time individuals spend in health states when infectious with Strain 2 is given
by multiplying the duration of time they would have spent in that health state, were they to
have been infected with Strain 1, by the infectious period ratio b. We allow the pair (a, b)
to vary over the same square (2) used for the two-strain SIR model, using a slightly coarser
discretization, and for each pair (a, b) we plot the difference in total cumulative cases, after
400 days, between the Baseline and Lockdown scenarios, fixing the random seed for all
simulations. The result is presented in Figure 6, using the same range and colour scheme
as in Figure 1.

Figure 6 is visually similar to Figure 1. In particular, using a agent-based model un-
related to the SIR model, we have verified the existence of orange coloured regions of the
parameter space, where the lockdown increases total cases. In fact, the orange region in
Figure 6 is broader than the equivalent region in Figure 1, indicating a larger subset of the
parameter space containing unfavourable outcomes. Note that the dark purple squares in
Figure 6, which cannot be found in Figure 1, correspond to simulations in which the virus
was completely eradicated by the lockdown, something that is impossible in the SIR model.

In Figure 7 we plot daily cases and cumulative cases for the pair (a, b) = (0.6, 2.8). In
this case, Strain 1 has a higher transmission probability than Strain 2, while Strain 2
has longer infectious periods.

Figure 7: The impact of a 28-day lockdown in the two strain agent-based model for (a, b) =
(0.6, 2.8).

As we saw earlier in Figure 2, we see in Figure 7 that the strain with the longer infectious
periods is better able to endure the lockdown, and therefore gains a substantial advantage
over the other strain once the lockdown is lifted, resulting in a large second wave and an
overall increase in cases versus the baseline scenario.

Discussion

Mutations to the SARS-CoV-2 virus have given rise to a large number of variants, with
some of these variants believed to have the potential for increased transmissibility, increased
virulence, or reduced effectiveness of vaccines. The biological fitness of these variants de-
pends on their environment, including the behaviour of their host population. Throughout
the COVID-19 pandemic, a range of non-pharmaceutical interventions have been deployed
against the virus, including lockdowns, face masks, testing and contact tracing. These inter-
ventions have altered human behaviour and therefore had some impact on the competition
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between variants. In this article, we modelled the impact of a lockdown specifically and
found that, under certain conditions, the competition between strains can be disrupted in
such a way that ultimately leads to more infections than would have otherwise occurred
without the lockdown. It is not, however, clear if under these conditions one would expect
more hospitalizations and deaths, with this matter requiring further investigation.

Our results suggest that it would in practice be extremely difficult to implement a lock-
down effectively, since necessary information on existing variants and their properties would
typically be unavailable or incomplete. Without this information, it would be impossible to
determine whether we are in the purple region in Fig 1, where the lockdown reduces cases,
or in one of the orange regions, where the lockdown increases cases.

The results presented in this article are only the results of a modelling study, and we
do not claim to have found evidence of these selection effects occurring in nature. That
being said, during the first phase of the COVID-19 pandemic, the global response focussed
on social distancing and other non-pharmaceutical interventions. It later shifted away from
social distancing as vaccines became widely available. We might therefore speculate that
the selective pressures exerted on the virus by the global response changed over time, and
that these pressures may have played some role in the emergence of the Alpha and Delta
variants and their eventual replacement by Omicron.

Putting together our results with those of Gurevich et al. [7], Ashby and Thompson
[2] and Nielsen et al. [15], we conclude that interventions against COVID-19 might, under
certain conditions, intensify the competition between variants in such a way that leads to
a more resilient virus. Our conclusions may also apply to other viruses affected by the
COVID-19 interventions, and more generally to any competition that may exist between
them. For example, influenza strains now circulating in the human population may be
more resilient to future non-pharmaceutical interventions, of the type implemented against
COVID-19, than they would have been without the earlier interventions.

Our study is purely theoretical, and subject to numerous limitations. Our SIR model
does not take into account hospitalization and death at all, while our agent-based model
does not provide a realistic model of complex health care systems, neglecting for example
their limited bed capacity. This is why we restricted our attention only to differences in
total cases between the lockdown and baseline scenarios, as opposed to hospitalizations and
deaths. Moreover our baseline scenario is somewhat unrealistic, since even in the absence
of a lockdown individuals will, to certain extent, exercise self-protection and adjust their
behaviour accordingly, leading to a narrowing of the difference between the baseline and
lockdown scenarios.

The authors of the 2021 literature review by Jordan et al. [9], on optimization in the
context of COVID-19 prediction and control, concluded that “a better understanding of the
virus and its transmissibility, though challenging due to its evolutionary nature, would allow
for more accurate and effective mitigation and resource allocation optimization efforts.”
They also remarked that “better accessibility, uniformity and accuracy of data would provide
vastly more robust and reliable mechanistic models, particularly when dealing with virus
variants that continue to mutate and dampen mitigation efforts.”

A deeper and broader understanding of the impact of non-pharmaceutical interventions
on the evolution of SARS-CoV-2 and other viruses could lead to greatly improved mitigation
strategies in response to future pandemics.
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