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Abstract 

The rapid spread and evolving nature of COVID-19 variants have raised concerns regarding their 
competitive dynamics and coinfection scenarios. In this study, we assess the competitive interactions 
between the Omicron variant and other prominent variants (Alpha, Beta, and Delta) on a social network, 
considering both single infection and coinfection states. Using the SIRS model, we simulate the 
progression of these variants and analyze their impact on infection rates, mortality, and overall disease 
burden. Our findings demonstrate that the Alpha and Beta strains exhibit comparable contagion levels, 
with the Alpha strain displaying higher infection and mortality rates. Moreover, the Delta strain emerges 
as the most prevalent and virulent strain, surpassing the other variants. When introduced alongside the 
less virulent Omicron strain, the Delta strain results in higher infection and mortality rates. However, 
the Omicron strain's dominance leads to an overall increase in disease statistics. Remarkably, our study 
highlights the efficacy of the Omicron variant in supplanting more virulent strains and its potential role 
in mitigating the spread of infectious diseases. The Omicron strain demonstrates a competitive 
advantage over the other variants, suggesting its potential to reduce the severity of the disease and 
alleviate the burden on healthcare systems. These findings underscore the importance of monitoring 
and understanding the dynamics of COVID-19 variants, as they can inform effective prevention and 
mitigation strategies, particularly with the emergence of variants that possess a relative advantage in 
controlling disease transmission. 
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1. Introduction 

The understanding of epidemics plays a crucial role in comprehending disease spread models 
and developing effective strategies to prevent the over-infection of populations. In this 
context, the significance of mathematical models cannot be overlooked in the field of 
epidemiology.  

The virulence of a pathogen refers to the mortality rate caused by the disease [1]. Virulence 
and disease transmissibility are key factors in the investigation of disease models. 

Multi-infection models encompass the simultaneous spread of several independent viruses 
within a community. The various types of multiple infections include single infection, 
coinfection and superinfection. In the case of single infection, when a strain spreads 
independently among a population of susceptible individuals, an infected person will only 
harbor that specific strain until recovery, without contracting another strain. This scenario is 
termed single infection. Superinfection models account for the possibility of an infected 
individual being susceptible to multiple strains of the disease simultaneously, with a more 
virulent strain potentially replacing a less virulent strain through a process akin to hostile 
takeover [2, 3]. Coinfection models involve individuals sustaining infections with multiple 
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pathogen strains concurrently [4, 5], although typically, susceptible individuals do not contract 
more than one infection at a time.      

In recent years, the COVID-19 epidemic has witnessed the emergence of various variants [6] 
as reported by the World Health Organization (WHO). A change in the genetic sequence of a 
virus is referred to as a mutation and variants are genomes that differ from each other in terms 
of their genetic sequence, often resulting from one or more mutations [7]. As a single-stranded 
RNA virus [8], SARS-CoV-2 has undergone numerous mutations. While most mutations do 
not significantly impact the virus's spread and mortality, several mutations have raised global 
concerns. Hence, it is crucial to develop a better understanding of the transmission of these 
new coronavirus variants and effective methods to mitigate their spread [9, 10]. Compared to 
the original lineage, new coronavirus variants exhibit higher transmissibility and increased 
resistance to antibodies [11].    

To prioritize surveillance and research on these variants, the WHO has categorized COVID-19 
strains into three groups: variants of interest (VOI), variants of concern (VOC) and variants 
under monitoring (VUM). The classification of variants may vary across different 
countries[12]. The four previous VOCs include Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) 
and Delta (B.1.617.2). All of these variants have triggered new waves of epidemics worldwide. 
On November 26, 2021, the WHO designated a new variant called Omicron (B.1.1.529) as the 
fifth VOC, instantly sparking global concerns [6]. The term "Wild type" refers to a virus or 
background strain that does not possess any major mutations [13]. In other words, it represents 
the natural, non-mutated strain of the virus [14]. The transmission and virulence rates for the 
main strain, referred to as the Wild type, are based on reference [15].    

The main concerns regarding SARS-CoV-2 VOCs encompass viral transmission, disease 
severity and their effects on vaccine efficacy [16]. The Wild type virus of COVID-19 is more 
susceptible to neutralization compared to newer variants [17]. According to a study, the Alpha 
strain exhibited a 43% to 90% higher transmissibility than the Wild type [18]. Additionally, 
the Alpha lineage demonstrated a 71% higher transmission rate compared to the original 
lineage [19]. Generally, the Delta and Omicron variants are more transmissible than the Alpha, 
Beta and Gamma variants [17]. 

Quantitatively speaking, the Delta variant posed a 108% increased risk of hospitalization, a 
235% increased risk of ICU admission and a 133% higher risk of death compared to the original 
variant [20]. Another study reported that the Delta strain was 60% more transmissible than the 
Alpha strain, becoming the dominant strain as of August 2021 [21]. Analysis by Bolze et al. 
revealed that the Delta variant exhibited, on average, 1.7 times higher viral load compared to 
the Alpha variant [22]. Furthermore, according to another report, the transmissibility of the 
Delta strain is usually 60% higher than that of the Alpha strain, making it the most infectious 
variant to date and 97% more contagious than the original strain [23]. Similarly, the Beta strain 
is 50% more transmissible than the Wild type [24]. Data also indicate that the Delta variant has 
a higher transmission rate than the Gamma variant [25], with the estimated transmission 
capability of the Gamma variant being 2.6 times higher than that of the Wild type, according 
to reference [26]. A report from Public Health England on June 11 indicated a significantly 
higher risk of hospitalization associated with the Delta variant compared to the Alpha variant 
[27]. In short, the Delta strain exhibits highly transmissible characteristics and greater 
invasiveness [28]. Another study highlighted that the infection rates of the Omicron variant 
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were four times higher than the Wild type and twice as high as the Delta variant [29]. Reference 
[30] estimates that the Omicron variant is 36.5% more transmissible than the Delta variant. 
Moreover, a study conducted in Southern California demonstrated that the Omicron strain had 
a 91% lower fatality rate than the Delta strain and a 51% reduced likelihood of hospitalization 
[31].    

All the VOCs, including Alpha, Beta, Gamma and Delta variants present higher risks of 
hospitalization, ICU admission and mortality compared to the Wild type virus. Beta and Delta 
variants pose a higher risk than Alpha and Gamma variants [16]. Alpha, Beta, Gamma and 
Delta variants had 1.7, 3.6, 2.6 and 2.08 times increased risk of hospitalization, respectively 
and 2.3, 3.3, 2.2 and 3.35 times increased risk of ICU admission, respectively  [16, 32]. These 
variants also exhibit mortality risks of 1.37, 1.50, 1.06 and 2.33, respectively [16]. The 
mortality rate of the Alpha strain, as referenced in [33], is reported as 0.005. Qualitatively 
estimating the transmission and virulence rates for this variant aligns with this reference. Figure 
1 illustrates the outcome of our research aimed at investigating the factors influencing the 
infection, transmission and virulence of COVID-19 variants. All values have been qualitatively 
investigated, collected and estimated, thus the disease transmission and virulence rates depicted 
in Figure 1 will be referred to as qualitative rates.  

Newer VOCs have largely displaced other circulating SARS-CoV-2 variants. Delta accounted 
for nearly 90% of all viral sequences submitted to GISAID by October 2021 and Omicron has 
now become the dominant strain circulating worldwide, representing more than 98% of shared 
viral sequences in GISAID since February 2022 [34]. 

 

  
Fig 1. Qualitative plot of different VOC variants of the disease of Covid-19 

 

The simultaneous circulation of multiple variants in the same location can lead to coinfection 
with different strains of SARS-CoV-2. Yaqing He et al. reported the identification of an 
individual co-infected with two worrisome SARS-CoV-2 variants, Beta and Delta [35]. 
Additionally, Deltacron, involving both Delta and Omicron variants, was first detected in 
January 2022 and rapidly spread in Cyprus [36]. Several recombination events between the 
main subvariants of Omicron (BA.1 and BA.2) and other variants of concern (VOCs) and 
variants of interest (VOIs) have been observed [37].  
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Mathematical models are essential tools for studying the spread of COVID-19 in social 
networks. Manotosh Mandal et al. introduced the SEQIR model, which considers susceptible 
(S), exposed (E), infected in hospital (Q), quarantined (I) and recovered or eliminated (R) 
individuals [38]. Joe Pharaon and Chris T compared the dynamics of a two-strain SIRX 
compartmental epidemic model with and without adaptive social behavior, where susceptible 
individuals (S) can be infected by a resident strain (I1) or a mutant strain (I2). The proportion 
of individuals adopting preventive behaviors is represented by X, referred to as protective 
behavior [39]. Cleo Anastassopoulou et al. proposed the SIRD model to estimate parameters 
and predict the spread of the COVID-19 epidemic in Hubei Province, China, using real data 
[40]. Verónica Miró Pina et al. developed models based on Erdős-Rényi and a power-law 
degree distribution, which capture the role of heterogeneity and connectivity and can be 
extended to make hypotheses about demographic characteristics. They demonstrated that 
changes in the number of contacts in a population impact the effectiveness of public health 
interventions such as quarantine or vaccination strategies [41]. Pilar Hernández et al. utilized 
the SEIR model and presented two types of agent-based model simulations: a homogeneous 
spatial simulation where contamination occurs through proximity and a model in a scale-free 
network with different clustering characteristics, where contamination occurs between any two 
agents through their link, if any [42]. Mosquera and Adler established consistency conditions 
on the parameters of a mathematical model for coinfection states, including superinfection as 
a limit of the coinfection model and a special single infection state [43].  

In this manuscript, we present the SIRS model as an extension of the framework developed by 
Mosquera and Adler. Our study entails a comprehensive analysis and discussion of simulations 
conducted on a social network, incorporating both single infection and coinfection states. With 
a specific emphasis on the emerging variants of COVID-19, we explore the intricate dynamics 
of strain competition within the contexts of single infection, coinfection and delayed states. 
Furthermore, we thoroughly investigate the influence of network topology on the overall 
progression of the epidemic. 

2. Model 

We investigate the scenario of multiple infections by considering a simplified case where only 
one or two infectious diseases can occur concurrently within the population. In the context of 
the SIRS model applied to the network, we mathematically describe the dynamics of the 
epidemic. Consequently, the network consists of four distinct agent types: susceptible 
individuals (S), individuals infected with virus strain 1 (I1), individuals infected with virus 
strain 2 (I2) and individuals simultaneously infected with both strains (I12). Notably, the 
susceptible class is further categorized into two groups: susceptible individuals 1 (S1) who have 
not been infected and are susceptible to receiving the infection and susceptible individuals 2 
(S2) who have previously experienced an infectious disease but remain susceptible with a lower 
probability.  

Examining the impact of mask usage on COVID-19 transmission, a study directly analyzed its 
effect within the community. The findings revealed that if face masks were universally worn 
within a household before symptom onset, they effectively reduced transmission by 79% [44]. 
Masks play a crucial role in preventing the spread of droplets and aerosols emitted by infected 
individuals [45]. Correct usage of surgical masks can significantly decrease virus transmission 
by approximately 95%, providing around 85% protection against infection for non-infected 
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individuals [46]. Furthermore, another study identified mental health status and social media 
as factors influencing adherence to social distancing measures. The high compliance rate of 
social distancing measures was reported by the majority of respondents (95.6%) [47]. Thus, 
assuming adherence to health protocols such as mask-wearing, social distancing and other 
preventive measures against COVID-19 transmission, we define the protection parameter (p) 
as the reduction in the probability of infection transmission. In light of the aforementioned 
cases, we set the protection parameter to p = 0.9. 

 

2.1. Coinfection model  

In order to define the coinfection model, we make the following assumptions: 

1. The mortality rate of individuals due to non-disease factors during the simulation interval 
can be neglected.  

2. Infected individuals with strain i recover at a rate of γi and have a mortality rate of δi 
attributed to the infection. They are then classified as removed (R). 

3. Individuals infected with both strains simultaneously experience a disease-related mortality 
rate of δ12. These individuals recover from strain 1 viral disease at a rate of γ21, while co-
infected individuals recover from strain 2 viral disease at a rate of γ12. 

4. Susceptible individuals become infected by individuals infected with strains 1 and 2 at rates 
of β1 and β2, respectively. 

5. The transmissibility rate for individuals co-infected with both strains can differ from the rate 
for individuals infected with strains 1 and 2 separately. Specifically, if the reduced 
infectiousness of co-infected individuals acting as strain i is denoted by ϵi, the rate at which 
susceptible individuals acquire strain i from co-infected individuals will be ϵiβiI12, where ϵi 
belongs to the range [0, 1]. This means that when a susceptible individual interacts with a co-
infected individual, the transmission of either I1 or I2 disease (depending on the competition 
between strains) occurs at a lower rate.  

6. If there is reduced susceptibility to the other strain when infected with strain i, denoted by 
ai, the infection rate of I1 individuals by strain 2 is less than the infection rate of susceptible 
individuals by a factor of a2. Similarly, the infection rate of I2 individuals by strain 1 is equal 
to a1β1I1 + a1ε1β1I12.  

7. In the case of reinfection, susceptible individuals 2 (S2) contract strain i at a much lower 
transmission rate of αβi.  

Based on these assumptions, the coinfection model follows the set of equations below, where 
the total number of individuals in the network is denoted as N = S1+S2+I1+I2+I12+R.: 

 

𝑑𝑑𝑆𝑆1
𝑑𝑑𝑑𝑑

= −(1 − 𝑝𝑝){𝛽𝛽1𝐼𝐼1𝑆𝑆1 + 𝛽𝛽2𝐼𝐼2𝑆𝑆1 + ϵ1𝛽𝛽1𝐼𝐼12𝑆𝑆1 + ϵ2𝛽𝛽2𝐼𝐼12𝑆𝑆1} 

𝑑𝑑𝑆𝑆2
𝑑𝑑𝑑𝑑

= −α (1 − 𝑝𝑝){𝛽𝛽1𝐼𝐼1𝑆𝑆2 + 𝛽𝛽2𝐼𝐼2𝑆𝑆2 + ϵ1𝛽𝛽1𝐼𝐼12𝑆𝑆2 + ϵ2𝛽𝛽2𝐼𝐼12𝑆𝑆2} + 𝛾𝛾1𝐼𝐼1 + 𝛾𝛾2𝐼𝐼2 
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𝑑𝑑𝐼𝐼1
𝑑𝑑𝑑𝑑

= (1 − 𝑝𝑝)𝛽𝛽1(𝑆𝑆1 + α𝑆𝑆2)(𝐼𝐼1 + ϵ1𝐼𝐼12) − (𝛿𝛿1 + 𝛾𝛾1)𝐼𝐼1 − 𝑎𝑎2𝛽𝛽2𝐼𝐼1𝐼𝐼2 + 𝛾𝛾12𝐼𝐼12 − ϵ2𝑎𝑎2𝛽𝛽2𝐼𝐼1𝐼𝐼12 

𝑑𝑑𝐼𝐼2
𝑑𝑑𝑑𝑑

= (1 − 𝑝𝑝)𝛽𝛽2(𝑆𝑆1 + α𝑆𝑆2)(𝐼𝐼2+ϵ2𝐼𝐼12) − (𝛿𝛿2 + 𝛾𝛾2)𝐼𝐼2 − 𝑎𝑎1𝛽𝛽1𝐼𝐼1𝐼𝐼2 + 𝛾𝛾21𝐼𝐼12 − ϵ1𝑎𝑎1𝛽𝛽1𝐼𝐼2𝐼𝐼12 

𝑑𝑑𝐼𝐼12
𝑑𝑑𝑑𝑑

= (𝑎𝑎1𝛽𝛽1 + 𝑎𝑎2𝛽𝛽2)𝐼𝐼1𝐼𝐼2 + (ϵ2𝑎𝑎2𝛽𝛽2𝐼𝐼1 + ϵ1𝑎𝑎1𝛽𝛽1𝐼𝐼2)𝐼𝐼12 − (𝛾𝛾12 + 𝛾𝛾21 + 𝛿𝛿12)𝐼𝐼12                      

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛿𝛿1𝐼𝐼1 + 𝛿𝛿2𝐼𝐼2 + 𝛿𝛿12𝐼𝐼12                                                                                                             (1) 

Generally, Figure 2 illustrates the set of equations (1) that represent the coinfection model: 

 

 
Fig 2. Schematic diagram illustrating the interaction between two different strains in the 
coinfection model. Susceptible individuals S1 can become infected by interacting with 
infectious individuals I1 and I12 at rates β1 and ϵ1β1, respectively. If they have protection, 
they are transferred to the I1 class with a coefficient of (1-p). Infectious individuals I1 can 
transition to the I12 class by interacting with infectious individuals I2 and I12 at rates a2β2 
and ϵ2a2β2, respectively. Individuals in the I1 class are removed at a rate of δ1 and recover 
at a rate of γ1, transitioning to the S2 class. The process is similar for susceptible 
individuals S2, but at a much lower rate. The same interactions and transitions apply to 
individuals in the I2 class as well.  

 

2.2 Single infection model  

In the single infection model, infected individuals are not susceptible to further infection. By 
setting the coinfection coefficient equal to zero (a1 = a2 = 0), which implies that I12 = 0, the 
dynamic terms of the coinfection model are simplified, resulting in the following model:  

𝑑𝑑𝑆𝑆1
𝑑𝑑𝑑𝑑

= −(1 − 𝑝𝑝){𝛽𝛽1𝐼𝐼1𝑆𝑆1 + 𝛽𝛽2𝐼𝐼2𝑆𝑆1} 

𝑑𝑑𝑆𝑆2
𝑑𝑑𝑑𝑑

= −α (1 − 𝑝𝑝){𝛽𝛽1𝐼𝐼1𝑆𝑆2 + 𝛽𝛽2𝐼𝐼2𝑆𝑆2} + 𝛾𝛾1𝐼𝐼1 + 𝛾𝛾2𝐼𝐼2 
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𝑑𝑑𝐼𝐼1
𝑑𝑑𝑑𝑑

= (1 − 𝑝𝑝)𝛽𝛽1(𝑆𝑆1 + α𝑆𝑆2)𝐼𝐼1 − (𝛿𝛿1 + 𝛾𝛾1)𝐼𝐼1 

𝑑𝑑𝐼𝐼2
𝑑𝑑𝑑𝑑

= (1 − 𝑝𝑝)𝛽𝛽2(𝑆𝑆1 + α𝑆𝑆2)𝐼𝐼2 − (𝛿𝛿2 + 𝛾𝛾2)𝐼𝐼2 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛿𝛿1𝐼𝐼1 + 𝛿𝛿2𝐼𝐼2                                                                                                                              (2) 

 

For the model implementation, we adopt an Erdős–Rényi random network with a total of N = 
10,000 nodes and an average degree of k = 10. The simulation is conducted for a specified time 

interval T and each run is repeated 50 times for reliable results.  

To examine the competition and coinfection dynamics between different strains, we consider 
the rates associated with the Covid-19 epidemic. It is important to note that in each simulation, 
the presence of two strain types in the community is taken into account. Table 1 presents the 
parameter values for various models of Covid-19, which are derived from ten different 
references [15, 39, 48-55]. Notably, the units in the table are given in terms of per day (day-1). 
To incorporate real-world data, we refer to reference [15] for the parameters related to the Wild 
type of the virus. 

 

Table 1. Values of parameters of various models of Covid-19 

Models β γ δ references 
SIR 0.4 0.2 0.05 [39] 
SIRD 0.21542 0.017129 0.011832 [48] 
SIRD 0.257 0.0315 0.0032 [15] 
SAIU 0.274    -    -  [49] 
SIQR 0.13 0.15 0.038 [50] 
SEIR    -    - 0.0018 [51] 
SEIR 0.29 0.09722    - [52] 
SEAIR    - 0.13978 0.015 [53] 
SEIAHRD 0.38974 0.1428 0.015 [54] 
SEAIQHR 1.11525 0.01496 0.04142 [55] 

 

 

3. Results and Discussion 
In our study, we focused on the variants of Covid-19, specifically the Alpha, Beta, Delta and 
Omicron strains. By utilizing the findings of our research, we conducted simulations to 
examine the dynamics of these strains.  

3.1 Investigating the competition between covid-19 variants with strain rates 

We began by considering the single infection state for the four VOC strains and observed their 
dynamic changes during the epidemic, as shown in Figure 3. The contagion of the Alpha and 
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Beta strains was relatively similar, with the Alpha strain exhibiting approximately 5% more 
cases than the Beta strain. However, compared to the Wild type, the Alpha strain had a peak 
infection and mortality rate almost twice as high. Furthermore, the Delta strain exhibited a 
higher prevalence of disease and mortality compared to the other three strains. We also 
examined the competition between strains in the following scenarios: 

1) Competition between the Wild type and the Alpha variant 
2) Competition between the Alpha and the Beta variants 
3) Competition between the Delta and the Omicron variants 
 

 

Fig 3. Dynamic changes of the SIRS model in the single infection state. (a) Outbreak of the 
Wild type. (b) Outbreak of the Alpha variant. (c) Outbreak of the Beta variant. (d) 

Outbreak of the Delta variant in the Erdős–Rényi network. 

 

 

Initially, we evaluated the Wild type and the Alpha mutant variant in a society with a size of N=10,000. 
As depicted in Figure 4-a, the number of infected individuals for the main strain and the Alpha strain 
reached their maximum values after t=59 days (I1max=109) and t=73 days (I2max=2199), respectively. 
By t=200 days, the number of infected individuals for the main strain decreased to 4, while for the 
Alpha strain, it was 167. It is worth noting that the mutated Alpha strain had a wider epidemic range 
and resulted in a significantly higher number of infections compared to the original strain. The number 
of individuals who experienced either the main strain or the Alpha strain at least once was 3.21% and 
68.50%, respectively. 
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Fig 4.  Dynamic changes of the SIRS model in the competition between strains. (a) Competition 
between the Wild type and Alpha mutant strain. (b) Competition between Alpha and Beta strains. 
(c) Competition between Delta and Omicron strains. (d) Dynamics changes of susceptible 
individuals. 

 

In Figure 4-b, the total number of Covid-19 cases through the Alpha strain was nearly 2.8 times higher 
than that of the Beta strain. The key difference between Figure 4-b and Figure 4-a is that the Beta strain 
replaced the main strain and the overall number of infected individuals was distributed in a ratio of 3 to 
1. An important concern arises when two highly transmissible strains enter the community. Thus, we 
introduced the more virulent Delta variant and the less virulent Omicron variant into the network and 
their interaction among nodes yielded the dynamics of infected individuals as shown in Figure 4-c. 

The total number of infections for the Delta and Omicron strains was 11.54% and 89.96%, respectively. 
The mortality rate due to the disease was higher for the Delta strain, as its virulence was 91% greater 
than that of the Omicron strain. Even though the recovery rates were assumed to be the same for both 
strains, the number of deaths through the Delta and Omicron strains was 24.3% and 20.8%, respectively. 
It is important to note that the majority of deaths occurred as a result of the Delta strain.  

If we consider the time to reach the peak of the disease (tmax), we observe that it is almost half the time 
in Figure 4-c compared to Figures 4-a and 4-b. This is the reason why these strains are of concern to 
the World Health Organization (WHO). Due to their higher prevalence, a greater number of susceptible 
individuals are affected by the disease in a shorter period of time, resulting in a 28.33% increase in the 
number of infected individuals compared to the previous scenario. The dynamic curve of susceptible 
individuals in the competition between wt and α strains with α and β strains is similar. However, as 
depicted in Figure 4-d, when competing Delta and Omicron strains are involved, a larger number of 
susceptible individuals are affected by the disease. The difference in the minimum points between the 
previous two cases and the third case is 17.04%. This suggests that the virulence of both strains was 
higher in the previous two cases, but over time, the equilibrium point of susceptible individuals in the 
third case is 5.6% lower than that in the other two cases. Table 2 provides detailed information on these 
three cases for the competition of Covid-19 strains. 
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Table 2. Statistics of the results obtained for the SIRS model, in the state of competition different strains 
of Covid-19 

State3 State2 State1            Description Quantity   

513 1692 109 Peak domain of dynamics of infected individuals to 
strain 1 I1max 

3735 606 2199 Peak domain of dynamics of infected individuals to 
strain 2 I2max 

70 365 19 The total mean of dynamics of infected individuals 
to strain 1 I1avg 

685 126 3790 The total mean of dynamics of infected individuals 
to strain 2 I2avg 

5642 7345 7346 The minimum value of dynamics of susceptible 
individuals at the peak of the disease Smin 

10150 7317 7369 The total stats of infected individuals to disease Total Infected 

9698 6306 6384 The total stats of recovered individuals from 
disease Total Recovered 

451 1010 985 The total stats of removed individuals from disease Total Removed 
due to infection 

 

Based on the findings from Figure 3 and Figure 4, we can conclude that even if the 
transmissibility of a strain is approximately 70% higher than the other strain, most of the 
disease statistics in the society will often be attributed to the strain with the higher transmission 
rate (as seen in Figures 4-a and 4-b). Additionally, due to the higher transmission and virulence 
rates of the Delta strain compared to the Wild type, Alpha and Beta strains, the introduction of 
the Omicron strain, despite its lower virulence, resulted in more disease statistics compared to 
all the other strains. Therefore, this situation is a cause for concern in terms of increasing the 
overall disease burden, but it could also be seen as a positive scenario for the removal of a more 
dangerous strain from the society.  

 

3.2. The delayed state of competition of Covid-19 strains 

In this section, we explore the competition between the Wild type-Omicron and Alpha-
Omicron strains in a delayed state. In this scenario, the main strain initially spreads in the 
network and after a certain period, the second strain is introduced. Figures 3-a and 3-b depict 
the outbreak of the disease through the main and Alpha strains, respectively. The Alpha strain 
exhibits twice the mortality rate and peak infection level compared to the main strain. Our goal 
is to introduce a strain with a higher transmission rate into the network with a delay.  

In Figure 5-a, we introduce the less virulent Omicron strain when the main strain is in its 
maximum growth trend (maximum slope). In Figure 5-c, we insert the second strain before the 
maximum slope of the first strain. As observed in Figures 5-a and 5-c, the addition of the less 
virulent Omicron strain, with a higher prevalence compared to the main and Alpha strains (4.6 
and 4.8 times, respectively), results in a greater number of disease cases. In other words, the 
Omicron strain effectively suppresses the more virulent strains, acting as a vaccine-like agent. 
This process continues until the end of the epidemic. Consequently, as shown in Figure 5, the 
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dynamics of deaths are significantly lower in parts a and c, primarily due to the predominance 
of the Omicron strain.  

It is noteworthy that the second strain must have a higher transmission rate to effectively 
counteract the more virulent strains. Some experts suggest that Omicron may act as a natural 
vaccine since it shares certain similarities with weakened live vaccines[56]. Studies have 
shown that individuals infected with Omicron exhibit a significant immune response that can 
neutralize not only Omicron but also other variants of concern, including the prevalent Delta 
variant [57].  

If we introduce the second strain during the peak of infected individuals with the Alpha strain, 
as shown in Figures 5-b and 5-d, the Omicron strain fails to surpass the previous strain with 
higher transmissibility. The Wild type and Alpha strains, which are more contagious and fatal 
than the Omicron strain, result in 1.7 and 55 times more disease cases, respectively. Since the 
Alpha strain has infected a larger portion of the population, leading to more individuals entering 
the S2 class, the Omicron strain struggles to infect these individuals effectively. Consequently, 
the dynamics of infected individuals to the second strain appear almost as a straight line.  

Overall, the delayed introduction of the less virulent Omicron strain can significantly reduce 
the disease burden caused by more virulent strains, highlighting its potential role as a protective 
factor against the spread of highly contagious variants.   

 

 

 
Fig 5. Delay state diagram depicting the dynamic changes of the SIRS model during the 
competition between the Wild type, Alpha and Omicron strains. The colored hachure in the peak 
of the curves represents the error bars for 50 times experiments in each run. 
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3-.3. Investigating coinfection between covid-19 variants 

In this section, we examine the coinfection dynamics between the Delta and Omicron strains, 
collectively referred to as Deltacron, by analyzing the behavior of co-infected individuals for 
different values of parameter a, specifically a = 0.1, 0.5, 1 and 2. 

When considering values of a < 1 (see Figure 6), which correspond to lower levels of 
coinfection, we observe that the dynamics of infected individuals for the Delta strain reaches 
its peak 10 days earlier than that of the Omicron strain. This can be attributed to the weaker co-
infectious conversion between infected individuals of the Omicron and Delta strains, resulting 
in a lower rate of conversion and the earlier peak for the Delta strain due to its higher virulence.  

There are two noteworthy observations in this scenario. Firstly, the slope reduction between 
the interval [50, 100] for the Delta strain dynamics is more significant for a = 0.1 compared to 
a = 0.5. This reduction becomes smoother as the presence of co-infected individuals increases 
and they transition to classes I1 and I2. For example, the slope decreases from -5.6 for a = 0.1 
to -3.8 for a = 0.5 in this interval. 

Secondly, as the coefficient a increases, the dynamics of co-infected individuals show an 
overall increase. Despite the Omicron strain being dominant, the shape of the Delta strain 
dynamics differs before reaching its peak (see Figures 5-c and 5-d). For instance, when a = 1 
in the interval [10, 20], all three dynamics initially exhibit an increasing trend, with the share 
of coinfection through the Delta strain being approximately 20% higher than that of Omicron. 
This is due to the random network structure and the interaction between infected individuals 
of both strains, where the Delta strain has a higher chance of selection for coinfection. Over 
time, as the Omicron strain becomes more prevalent, it gradually surpasses the Delta strain, 
reaching its peak at t = 32. In the interval [20, 32], the share of coinfection through the Omicron 
strain becomes greater than that of Delta, leading to a gradual decrease in the dynamics of 
Delta-infected individuals with a slope of -2. Meanwhile, the dynamics of individuals in class 
I1 continue to increase until they reach their peak at t = 51. Moreover, in [32, 51], the Omicron 
strain is involved in coinfection nearly 60% more than the Delta strain. As the dynamics of 
class I2 decline and the dynamics of class I1 culminate, the dynamics of coinfection align with 
that of class I1. From t = 51 onwards, all three dynamics exhibit a decreasing trend. 
Consequently, higher values of a lead to an earlier peak in the dynamics of infected individuals 
for the Omicron strain compared to the Delta strain and coinfection. Subsequently, all three 
curves gradually decline, signifying the end of the epidemic after approximately 250 days. 

In general, if individuals in the coinfection class (I12) are rapidly removed, the I12 class 
decreases to zero. The total number of removals, as indicated by relation (1) [43], is given by 
Г = γ12 + γ21 + δ12. Thus, the reduction of co-infected individuals is approximated by the rapid 
elimination of these individuals through rapid recovery from either strain or by an increase in 
mortality due to double infection itself. Table 3 provides the results for the four aforementioned 
cases. It is worth noting that although the network size is N = 104, the numbers in Table 3 
appear larger. For instance, in the case of a = 2, the total number of patients is 23,459, implying 
that individuals who have had the disease and recovered remain susceptible to reinfection. For 
this specific case, the number of individuals infected with the Delta, Omicron and Deltacron 
strains at least once is 2,203, 7,680 and 4,997, respectively.  
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Fig 6. Dynamic changes diagram of the SIRS model illustrating the competition between different 
variants of Covid-19 for different coefficients of a in the coinfection state.  

 

With an increase in the coefficient ai, a remarkable rise in the dynamics of the coinfection class 
is observed. Additionally, the dynamics of susceptible individuals decrease, as illustrated in 
Figure 7. 

 
Table 3. Statistics of SIRS model results, for four coinfection state of Deltacron 

a=2 a=1 a=0.5 a=0.1 Description State 

529 385 476 562 Peak domain of dynamics of infected individuals to 
strain 1 I1max 

2640 3208 3400 3611 Peak domain of dynamics of infected individuals to 
strain 2 I2max 

2181 1177 644 145 Peak domain of dynamics of co-infected individuals 
to strain 12 I12max 

159 108 92 80 The total mean of dynamics of infected individuals 
to strain 1 I1avg 

487 598 642 672 The total mean of dynamics of infected individuals 
to strain 2 

I2avg 

445 218 104 20 The total mean of dynamics of co-infected 
individuals to strain 12 I12avg 

4777 5232 5390 5569 The minimum value of dynamics of susceptible 
individuals at the peak of the disease Smin 

23459 16737 13294 10744 The total stats of infected individuals to disease Total Infected 
19779 14694 12083 10137 The total stats of recovered individuals from disease Total Recovered 

2206 1304 864 5490 The total stats of removed individuals from disease Total Removed 
due to infection 
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Fig 7. Dynamic changes of susceptible individuals in four different scenarios of 
Deltacron outbreak. 

 

3.4. The impact of topology 

This section explores the influence of network topology on the dynamics of infection 
spreading. In addition to the previously discussed Erdős-Rényi (ER) network, we now 
investigate the Barabási-Albert (BA) and Watts-Strogatz (WS) networks to understand the 
competition between the Omicron and Delta variants, as well as the coinfection state involving 
these two strains. 

We examine the performance of the model on the WS network with different rewiring 
probabilities: P = 0 (representing the regular state), P = 0.1 (exhibiting small-world features) 
and P = 1 (representing the random state). This analysis encompasses both the single infection 
and coinfection models. 

Despite the heterogeneity and the presence of a hub in the BA network (due to the limited 
network size), the results associated with this network structure align with those observed in 
the ER random network and the WS random state. Figure 8 illustrates that no significant 
differences are discernible, with the average total disease proportion in parts c and d being 
equal to 7.55%. 

The average ratio of the clustering coefficient to the average path length in parts a, b and c is 
0.001, 0.08 and 0.0002, respectively. Furthermore, the average total disease proportions for 
cases a, b and c are 0.64%, 7.47% and 7.55%, respectively. The larger average path length in 
case a contributes to a mortality rate that is 3.2 times higher than that observed in the other two 
cases. By comparing these three states, we find that the regular state of the WS network exhibits 
a smaller disease prevalence throughout the epidemic. 
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The primary distinction between states b and c lies in the infection peak time for each strain. 
Although the curves in these two states are almost identical, the small-world feature causes 
infections to occur later. The formation of clusters in the network leads to a higher prevalence 
of single-strain infections compared to coinfections. Conversely, in the random state, the 
occurrence of two-strain infections is more widespread, resulting in earlier infections among 
nodes. As depicted in Figure 9, the difference in the trough point of susceptible individuals 
dynamics for part b compared to the WS random network is 5.38% and this drop occurs 22 
days later than in the random state. 

All three states b, c and d exhibit similar disease prevalence. Therefore, at the end of the 
epidemic, they converge to the same equilibrium point in Figure 9. Compared to the regular 
case, the difference in the equilibrium state is approximately 3%, indicating that the number of 
removed individuals is around 300 higher in the random network than in the regular network. 

 

 
Fig 8. Dynamic changes of the SIRS model depicting the competition between Delta and 
Omicron strains in the Barabasi-Albert (BA) and Watts-Strogatz (WS) network structures.  

The coinfection state of the four aforementioned network structures is depicted in Figure 10. It 
is evident that the average number of dynamically co-infected individuals in the WS network 
with P=0 is negligible compared to the other structures. In part b (representing the small-world 
network), the average total disease prevalence is approximately 0.2% higher than in the two 
random cases, c and d. However, the average coinfection rate in part b is only half of that 
observed in the random cases. This reduced occurrence of strain coexistence represents the 
main difference between part b and the random states, c and d. 

As shown in Figure 10 (b, c and d), the mortality caused by Deltacron is higher than that caused 
by both the Delta and Omicron strains. Additionally, the mortality resulting from coinfection 
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in part b is roughly half of that observed in the random states. Recent explanations indicate that 
Deltacron exhibits significantly higher virulence. 

 

Fig 9. Dynamic changes of susceptible individuals in the Watts-Strogatz (WS) and 
Barabasi-Albert (BA) network structures for three different states.  

In accordance with Figure 3-d, the Delta strain, known for its high severity and wide range of 
diseases and mortality, diminishes from the epidemic scene when the Omicron strain is present. 
This disappearance of the dangerous Delta and Deltacron strains occurs within approximately 
250 days, resulting in a reduced disease prevalence.  

 

Table 4. Summary statistics from the SIRS model showcasing the competition between various strains of 
Covid-19 across different network structures. 

state Description WS(P=0) WS(P=0.1) WS(P=1) ER BA 

I1max Peak domain of dynamics of infected 
individuals to strain 1 91 463 587 513 571 

I2max Peak domain of dynamics of infected 
individuals to strain 2 204 3212 3677 3735 3674 

I1avg The total mean of dynamics of 
infected individuals to strain1 13 81 80 70 79 

I2avg The total mean of dynamics of 
infected individuals to strain 2 51 665 676 685 671 

Smin 
The minimum value of dynamics of 
susceptible individuals at the peak of 
the disease 

9660 6156 5618 5642 5637 

tmax(δ) 
The time of culminated dynamics 
of infected individuals to Delta 
strain 

40 51 30 30 30 

tmax(o) 
The time of culminated dynamics 
of infected individuals to Omicron 
strain 

66 59 37 37 37 

Total Infected The total stats of infected individuals 
to disease 2175 10049 10156 10150 10097 

Total Recovered The total stats of recovered 
individuals from disease 2025 9565 9677 9698 9622 

Total Removed 
due to infection 

The total stats of removed 
individuals from disease 150 482 479 451 474 
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Fig 10.  Temporal evolution of the SIRS model in the coinfection state of Delta and 
Omicron strains, comparing the network structures of Barabasi-Albert (BA) and Watts-
Strogatz (WS).  

Table 5.  Summary statistics of the results obtained from the SIRS model for the coinfection strain 
Deltacron across different network structures.  

BA ER WS(P=1) WS(P=0.1) WS(P=0) Description State 

398 385 416 409 125 Peak domain of dynamics of infected 
individuals to strain 1 

I1max 

3167 3208 3098 3006 324 Peak domain of dynamics of infected 
individuals to strain 2 

I2max 

1159 1177 1269 506 26 Peak domain of dynamics of co-infected 
individuals to strain 12 

I12max 

112 108 118 89 17 The total mean of dynamics of infected 
individuals to strain 1 

I1avg 

592 598 584 636 77 The total mean of dynamics of infected 
individuals to strain 2 

I2avg 

215 218 235 100 2 The total mean of dynamics of co-
infected individuals to strain 12 

I12avg 

5240 5232 5178 5923 9452 
The minimum value of dynamics of 
susceptible individuals at the peak of the 
disease 

Smin 

51 51 51 42 44 The time of culminated dynamics of 
infected individuals to Delta strain 

tmax(δ) 

32 32 31 54 76 The time of culminated dynamics of 
infected individuals to Omicron strain 

tmax(o) 

49 49 48 68 35 The time of culminated dynamics of 
infected individuals to Deltacron 

tmax(Deltacron) 

16631 16737 17258 13085 3414 The total stats of infected individuals to 
disease 

Total Infected 

14606 14694 15075 11907 3172 
The total stats of recovered individuals 
from disease 

Total 
Recovered 

1301 1304 1385 843 201 
The total stats of removed individuals 
from disease 

Total 
Removed 
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The abundance of infected individuals to the Delta and Omicron strains for their first, second, 
third and fourth occurrences is displayed. As the Omicron strain exhibits dominance, the 
number of engagements with this strain surpasses that of the Delta strain and spans a wider 
range. In the WS network with a rewiring probability of P=0.1 (small-world feature), the 
prevalence domain of the Delta strain is nearly equivalent to that of the random networks for 
the first occurrence of infection, while it doubles for the second occurrence. This difference 
can be attributed to the substantial clustering observed in the small-world network. 

  

 

Fig 11. Bar plot depicting the cumulative count of individuals experiencing multiple infections by the 
Delta and Omicron strains in the competitive model. 

    

In the coinfection model (refer to Figure 12), the Omicron strain exhibits progression up to the 
third occurrence and during the second and third occurrences, the WS network with a rewiring 
probability of P=0.1 generates a larger domain compared to the random networks. Moreover, 
the prevalence of the coinfection state in this network is significantly lower than in random 
networks. This discrepancy arises from the fact that networks with a small-world feature 
exhibit a higher average ratio of clustering coefficient to average path length compared to 
random networks. Consequently, numerous clusters form within the small-world network, 
resulting in a higher prevalence of single infections within these clusters. As a result, 
individuals infected with one strain are less likely to encounter the second strain within their 
local neighborhood, leading to a lower incidence of coinfection. In random networks, however, 
the distribution of both strains is more random throughout the network, promoting a more 
widespread occurrence of coinfection in the homogeneous Erdős-Rényi network (characterized 
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by greater randomness) and the heterogeneous Barabasi-Albert network (featuring the presence 
of hubs). 

 

 

Fig 12. Bar chart illustrating the cumulative count of individuals infected multiple times by the Delta, 
Omicron and Deltacron strains in the coinfection model. 

   

4. Conclusion 

This study comprehensively investigated two epidemic models, focusing on single infection 
and coinfection scenarios to examine the dynamics of multi-infectious models. The Alpha and 
Beta strains, characterized by higher transmissibility, contributed to a larger epidemic range. 
Moreover, the Delta strain emerged as significantly more virulent and invasive than previous 
strains, warranting major concern.  

Among the Variants of Concern (Omicron, Alpha, Beta, Gamma and Delta), the relatively less 
virulent Omicron strain assumed a dominant role and became the primary focus of 
investigation. Its interactions with other Variants of Concern were explored across random 
networks and various social network structures. In each case, Omicron exhibited superior 
competitive advantage, leading to its widespread prevalence in society. By effectively 
displacing the more virulent strains, Omicron prevented further transmission of infections and 
facilitated the transition of infected individuals into the removed class.  

This dominance of the Omicron strain is prominently evident in the delayed state, where its 
introduction as the secondary strain gradually diminished the prevalence of more virulent 
strains. Remarkably, Omicron acted akin to a vaccine by swiftly suppressing the dangerous 
strain within the population.  
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Furthermore, in the coinfection state within the Erdős-Rényi (ER) network, an increase in the 
coinfection coefficient (a) corresponded to an escalation in the dynamics of coinfection 
individuals, while the dynamics of infected individuals to the Delta strain diminished over time. 
When analyzing the impact of network topology, it became apparent that the high ratio of 
average clustering coefficient to average path length in the Watts Strogatz (WS) network with 
small-world features, in comparison to random and Barabasi-Albert (BA) networks, resulted 
in a reduced occurrence of coinfection. This can be attributed to the formation of clusters 
predominantly hosting single infections and having fewer neighboring individuals infected 
with the second strain within their adjacency.  

In summary, this research sheds light on the dynamics of epidemic models, highlighting the 
dominance of the Omicron strain as a less virulent yet highly competitive variant. The findings 
underscore the efficacy of Omicron in supplanting more virulent strains and its potential role 
in mitigating the spread of infectious diseases. The study also emphasizes the influence of 
network topology on the occurrence of coinfection, with the small-world structure exhibiting 
distinct characteristics that limit the prevalence of simultaneous infections. These insights 
contribute to our understanding of epidemic dynamics and can inform strategies for disease 
control and prevention.  
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