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Graphical abstract: Presurgical white matter mapping using probabilistic CSD tractography 
is more accurate and sensitive than manual DTI FACT or automated probabilistic DTI 
tractography. This study included 22 patients with DES data, which was used as the ground 
truth. Distance in mm between tractograms and DES data resulted in 860 datapoints, 685 of 
which belonged to the CST and were used for linear modeling, DTI = diffusion tensor imaging, 
CSD = constrained spherical deconvolution, TCK = tractogram/tractography, FWE = family-
wise error rate, AUC = area under the curve 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.13.23290806doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.13.23290806
http://creativecommons.org/licenses/by/4.0/


 

 4 

Abstract 
Objectives 
Accurate presurgical brain mapping enables preoperative risk assessment and 

intraoperative guidance. This work investigated whether constrained spherical 

deconvolution (CSD) methods were more accurate than diffusion tensor imaging 

(DTI)-based methods for presurgical white matter mapping using intraoperative direct 

electrical stimulation (DES) as the ground truth. 

Material and methods 
Five different tractography methods were compared (3 DTI-based and 2 CSD-based) 

in 22 preoperative neurosurgical patients. The corticospinal tract (CST, N=20) and 

arcuate fasciculus (AF, N=7) bundles were reconstructed, then minimum distances 

between tractograms and DES coordinates were compared between tractography 

methods. Receiver-operating characteristic (ROC) curves were used for both bundles. 

For the CST, binary agreement, linear modeling, and posthoc testing were used to 

compare tractography methods while correcting for relative lesion and bundle 

volumes. 

Results  
Distance measures between 154 positive (functional response, pDES) and negative 

(no response, nDES) coordinates, and 134 tractograms resulted in 860 data points. 

Higher agreement was found between pDES coordinates and CSD-based compared 

to DTI-based tractograms. ROC curves showed overall higher sensitivity at shorter 

distance cutoffs for CSD (8.5 mm) compared to DTI (14.5 mm). CSD-based CST 

tractograms showed significantly higher agreement with pDES, which was confirmed 

by linear modeling and posthoc tests (PFWE < 0.05).  
Conclusion 
CSD-based CST tractograms were more accurate than DTI-based ones when 

validated using DES-based assessment of motor and sensory function. This 

demonstrates the potential benefits of structural mapping using CSD in clinical 

practice. 

Clinical relevance statement 
CSD-based tractograms of the CST are more sensitive than DTI-based tractograms 

when validated against sensory-motor DES mapping. This also demonstrated the 

feasibility of fully-automated CSD-based tractography for presurgical planning of the 

CST.  
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Introduction 

Modern neurosurgery strives to optimize functional preservation and therapeutic 

outcomes. The gold-standard for function-preserving brain surgery[1] is intraoperative 

direct electrical stimulation (DES) during awake-surgery with image-guided 

neuronavigation. Magnetic resonance imaging (MRI)-based non-invasive brain 

mapping, normally complements and guides DES[2–5].  However, it may be the sole 

mapping method available in patients where the gold-standard is not feasible due to 

its complexity and potential complications[6–8].   

Here we focused on presurgical mapping with diffusion MRI (dMRI)-based fiber 

tractography (FT). FT is the rendering of white matter fasciculi in 3D using dMRI signal 

contrast and computational modeling[9]. Due to its clinical accessibility and 

validation[10–14], the most commonly used FT approach in neurosurgical settings is 

diffusion tensor imaging (DTI)-based fiber assignment by continuous tracking 

(FACT)[15]. 

DTI-FACT suffers from multiple limitations making it suboptimal in neurosurgical 

practice. DTI assumes a single fiber direction per voxel, which compromises the 

accuracy of modeled streamline trajectories in voxels containing complex fiber 

architecture, leading to underestimation of the true extent of fiber bundles[16, 17]. DTI-

FACT is also confounded by lesion-effects, as perilesional edema can compromise 

sensitivity to fiber orientation, resulting in false-negatives, i.e., missing 

streamlines/tracts. Additionally, FT suffers from user-bias and limited reproducibility 

when manual region of interest (ROIs) definition is used, which is the most common 

approach in clinical practice. These short-comings limit the accuracy of presurgical 

fiber tracking and motivate exploring alternative methods using automation, and 

higher-order model based tractography[16]. 

High angular-resolution imaging (HARDI) methods like constrained spherical 

deconvolution (CSD)[18] can address the limitations of DTI-FACT[19–25]. However, 

HARDI typically requires a more complex data acquisition compared to DTI[26–29]. 

Some techniques, such as CSD have been shown to improve tractography based on 

single-shell low angular-resolution clinical data[30, 31]. Probabilistic-FT tends to have 

a higher sensitivity compared to deterministic-FT, and thus may be preferable in a 

surgical setting where false-negatives are more critical. Anatomically-constrained 
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tractography (ACT)[32] may also improve accuracy of clinical tractography by 

constraining streamline origin/termination to the gray-white matter interface. 

In this study we compared distance measures between DES coordinates acquired 

intraoperatively through pathology-tailored craniotomies and tractograms generated 

with deterministic DTI-FACT, probabilistic-DTI, and probabilistic-CSD, with and 

without ACT, to determine their respective suitability for presurgical mapping. We 

focused on the corticospinal tract (CST) and arcuate fasciculus (AF) given their 

relevance in clinical practice as primary pathways for sensory-motor and language 

functions. 

Methodology 

Research questions 
We investigated the following research questions (RQ) in order to evaluate the 

performance of CSD- and DTI-based tractography with DES as the ground truth: 

RQ1: How do distance measures between tractograms and DES coordinates compare 

between different tractography methods? 

RQ2: How do these methods compare in binary agreement/disagreement with DES 

at different distance cutoffs? 
RQ3: Are differences between tractography methods in the CST dependent on bundle 

volume and/or lesion volume? 

Participants 
We recruited 79 surgery-naïve patients referred for presurgical fMRI and DTI between 

01/2019 and 01/2021, 22 patients also underwent intraoperative DES mapping (14 

males, age=8 – 73 years, median=39.5, IQR=28, Neoplasms=18 and focal cortical 

dysplasia=4). Each patient was informed about the study and signed a written 

informed consent before participation, in accordance with the declaration of Helsinki. 

Local ethics committee approval was obtained (UZ/KU Leuven, Leuven, Belgium, 

S61759). Participating patients were excluded if they had undergone previous 

resective brain surgery, had brain implants, ventriculoperitoneal shunts, or had 

absolute contraindications to MRI. Detailed demographics and pathological 

information can be found in S.table 1. 
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MRI acquisition 
Two 3-tesla MRI scanners were used for multimodal presurgical MRI scanning 

(Ingenia - Elition, and Achieva DStream, Philips Medical Systems, Best, The 

Netherlands), both with 32-channel receive head coils. The acquisition parameters for 

3D T1-weighted images, T2- and T2 fluid attenuation inversion recovery (FLAIR) 

images were previously described [33]. Multi-shell dMRI data and reversed phase B0 

images were acquired whenever feasible and tolerated by the patient, see Table 1. 

Single-shell data with or without reversed phase B0 images were used if multi-shell 

data couldn’t be acquired, see S.table 2.  

Table 1: MRI acquisition parameters 

 dMRI - part1 dMRI - part2 dMRI - part3 

Pulse sequence 2D spin-echo EPI 

Acquisition plane Axial 

TR/TE ms 4500/85 

FA ° 85 

Voxel size in mm^3 1.96*1.96*2.00 

Acquisition matrix 112*112*69 

In-plane acceleration SENSE 1.6 

Multiband 3 

Pixel BW 2997 

PE direction AP 

Fat shift direction A P 

Bvalue (s/mm^2) 1200 2500 0 

Number of diffusion directions 127 124 0 

Number of non-diffusion volumes 1 4 - 9 4 - 7 

dMRI = diffusion magnetic resonance imaging, EPI = echo planar imaging, TR = repetition time, TE = echo 
time, ms = milliseconds, FA = flip angle, SENSE = SENSitivity encoding in plane parallel imaging acceleration, 

BW = bandwidth, PE = phase encoding, AP = anteroposterior, A = anterior, P = posterior 
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Intraoperative brain mapping 
Twenty patients underwent awake neurosurgery and DES, and 2 patients underwent 

DES with motor and somatosensory evoked potentials (MEP/SSEP). Intraoperative 

frameless neuronavigation (Curve, BrainLab, Munich, Germany) was employed in all 

cases. DES used the OSIRIS neurostimulator (Inomed Medizintechnik GmbH, 

Germany), and a bipolar fork stimulator with 5mm inter-electrode spacing for cortical 

mapping, and a monopolar suction-stimulator for subcortical mapping. 

Data analysis 
Figure 1 shows a schematic representation of the data preprocessing and analysis 

workflow. All acquired images were converted to the brain imaging data structure 

format (BIDS) [34] format using the KU Leuven Neuroimaging suite (KUL_NIS) [35] 

(https://github.com/treanus/KUL_NIS) and dcm2bids [36]. 

Figure 1: Schematic representation of the data preprocessing and analysis workflow used to 
compare different tractography results to intraoperative mapping outcome. MRI = magnetic 
resonance imaging, KUL_NIS = KU Leuven neuroimaging suite, BIDS = brain imaging data 
structure, KUL_VBG = KU Leuven virtual brain grafting, KUL_FWT = KU Leuven fun with 
tracts, DTI = diffusion tensor imaging, FACT = fiber assignment by continuous tracking, DSC 
= dice similarity coefficient, JI = Jaccard index  
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Structural images 
Semi-automated classification in ITK-snap v3.8.0[37] was used for lesion 

segmentation using T1, T2, T2-FLAIR and contrast-enhanced T1-weighted images. 

KU Leuven Virtual brain grafting v0.52 (VBG)[33] (https://github.com/KUL-

Radneuron/KUL_VBG) was used for T1 lesion-filling and T1 parcellation[38–40]. 

FreeSurfer[39] generated 1mm isotropic T1-weighted images were used as base 

images for calculating distances. Lesion volume, total intracranial volume (TIV), and 

lesion mask to TIV ratios were also calculated per patient. 

Diffusion-weighted images 
Routine clinical dMRI analysis involved in-line rigid interframe registration for motion 

correction on a clinical workstation (Philips Medical Systems, Best, The Netherlands). 

Advanced dMRI preprocessing used the KUL_dwiprep.sh script[35], which relies on 

FSL v6.0[41], ANTs v2.3.0[42, 43] and MRtrix3 v3.0.3[44] for denoising, correction of 

Gibbs ringing, subject motion, Eddy current artifacts, echo-planar imaging (EPI) 

distortion, and imaging bias. This was followed by DTI and CSD model fitting in 

MRtrix3[44–46]. FSL’s topup[47] was used for EPI distortion correction if reversed 

phase B0 images were available, and synB0-DisCo v3.0[48] if not. 

Tractography 
Five different tractography methods were included: The standard clinical DTI-FACT 

based on manual white matter ROIs delineated[49] by 2 experienced operators on the 

Philips FiberTrack software was used as the reference method (FACT). Additionally, 

we included 4 automated approaches using probabilistic tensor-based tractography 

(TP)[50], and anatomically-filtered TP similar to ACT[32] (ATP), and probabilistic-CSD 

tractography using second order integration over fiber orientation distributions 

(iFOD2)[51], and anatomically-filtered iFOD2 (AiFOD2). This resulted in 5 different 

versions of every bundle of interest. 

Automated tractography (TP, ATP, iFOD2, and AiFOD2) was done using the bundle-

specific approach in KU Leuven Fun With Tracts v0.6 (KUL_FWT)[52] 

(https://github.com/KUL-Radneuron/KUL_FWT) with the addition of a model-based 

tractogram filtering step using streamline clustering (see supplementary methods). 

Automated tractography was done with 15,000(CST) and 6,000(AF) required number 

of streamlines for initial bundles. All generated tractograms were visually assessed for 
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quality before further analysis. ANTs[42, 43] registration was used to bring all results 

to each subject’s T1 space for quantitative comparisons. Voxel-wise volumes for each 

bundle and bundle to TIV ratios were calculated per patient. 

DES coordinates processing and distance measures 
Saved DES coordinates were exported from the neuronavigator and used to create 

spheres with 5mm radii[53] in FSL[41] in the same space as the anatomical image 

used during surgery, then warped to T1 space with ANTs[42, 43] for comparison with 

the tractography results. Minimum Euclidean distances were calculated between all 

DES coordinates and all voxels of the corresponding tractogram in Python v3.8. 

Distance measures were rounded up to integers (in mm) because increments smaller 

than a single voxel (1mm) were not considered meaningful. 

Statistical testing 
Exploratory analysis 
Distances between DES coordinates and tractograms can be considered akin to 

screening test results, and can thus be compared using confusion matrices, and ROC 

curves. However, due to the small sample size, and intersubject variation in number 

of DES coordinates, tractograms, and lesion size we opted for a more in-depth 

analysis. First (RQ1) we plotted the raw distance measures[54], then distances were 

averaged for each patient per DES response type to remedy the bias for patients with 

higher number of datapoints and ROC[55] curves were used to explore differences in 

sensitivity, specificity, and Youden’s index[56] ideal cutoffs.  

Binary agreement/disagreement rates (RQ2) at different distance cutoffs were 

calculated and assessed using confusion matrices. Tractogram-DES pairs with 

distance less than the cutoff represented positive datapoints, true-positives if involving 

pDES, and false-positives if nDES, and those with distance above the cutoff 

represented negative datapoints, true-negatives if involving nDES and false-negatives 

if involving pDES. 

Two-part linear modeling 
Distance data thresholded at the cutoff determined by ROC of all pooled data were 

used for a two-part linear mixed model and posthoc testing to compare FT methods 

while correcting for differences in relative volumes of tractograms and lesions per 

patient. The thresholded distances data were a semicontinuous variable with excess 
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zeros and an extremely right-skewed distribution, violating assumptions of normality. 

Therefore, and given the within-subjects nesting of repeated distance measures , we 

opted for a two-part model for longitudinal data[57, 58] (RQ3). The model was 

estimated with the %MIXCORR macro provided by Tooze, Gunwald and Jones, 

2002[58] and PROC NLMIXED in SAS studio v9.4 (SAS Institute, Cary, NC, USA).  

The first part (A) predicted the probability of overlap (distance=0), and the second part 

(B) predicted the distances between nonoverlapping (distance>0) tractogram-DES 

coordinate pairs. Distances were the dependent variable and DES response, and 

tractography method (FACT, TP, ATP, iFOD2, and AiFOD2) were used as predictors 

in both parts of the model. Bundle-to-TIV and lesion-to-TIV ratios, were used as 

covariates of noninterest. Adaptive Hochberg’s[59] family-wise error-rate (FWE) 

correction was used to control for type(I) error in posthoc testing. Further detail can be 

found in supplementary material. 

Results 

Lesion segmentation, inpainting and tractography 
Lesion masks had a median volume=44.70ml, minimum=1.20, maximum=232.129, 

and IQR=67.74ml. Figure 2 shows the cumulative voxel-wise distribution of lesions in 

this sample of patients over the whole brain in MNI152 space. Lesion-inpainting and 

structural parcellation was successful in all patients. Tractography yielded 134 out of 

135 attempted bundle reconstructions, with 1 failed right CST TP tractography 

(PT006). No bundles were excluded on inspection and none were repeated. Figure 3 
and S.figure 1 show all generated CST and AF tractograms, respectively. All methods 

showed a good level of visual agreement, but CSD-based methods resulted in more 

extensive tractograms. CSD captured the characteristic fanning of the CST into the 

lateral and inferior sensory-motor cortex, while DTI did not show this appearance, and 

AF CSD reconstructions reached further into the inferior frontal gyri and temporal lobes 

compared to DTI. As part of tractogram quality analysis we also explored the similarity 

of bundles generated with different FT methods, see supplementary material and 

S.table 5 for details. 
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Intraoperative mapping and distance measures 
DES mapping resulted in 51 pDES and 123 nDES coordinates, 3 patients had only 

nDES coordinates, namely PT011, PT012 and PT022, while 3 patients had only pDES 

coordinates, namely PT010, PT013, and PT015. S.table 2 lists the DES tests, number 

of resulting pDES and nDES coordinates, elicited pDES response, acquired dMRI 

data, and bundle(s)-of-interest per patient. Figure 4 shows images from 4 exemplar 

cases demonstrating the DES spheres and tractography results. Each tractogram was 

paired with pDES coordinates, and all nDES coordinates for distance measures, 

resulting in 860 distance measures with 174 measures for all methods except TP, 

which had 164 due to the failed right CST for PT006. S.table 3 lists summarized 

descriptive statistics for distance measures, and S.figure 2 shows the distribution of 

distances per bundle and DES response. 

Figure 2: Spatial distribution of lesions from all patients overlaid onto the UK biobank T1 
template brain in standard Montreal neurological institute (MNI) space. Perilesional edema 
was included in the masks of neoplasms if present. Overlay voxel intensities correspond to 
the sum of overlapping lesion masks from different patients. R = right, L = Left, slice numbers 
are indicated for the first, middle and last slices. 
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Figure 3: Corticospinal tractograms representative images from all methods in anterior view. The FACT tractogram outputs shown in blue are 
generated from volume rendered voxel masks with the T1-brain image silhouette shown underneath. The other 4 methods TP, ATP, iFOD2, and 
AiFOD2 are shown as 3D rendered streamlines with end-point directional color coding. All images are shown in radiological orientation. PT = 
patient, FACT = fiber assignment by continuous tracking, TP tensor probabilistic, ATP = anatomically constrained tensor probabilistic, iFOD2 = 
probabilistic tractography by second order integration over spherical harmonics, AiFOD2 = anatomically constrained iFOD2 
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Figure 4: DES spheres, lesion masks and tractograms overlaid onto surface-rendered T1 images, for four example patients as generated with 
TP and iFOD2. Positive DES spheres are shown in semitransparent orange and their centers are shown in opaque orange, negative DES spheres 
are shown in semitransparent light blue with opaque blue centers. Tractograms are shown in endpoint-based directional color coding. TP = tensor 
probabilistic, iFOD2 = probabilistic tractography based on second order integration of spherical harmonic distributions, CST = corticospinal tract, 
AF = arcuate fasciculus, A = anterior, P = posterior, I = inferior, R = right 
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Statistical testing 

Exploratory analysis 

The CST and AF tractograms tended to be closer to pDES than to nDES coordinates, 

regardless of FT method. CSD-based tractograms showed shorter distances than DTI-

based tractograms to both nDES and pDES coordinates (RQ2), see S.figure 2 for 

plots of unthresholded distances. ROC curves for distance measures of all FT 

methods pooled together, as well as for both CSD-based and DTI-based FT methods 

are shown in Figure 5, and S.figures 3 and 4 show the ROC curves for pooled raw 

distances, and each FT method separately with and without averaging.  

Figure 5: ROC curves and optimal distance cutoffs calculated using Youden’s method. 
Results for pooled data from all methods are shown in black, DTI (FACT, TP and ATP) in blue, 
and CSD (iFOD2 and AiFOD2) in red, FACT = fiber assignment by continuous tracking, TP 
tensor probabilistic, ATP = anatomically constrained tensor probabilistic, iFOD2 = probabilistic 
tractography by second order integration over spherical harmonics, AiFOD2 = anatomically 
constrained iFOD2 
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All ROC curves showed notable increase in sensitivity and comparatively smaller 

decrease in specificity for CSD-based compared to DTI-based FT, but there were no 

significant differences in AUC on pairwise DeLong tests, see S.table 4. Youden’s 

index determined distance cutoffs were also notably smaller for CSD-based methods 

(pooled=5.5mm, iFOD2=6.5mm, and AiFOD2=5.5mm) than DTI-based methods 

(pooled=13.5mm, FACT=19.5mm, TP=13mm and ATP=14.5mm), and the cutoff 

determined from all pooled data was 12.5mm. CSD-based methods were also 

associated with higher sensitivity at all ROC determined thresholds. 

We used the 3 cutoffs determined from ROCs of pooled data of all methods, CSD, and 

DTI to define binary agreement/disagreement counts (RQ2) to compare FT methods 

using confusion matrices, see Table 2. These showed higher sensitivity and lower 

specificity for CSD-based compared to DTI-based tractography in both bundles at all 

distance cutoffs.  

Table 2: Summarized binary agreement/disagreement confusion matrix results for all 
Tractogram-DES pairs 

FT methods 
Thresholds 

(mm) 
Accuracy Sensitivity Specificity Pos Pred 

Value 
Neg Pred 

Value 

FACT 
5.5 75% 33% 92% 63% 77% 

12.5 71% 61% 75% 50% 82% 

13.5 71% 65% 74% 51% 83% 

TP 
5.5 68% 39% 80% 45% 76% 

12.5 70% 67% 72% 49% 84% 

13.5 70% 67% 71% 49% 84% 

ATP 
5.5 69% 25% 87% 45% 74% 

12.5 72% 57% 78% 52% 81% 

13.5 72% 59% 77% 52% 82% 

iFOD2 
5.5 74% 65% 77% 54% 84% 

12.5 57% 88% 45% 40% 90% 

13.5 57% 90% 43% 40% 91% 

AiFOD2 
5.5 75% 71% 77% 56% 86% 

12.5 60% 92% 47% 42% 94% 

13.5 58% 92% 44% 41% 93% 

FT = fiber tractography, Pos Pred = positive predictive, Neg Pred = negative predictive 
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Two-part model 

The two-part linear model (RQ3) showed a significant main effect of tractography 

methods, and DES response type in both parts of the model. CSD-based methods 

(iFOD2 and AiFOD2) had larger probabilities of overlap (<12.5mm) and smaller 

distances (>12.5mm) compared to DTI-based methods (FACT, TP, ATP) for both 

pDES and nDES coordinates. Results also showed that pDES coordinates had 

significantly higher probability of overlap (T(18) = -7.70, p < 0.001), and were closer to 

tractograms than nDES coordinates were (T(18) = -5.09, p < 0.001). Bundle-to-TIV 

ratio had a significant effect (T(18) = -2.55, p = 0.020) only in the logistic part. 

No significant interaction was found between DES response type and tractography 

method for the CST, indicating that differences between nDES and pDES were not 

significantly different between FT methods. Posthoc testing controlling for lesion-to-

TIV and bundle-to-TIV ratios showed that CSD-based tractograms were more likely to 

overlap with and be closer to DES coordinates compared to DTI-based tractograms. 

These results are detailed in Table 3 and Figure 6, and S.figure 5 and S.table 6 show 

results with 10.5mm distance cutoff. 

Table 3: Results of post hoc tests after two-part linear modeling for the CST at 12.5 mm 
distance cutoff 

Test Df Model T Puncorr PFWE Model T Puncorr PFWE 

FACT v TP for DES and CST 18 A -1.08 0.296 0.591 B -1.27 0.220 0.783 

FACT v ATP for DES and CST 18 A -2.19 0.041 0.083 B -2.36 0.030 0.195 

FACT v iFOD2 DES and CST 18 A 5.98 <0.001 <0.001 B 5.51 <0.001 <0.001 

FACT v AiFOD2 DES and CST 18 A 5.62 <0.001 <0.001 B 6.42 <0.001 <0.001 

TP v ATP for DES and CST 18 A -1.13 0.273 0.546 B -1.01 0.324 0.324 

TP v iFOD2 for DES and CST 18 A 6.75 <0.001 <0.001 B 6.49 <0.001 <0.001 

TP v AiFOD2 for DES and CST 18 A 6.46 <0.001 <0.001 B 7.43 <0.001 <0.001 

ATP v iFOD2 for DES and CST 18 A 7.59 <0.001 <0.001 B 7.51 <0.001 <0.001 

ATP v AiFOD2 DES and CST 18 A 7.32 <0.001 <0.001 B 8.49 <0.001 <0.001 

IFOD2 v AiFOD2 DES and CST 18 A -0.44 0.665 0.665 B -0.27 0.451 0.451 

CST = corticospinal tract, FACT = fiber assignment by continuous tracking, TP = tensor probabilistic, 
ATP = anatomically constrained TP, iFOD2 = second order integration over fiber orientation 

distributions, AiFOD2 = anatomically constrained iFOD2, DF = degrees of freedom, T = t-statistic, 
Puncorr = uncorrected p values, PFWE = Hochberg family-wise error rate corrected p values 
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Figure 6: Bar plots for predicted probability of overlap between the CST and DES coordinates 
(Top) and predicted distances to nonoverlapping DES coordinates (Bottom) at 12.5 mm 
distance cutoff. CSD methods showed significantly higher probability of overlap, and lower 
distance if not overlapping compared to DTI methods. Differences between nDES and pDES 
were comparable between FT methods. CST = corticospinal tract, FACT = fiber assignment 
by continuous tracking, TP = tensor probabilistic, ATP = anatomically constrained TP, iFOD2 
= probabilistic tractography by second order integration over spherical harmonics, AiFOD2 = 
anatomically constrained iFOD2  
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Discussion 

The primary aim of this work was to compare the accuracy of CSD and DTI 

tractography results as evaluated against intraoperative DES stimulation in a group of 

22 preoperative neurosurgical patients. First, raw distance measures from CSD-based 

tractograms to DES coordinates were smaller than for DTI tractograms. These also 

showed that pDES coordinates were generally closer to tractograms compared to 

nDES coordinates. ROC curve plots and Youden’s index determined distance cutoffs, 

accuracy, sensitivity and specificity (RQ1) showed that pooled CSD methods (5.5mm) 

had a shorter distance cutoff compared to pooled DTI methods (13.5mm). This finding 

held with or without pooling and/or averaging. Overall higher sensitivity for CSD, and 

higher specificity for DTI tractograms was also found when comparing FT methods for 

their binary agreement/disagreement with DES at different distance cutoffs (RQ2) 

(5.5mm, 12.5mm, and 13.5mm). 

The cutoff (12.5mm) determined by Youden’s index on the averaged all pooled data 

ROC was used to define binary agreement/disagreement (<12.5/>12.5mm) rates 

between tractograms and DES. Lastly, we relied on a two-part linear mixed model and 

posthoc testing to investigate the effects of DES response, and differences between 

FT methods in probability of overlap(agreement) versus nonoverlap(disagreement), 

and distance measures for nonoverlapping tractogram-DES pairs while controlling for 

effects of variation in lesion and bundle volumes (RQ3).  

This showed that regardless of FT method, pDES coordinates were significantly closer 

and more probable to overlap with the CST compared to nDES coordinates. In other 

words, brain locations giving positive sensory-motor functional responses on 

stimulation (pDES), so called eloquent areas, were more likely to overlap with the CST, 

and if not overlapping they would typically closer than coordinates giving no functional 

effect on DES, so called non-eloquent. Furthermore, CST tractograms generated with 

CSD were significantly more probable to overlap with and be closer to DES 

coordinates compared to DTI, regardless of DES response. Posthoc testing confirmed 

that iFOD2 and AiFOD2 significantly outperformed FACT, TP and ATP in both parts 

of the model. These findings also indicate that the differences are not solely driven by 

larger volumes of CSD tractograms. 
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DTI-based tractography, when compared to DES, has previously been reported to 

have a generally satisfactory performance [11, 14, 60]. However, a closer look at the 

literature shows that these studies used manual tractography [61], and/or excluded 

negative DES coordinates from their analyses [62]. Additionally, the majority of 

previous work utilized comparatively simple statistical methods, and tended not to 

include covariates such as bundle volume, TIV or lesion volume in their analysis. In 

contrast to the literature, we a less than satisfactory performance for DTI-based FT. 

This, most likely, is because we included nDES data in the analysis, which exposes 

the problem with DTI FT, especially on smaller distance cutoffs. 

Few studies thus far have compared different tractography methods to DES and/or 

DBS results so far [63–66], and all found a clear benefit from using more advanced 

tractography methods such as CSD. Our study adds to this growing body of evidence 

showing that advanced FT can improve the presurgical representation of white matter 

anatomy based on dMRI. This study also showed that manual and automated DTI FT 

performed comparably, indicating that automated methods relying on accurate 

structural parcellation adapted to effects of pathology can be comparable to relying on 

an expert user for manual FT, but that both performed worse than CSD FT as far 

distances and agreement with DES coordinates was concerned. 

The mail limitation of this study is the small sample size, which motivated not including 

covariates for number of dMRI shells, pathology type, DES current, stimulator or 

approach used. However, the two-part linear model accounted for these factors by 

allowing for random intercepts and slopes per patient. Additionally, we did not include 

perioperative patient status in this analysis. 

To summarize, both exploratory analyses and statistical modeling for the CST agreed 

that compared to DTI, CSD tractograms in this sample showed increased accuracy, 

with higher true-positives, at the cost of a smaller increase in false-positives, without 

significant reduction in true or false-negatives. No statistical testing was done for the 

AFs due to their small number (N=7) however it seemed to behave similar to the CST 

when evaluated qualitatively.  
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