1	Using visual attention estimation on videos for automated prediction of autism spectrum disorder and symptom
2	severity in preschool children
3	
4	Ryan Anthony J. de Belen ¹ *, Valsamma Eapen ² , Tomasz Bednarz ³ and Arcot Sowmya ¹
5	¹ School of Computer Science and Engineering, University of New South Wales, New South Wales, Australia
6	² School of Psychiatry, University of New South Wales, New South Wales, Australia
7	³ School of Art & Design, University of New South Wales, New South Wales, Australia
8	*Corresponding author
9	Email: <u>r.debelen@unsw.edu.au</u> (RAJDB)
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

31 Abstract

32	Atypical visual attention in individuals with autism spectrum disorders (ASD) has been utilised as a
33	unique diagnosis criterion in previous research. This paper presents a novel approach to the automatic and
34	quantitative screening of ASD as well as symptom severity prediction in preschool children. We develop a
35	novel computational pipeline that extracts learned features from a dynamic visual stimulus to classify ASD
36	children and predict the level of ASD-related symptoms. Experimental results demonstrate promising
37	performance that is superior to using handcrafted features and machine learning algorithms, in terms of
38	evaluation metrics used in diagnostic tests. Using a leave-one-out cross-validation approach, we obtained an
39	accuracy of 94.59%, a sensitivity of 100%, a specificity of 76.47% and an area under the receiver operating
40	characteristic curve (AUC) of 96% for ASD classification. In addition, we obtained an accuracy of 94.74%, a
41	sensitivity of 87.50%, a specificity of 100% and an AUC of 99% for ASD symptom severity prediction.

42 Introduction

43 Autism spectrum disorders (ASD) are currently being diagnosed through visual observation and 44 analysis of children's natural behaviours. While a gold standard observational tool is available, early screening 45 of ASD in children still remains a complex problem. It is often expensive and time-consuming¹ to conduct 46 interpretative coding of child observations, parent interviews and manual testing². In addition, differences in 47 professional training, resources and cultural context may affect the reliability and validity of the results obtained 48 from a clinician's observations³. Furthermore, the behaviours of children in their natural environments (e.g., 49 home) cannot be typically captured by clinical observation ratings. To reduce waiting periods for access to 50 interventions, it is important to develop new methods of ASD diagnosis without compromising accuracy and 51 clinical relevance. This is critical because early diagnosis and intervention can provide long-term improvements 52 for the child and even have a greater effect on clinical outcomes⁴.

53 Recent advances in technology have allowed for the quantification of different biological and 54 behavioural markers that are useful in ASD research (see ^{5,6} for reviews). Eye-tracking technology has shown 55 promise in providing a non-invasive and objective tool for ASD research^{7,8}. Several eye-tracking studies have 56 identified unique visual attention patterns in ASD individuals. Gaze abnormalities in toddlers (<3-vear-olds) 57 include reduced attention to eye and head regions, reduced preference for biological motion, difficulties in 58 response to joint attention behaviours⁹ and scene monitoring challenges during explicit dvadic cues¹⁰. Pierce, et 59 al. ¹¹.Pierce, et al. ¹².Moore, et al. ¹³ developed a geometric preference ("GeoPref") test that contains both 60 geometric and social videos. It was found that a subset of ASD participants exhibited a visual preference for 61 geometric motion. This finding has already been leveraged by a growing number of studies that aim to leverage atypical visual attention to identify individuals with ASD^{14,15} and predict symptom severity¹⁶. 62

63 Computational models that predict visual attention (i.e., saliency) have seen tremendous progress, 64 starting from handcrafted features dating back to 1998¹⁷ to a resurgence of deep neural networks (DNNs)^{18,19}. 65 This breakthrough has generated great interest in utilising saliency prediction as a diagnostic paradigm for ASD. 66 For example, there is a growing collection of eye movements of ASD children recorded during image-²⁰⁻²² and 67 video²²- viewing tasks. Although the use of saliency detection models on image datasets has resulted in 68 remarkable diagnostic performance, there is still a lack of diagnostic paradigms that utilise dynamic saliency 69 detection. In fact, the most common approach of studies that utilise dynamic stimuli is to convert the eye-70 tracking data into an image and perform image classification to identify individuals with ASD. In this work, we

71 present a novel pipeline that leverages the dynamic visual attention of humans for ASD diagnosis, as well as 72 symptom severity prediction.

73 This paper makes three major contributions to the field. First, we implement a data-driven approach to 74 learn the dynamic visual attention of humans on videos and extract spatiotemporal features for downstream 75 tasks (e.g., ASD classification and symptom severity prediction). Second, we develop a novel computational 76 pipeline to diagnose ASD based on the learned features from dynamic visual stimuli. Finally, we use a similar 77 method to predict the level of ASD-related symptoms from eye-tracking data of children obtained during a free-78 viewing task. In the next section, we discuss published works that are related to ours. Despite the growing 79 literature, it is evident that the comparison of results is challenging due to the lack of publicly available datasets 80 and open-source code repositories. This is even further complicated by the differences in the participants, age 81 group and stimuli used in the experiments, making fair and straightforward performance comparisons more 82 difficult. Nevertheless, we compare our work with a simple thresholding technique¹¹⁻¹³ and a machine learning 83 (ML) classification approach using handcrafted features^{23,24}.

Related works

85 Over the last decade, different behavioural and biological markers have already been quantified, to 86 some extent, using computer vision methods (a comprehensive review⁵ is available). Various data modalities, 87 such as magnetic resonance imaging (MRI)/functional MRI²⁵⁻³⁰, eye-gaze data^{14,31-36}, stereotyped behaviours³⁷⁻⁴² 88 and multimodal data⁴³ have been utilised in autism diagnosis. We first provide a review of publicly available 89 datasets that utilise the eye-tracking paradigm. Afterwards, related works that utilise eye-tracking data for the 90 following purposes are reviewed: (i) saliency prediction in ASD, (ii) ASD diagnosis using static stimuli, (iii) 91 ASD diagnosis using dynamic stimuli and (iv) ASD risk and symptom severity prediction. Each purpose has a 92 corresponding table that includes the following information about the published research: mean age of the 93 participants, gender distribution, stimuli and input used, methodology and conclusion. While not as exhaustive 94 and rigorous in inclusion criteria as a systematic review, we hope that our discussion below will help the readers 95 navigate the research landscape and better situate our work in the literature. Readers are also encouraged to read systematic reviews^{8,44} for additional reference. 96

97 **Publicly available datasets**

98 There is a growing number of publicly available datasets that capture the eye-tracking data of ASD 99 participants. In Table 1, we provide a summary of these datasets by providing descriptions of their target

- 100 application area, the mean age of the participants, sample size, stimuli used and data format provided by the
- 101 authors. There are two datasets for saliency estimation 20,21 and two datasets for ASD classification 22,45 .

Authors	Application area	Mean age (SD) in years	Sample size	Stimuli			Data form	nat	
Duan, et al. ^{20.} Gutiérrez, et al. ²¹ (Saliency4ASD dataset)	Saliency estimation ASD classification	All participants: 8.00 (NR)	ASD: 14 TD: 14		ay contain hu	erse naturalistic umans, animals,		ith the associa e participants	ted eye-tracking
Le Meur, et al. ²² (MIE Fo and MIE No)	Saliency estimation	MIE Fo: ASD: 16.00 (2.00) MIE No: 29.00 (7.00)	MIE Fo: ASD: 17 MIE No: ASD: 12	25 images wit a low emotior		tic meaning and		ith the associa a participants	ted eye-tracking
Carette, et al. ⁴⁵	ASD classification	All participants: 7.88 (NR)	ASD: 29 TD: 30		turalistic scen	dynamic stimuli es, initiate joint objects	tracking visualised converted	data of the p d scanpath in	sualises the eye- participants. The nages are then and rescaled for
ASD: Autism	Spectrum D	Disorder, NR: N	lot reported,	, SD:	Standard	deviation,	TD:	Typically	Developing

102 Table 1 List of publicly available datasets and their corresponding application area, mean age, sample size, stimuli and data format provided by the authors.

104 Saliency prediction in ASD

Accurately predicting the visual attention (i.e., saliency maps) of ASD individuals can boost prediction performance because classification models can better leverage the distinction between the visual attention of ASD and typically developing (TD) individuals. Table 2 shows the published research that aims to model the visual attention of ASD participants by developing different saliency models.

Duan, et al. ⁴⁶ compared the performance of five state-of-the-art (SOTA) saliency prediction networks based on a deep neural network (DNN) architecture with pre-trained and fine-tuned weights on their dataset. Experimental results revealed that transfer learning provides a useful approach to modelling visual attention on images for individuals with ASD. Duan, et al. ⁴⁷ combined high-level features (e.g., face size, facial features, face pose and facial expressions) and feature maps extracted from the SOTA saliency models to quantify visual attention on human faces in ASD. Their proposed approach reported higher performance when compared to other saliency models.

116 The remaining works used the Saliency4ASD dataset^{20,21} for saliency estimation. For example, Fang, et 117 al. 48 used U-net trained on a novel loss function for semantic feature learning, resulting in improved 118 performance on some metrics. Wei, et al.⁴⁹ proposed a novel saliency prediction model for children with ASD. 119 The fusion of multi-level features, deep supervision on attention maps and the single-side clipping operated on ground truths provided a boost in saliency prediction. Nebout, et al. ⁵⁰ proposed a Convolutional Neural 120 121 Network (CNN) with a coarse-to-fine architecture and trained using a novel loss function, achieving the best performance on most metrics when compared to general saliency models. Fang, et al. ⁵¹ proposed a model 122 123 consisting of a spatial feature module and a pseudo-sequential feature module to generate an ASD-specific 124 saliency map. Their model achieved the best performance on most metrics when compared to general saliency models and ASD-specific saliency models⁴⁸⁻⁵⁰. Finally, Wei, et al. ⁵² proposed a DNN architecture that enhances 125 126 multi-level side-out feature maps using a scale-adaptive coarse-and-fine inception module. In addition, they 127 designed a novel loss function to fit the atypical pattern of visual attention, resulting in SOTA performance.

This growing evidence suggests that researchers are starting to develop computational models that mimic the atypical visual attention on images of ASD individuals. However, there is still a huge gap in prediction performance as saliency prediction models trained on TD individuals do not generalise well on ASD individuals, as highlighted by Le Meur, et al. ²². They revealed that current models trained on a TD dataset and fine-tuned on an ASD dataset perform well only on a small part of the ASD spectrum. To this end, they proposed two new eye-tracking datasets that cover a large part of the ASD spectrum.

134 Table 2 Saliency Prediction in ASD

Authors	Mean age (SD) in years	Sample size	Stimuli	Input used	Method	Conclusions
Duan, et al. ⁴⁶	7.8 (NR)	13	500 images	Image	They compared the performance of five different SOTA saliency models.	Transfer learning provides a useful approach to model the visual attention on images in individuals with ASD.
Duan, et al. ⁴⁷	ASD: 7.80 (2.10) TD: 8.00 (2.00)	ASD: 13 TD: 15	VAFA dataset: 300 images from open-source dataset ⁵³ that depict various emotions and then classified into six expressions: (generally positive, very positive, neutral, generally negative, very negative and complex expressions)	Image	They computed fixation distributions on different pre- defined AOIs. Afterwards, statistical analyses were performed to identify differences in visual attention of ASD and TD participants while looking at effects of face pose and facial expressions. Afterwards, they compared six different SOTA deep learning-based saliency models on the VAFA dataset.	CASNet achieved the best performance in terms of the prediction of atypical visual attention of ASD individuals.
Fang, et al. ⁴⁸	Saliency4ASD	Saliency4ASD	Saliency4ASD	Image	They developed a saliency model based on the U-Net architecture. They also designed a new loss function called Positive and Negative Equilibrium Mean Square-Error that is used to determine model convergence.	Their model achieved higher performance on some metrics when compared to general saliency models.
Wei, et al. ⁴⁹	Saliency4ASD	Saliency4ASD	Saliency4ASD	Image	They first extracted multi-level features and combined these features using a fusion layer to output a saliency map. Deep supervision on the predicted saliency map was implemented to train the deeper layers of the network. They also utilised a single-side clipping approach to highlight regions that are mostly viewed by the participants.	Their model achieved the best performance on different metrics when compared to general saliency models.
Nebout, et al. ⁵⁰	Saliency4ASD	Saliency4ASD	Saliency4ASD	Image	They developed a two-stream network that extracts fine-scale	Their model achieved the best performance on most metrics

					and contextual information from the input image and the downscaled input image, respectively. Afterwards, a series of convolutional operations and concatenation is implemented to generate the saliency map.	when compared to general saliency models.
Fang, et al. ⁵¹	Saliency4ASD	Saliency4ASD	Saliency4ASD	Image	They modelled the dynamic nature of human visual attention using a two-stream model that consists of a CNNs and a series of convolutional LSTM layers.	Their model achieved the best performance on most metrics when compared to general saliency models and ASD- specific saliency models ⁴⁸⁻⁵⁰ .
Wei, et al. ⁵²	Saliency4ASD	Saliency4ASD	Saliency4ASD	Image	They first extracted multi-level features from the input image. Afterwards, they passed it to a scale-adaptive coarse-and-fine inception module for a richer representation. These features are then combined using a feature fusion module and passed to a refinement and integration module. To better learn the atypical visual attention of ASD individuals, they developed a discriminative region enhancement loss.	Their approach achieved the best performance on different metrics when compared to general saliency models and ASD-specific saliency models ⁴⁸⁻⁵⁰ . Their experiments showed that their novel loss function improved the performance of other models in predicting atypical visual attention of ASD participants.
Le Meur, et al. ²²	Saliency4ASD MIE Fo and MIE No	Saliency4ASD MIE Fo and MIE No	Saliency4ASD MIE Fo and MIE No	Image	They compared six different saliency prediction models and analyse their saliency prediction performance in Saliency4ASD, MIE Fo and MIE No datasets.	Their results showed that current saliency models do not generalise well on ASD-specific dataset, hoping to raise awareness that researchers need different approaches to model the atypical visual attention of ASD people.

AOI: Area Of Interest, ASD: Autism Spectrum Disorder, LSTM: Long Short-Term Memory, NR: Not reported, SD: Standard deviation, SOTA: State-of-the-art, TD: Typically

137 Eye-tracking on static stimuli for ASD diagnosis

138 As discussed in the previous section, it has been found that ASD participants exhibit atypical visual 139 attention. As shown in Table 3, researchers explored the possibility of using the eye-tracking paradigm during 140 image-viewing tasks to identify individuals with ASD. The earliest works explored different handcrafted 141 features and ML models for ASD diagnosis. For example, Wang, et al. ⁵⁴ used features extracted from images followed by a Support Vector Machine (SVM), while Yaneva, et al.⁵⁵ explored logistic-regression classification 142 algorithms for detecting high-functioning ASD in adults, Liu, et al. ³⁴ proposed a ML framework based on the 143 144 frequency distribution of eve movements recorded during a face recognition task to identify individuals with 145 ASD. The recent advances in deep learning (DL) also helped researchers better extract discriminative features from images. For example, Jiang and Zhao 33 used a DL approach followed by an SVM to distinguish 146 147 individuals with ASD.

The succeeding works used the Saliency4ASD dataset^{20,21}. Startsev and Dorr ⁵⁶, Arru, et al. ⁵⁷ extracted 148 149 features from the eye-tracking data and the input image and trained a random forest for ASD classification. 150 Their analysis revealed that images that contain multiple faces provide significant differences in visual attention 151 between ASD and TD individuals. Wu, et al. ⁵⁸ proposed two machine learning approaches based on synthetic 152 saccade generation and image classification with similar performance in terms of accuracy and AUC. Tao and 153 Shyu⁵⁹ proposed a combination of CNN and long short-term memory (LSTM) networks to classify ASD and 154 TD individuals. Exploiting a similar architecture, Chen and Zhao⁴³ proposed a multimodal approach to utilise 155 information from behavioural modalities captured during photo-taking and image-viewing tasks, resulting in 156 higher performance in both modalities. Using an additional dataset that contains people looking at other 157 people/objects in the scene, Fang, et al. ⁶⁰ proposed a DNN that achieved a higher accuracy when compared to a 158 previous model³³. Rahman, et al.⁶¹ used several saliency prediction models and compared the performance of 159 SVM and XGBoost. Observing that not all images highlight significant differences in visual attention between 160 ASD and TD participants, Xu, et al. ⁶² used structural similarity between ASD and TD saliency maps to identify 161 a subset of images in which a new bio-inspired metric was applied to identify ASD participants. Wei, et al. ⁶³ 162 proposed a dynamic filter and spatiotemporal feature extraction for ASD diagnosis, achieving the highest 163 accuracy and similar specificity and AUC scores when compared to previous models⁵⁶⁻⁵⁹. Liagat, et al. ⁶⁴ 164 proposed two ML approaches that include a branched MLP approach and an image-based approach for ASD 165 classification and found that the latter approach resulted in slightly better performance. Mazumdar, et al.⁶⁵ 166 extracted different handcrafted and DL features and compared 23 ML algorithms to identify individuals with

167 ASD. Their results were among the top 4 performing models across different metrics when compared to

168 previous

models^{56,59,64}.

169 Table 3 Eye tracking on static stimuli for ASD diagnosis

Authors	Mean age (SD) in years	Sample size	Stimuli	Input used	Method	Conclusions
Wang, et al.	ASD: 30.80 (11.1)	ASD: 20	700 images from the	Pixel-, object-, and	Using the extracted features,	Their approach reported high
54	TD: 32.30 (10.40)	TD: 13	OSIE dataset	sematic-level	they implemented an SVM to	performance in predicting the
				features extracted	generate feature weights that	visual attention of both ASD
				from the image. In	were then combined to predict	and TD group. Their results
				addition, the	human fixation maps. They	showed that ASD group had
				image centre and	also conducted statistical	increased biased towards the
				background, as	analysis to investigate the	image centre, background
				well as the	atypical visual attention of	and pixel-level, but reduced
				ground-truth	ASD participants.	biased towards objects and
				fixation maps were		semantic content of the
				used.		image.
Yaneva, et	Study 1:	Study 1:	Study 1:	Different	They computed eye-tracking	Their results suggest that
al. 55	ASD: 37.00 (9.14)	ASD: 15	6 webpages with	computed eye-	related variables on different	atypical visual attention of
	TD: 33.60 (8.60)	TD: 15	increasing visual	tracking variables	pre-defined AOIs.	ASD individuals can be used
	Study 2:	Study 2:	complexity (e.g.,	(e.g., number of	Afterwards, they trained	as a biomarker for
	ASD: 41.00 (14.00)	ASD: 19	low, medium, high)	fixations, time to	several logistic regression	classification. They found
	TD: 32.20 (9.90)	TD: 19	and 2 webpages in	first look at an	classifiers using different	differences in the
			each category.	AOI) and non eye-	combinations of the feature	information processing of
			Study 2:	tracking data-	set for ASD classification.	ASD participants, regardless
			8 randomly selected	related variables		of specific information-
			webpages from a list	(e.g., gender,		location instructions across
			of top 100 websites,	visual complexity)		different time conditions.
			ensuring that there			They also found that stimuli
			are 4 low visual			content and granularity have
			complexity and 4			an impact on classification
			high visual			accuracy, while the stimuli
			complexity content.			complexity and gender do
34						not exhibit the same effect.
Liu, et al. ³⁴	ASD: 7.90 (1.45)	ASD: 29	12 photos of adult	Frequency	They first quantised the	Their results showed a
	TD-Age Matched: 7.86	TD-Age Matched:	Chinese female faces	distribution of the	fixation distribution of all	promising performance in
	(1.38)	29	and 12 Caucasian	visual attention of	participants using the k-means	classifying ASD participants
	TD-IQ Matched: 5.74	TD-IQ Matched:	female faces. 6 were	participants were	algorithm to generate cluster	based on visual attention on
	(1.01)	29	used for	computed.	centroids. Afterwards, given a	human faces.
			memorisation task		sequence of fixation locations,	
			and 18 were used for		they assigned the cluster	
			a recognition task of		centroid closest to a	

			the 6 memorised faces.		participant's fixation location and counted the frequency of cluster assignments. This process was repeated on all the images and an SVM classifier was used for classification.	
Jiang and Zhao ³³	Same as Wang, et al. ⁵⁴	Same as Wang, et al. ⁵⁴	Same as Wang, et al.	Images (and corresponding rescaled images) with the associated eye-tracking data of the participant	First, image selection using Fisher score ranking was implemented to reduce the number of input images from 700 to 100. Afterwards, each image and it corresponding rescaled image were passed to a two branch VGG-16 network. The extracted features were then concatenated and used to predict the difference of fixation maps. Afterwards, a latent representation in the model was used for classification using SVM.	There was no direct comparison with other models since their model was one of the first to use eye- tracking for ASD classification. Nevertheless, the authors compared their approach with similar work that used different group of subjects and input data and received the highest performance across different metrics.
Startsev and Dorr ⁵⁶	Saliency4ASD	Saliency4ASD	Saliency4ASD	Images with the associated eye- tracking data of the participant, including fixation durations.	First, they computed features extracted from the eye- tracking data and the input image. Afterwards, they trained a random forest for classification.	Their analysis revealed that images that contain multiple faces provide significant differences in visual attention between ASD and TD individuals.
Wu, et al. ⁵⁸	Saliency4ASD	Saliency4ASD	Saliency4ASD	Images with the associated eye- tracking data of the participant, including fixation durations.	They developed two networks: Synthetic saccade approach: a synthetic data generated by a scanpath model is aligned with the real eye-tracking data. Distance measures were then computed on these two data. Afterwards, different eye-tracking statistics were	Their experiments showed that both approaches resulted in similar classification performance in terms of accuracy and AUC.

					concatenated and used as features for MLP classification. Image-based approach: the real eye-tracking data were converted into an image. Afterwards, features were extracted from the input stimulus and the converted image and used as features for classification.	
Arru, et al.	Saliency4ASD	Saliency4ASD	Saliency4ASD	Images with the associated eye- tracking data of the participant, including fixation durations.	First, they extracted features extracted from the image, eye- tracking data and bias towards the image centre. Afterwards, they trained a random forest that uses a bagging algorithm for classification.	Their results suggested that scene analysis, such as determining the objects attended by participants, could provide better results.
Tao and Shyu ⁵⁹	Saliency4ASD	Saliency4ASD	Saliency4ASD	Images with the associated eye- tracking data of the participant, including fixation durations.	First, they used a saliency model to generate a saliency map for a given image. Afterwards, square patches centred around the participant's fixations were extracted from the predicted saliency map. These patches were then passed to a CNN for feature extraction. The gaze duration associated with a patch location is concatenated with the extracted patch features and sequentially passed to an LSTM network followed by an FCL for classification.	Their results achieved an accuracy of 74.22% on the validation set and 57.90% on the test set.
Chen and Zhao ⁴³	Photo-taking task: NR Image-viewing task: NR	Photo-taking task: ASD: 22 TD: 23 Image-viewing	Photo-taking task: First-person photo taken by the participant	Photo-taking task: First-person photo taken by the participant	Photo-taking task: Given a sequence of photos taken by the participant, features are extracted using a CNN	Their results had the highest accuracy performance when compared to other models ^{33,34} .

Fang, et al.	Saliency4ASD Saliency4ASD GazeFollow4ASD: ASD: 9.60 (NR) TD: 8.90 (NR)	task: ASD: 20 TD: 19 Saliency4ASD Saliency4ASD GazeFollow4ASD: ASD: 8 TD: 10	Image-viewing task: 700 images from the OSIE dataset Saliency4ASD Saliency4ASD GazeFollow4ASD: Images that contain people looking at other people/objects in the scene	Image-viewing task: Images with the associated eye- tracking data of the participant. Saliency4ASD Saliency4ASD GazeFollow4ASD: Images with the gaze-following prior map indicating the eye locations of the people in the image and their gaze locations	network and passed into a global average pooling layer. The sequence of image features is passed into an LSTM network and an FCL for classification. Image-viewing task: Given an image, features are extracted using a CNN network. Afterwards, using the associated eye-tracking data, features are extracted around the fixation location. The sequence of extracted features is then passed into an LSTM network and a FCL for classification. The authors also used multi- modal distillation to train both models. First, they used a dilated CNN to extract coarse feature maps from the input image. Afterwards, these feature maps are passed to a convolutional LSTM network to generate enhanced features. A fusion layer is used to add the gaze-following prior map and a series of CNN layers is used to generate a difference of fixation maps. A latent representation in the model is passed to two ECL a for	Their results had the highest accuracy performance when compared to a model ³³ submitted to Saliency4ASD.
Rahman, et al. ⁶¹	Saliency4ASD	Saliency4ASD	Saliency4ASD	Images with the associated eye- tracking data of the participant.	representation in the model is passed to two FCLs for classification. First, they used seven different saliency prediction models on a given image and computed evaluation metrics	Their model reported a higher performance compared to a previous SOTA model ⁴³ for ASD

					between the predicted saliency and the recorded eye tracking data of the participant. This process is repeated for all the viewed images. The evaluation results for each saliency prediction model were concatenated. This feature representation was passed to an SVM and	classification.
					XGBoost for comparison of classification performance.	
Xu, et al. ⁶²	Saliency4ASD	Saliency4ASD	Saliency4ASD	Images with the associated eye- tracking data of the participant.	Using structural similarity, they selected a subset of images that resulted into significant differences in visual attention of ASD and TD participants. Afterwards, they developed a bio-inspired metric that classifies ASD using the eye-tracking data.	Their results suggest that screening the photos to be viewed by participants and eventually used for classification is necessary to increase the model accuracy.
Wei, et al.	Saliency4ASD	Saliency4ASD	Saliency4ASD	Images with the associated eye- tracking data of the participant.	First, an image encoder was used to extract visual features. Afterwards, the associated eye-tracking data of the participant was used as an input to three branches: (1) embedding layer to extract features (2) field of view maps generator layer that is composed of a spatial attention mechanism and LSTM network to extract spatiotemporal features (3) dynamic filters generator layer that uses CNNs. A final two FCLs were used for classification.	Their results had the highest accuracy and similar specificity and AUC scores when compared to models ^{56- 59} submitted to Saliency4ASD.
Liaqat, et	Saliency4ASD	Saliency4ASD	Saliency4ASD	Images with the	They developed two	The image-based approach

al. ⁶⁴				associated eye-	networks:	resulted in slightly better
				tracking data of	Branched MLP approach: it	results than the branched
				the participant	consists of a three-branch	MLP approach.
					network that processes three	
					different kinds of features: (1)	
					a synthetic saccade is	
					generated using a scanpath	
					model, (2) a real scanpath and	
					(3) statistical features. These	
					features are passed to a series	
					of MLPs for classification.	
					Image-based approach: it	
					consists of a two-branch	
					network that extracts features	
					from the input image and the	
					eye tracking data and uses a	
					final classification layer.	
Mazumdar,	Saliency4ASD	Saliency4ASD	Saliency4ASD	Images with the	They computed features	Their results were among the
et al. 65				associated eye-	extracted from the image, eye-	top 4 performing models
				tracking data of	tracking data and centre bias	across different metrics who
				the participant.	of participants. Afterwards,	compared to models ^{56,59,64}
					they trained 23 different	submitted to Saliency4ASD
					classifiers, such as decision	
					trees, naïve bayes classifier,	
					SVM, nearest neighbour	
					classifier, and ensemble-based	
					classifiers.	

170 AOI: Area of Interest, ASD: Autism Spectrum Disorder, AUC: Area Under the Curve, CNN: Convolutional Neural Network, FCL: Fully-Connected Layer, IQ: Intelligence

171 Quotient, LSTM: Long Short-Term Memory, MLP: Multi-Layer Perceptron, NR: Not reported, SD: Standard deviation, SOTA: State-Of-The-Art, SVM: Support Vector 172 Machine, Typically TD:

Developing

173 Eye-tracking on dynamic stimuli for ASD diagnosis

Prior research explored the possibility of using the eye-tracking paradigm during video-viewing tasks to identify specific neurological disorders. For example, Tseng, et al. ⁶⁶ extracted low-level features from eye movement recorded from 15 minutes of videos and used an ML model to identify participants with attention deficit hyperactivity disorder, fetal alcohol spectrum disorder and Parkinson's disease. Although this work did not include ASD classification, it accentuates the efficacy of using eye-tracking on dynamic stimuli to identify the mental states of participants.

180 As shown in Table 4, there are recent works that utilise dynamic stimuli to differentiate ASD from TD 181 subjects. Wan, et al. ⁶⁷ investigated the difference in fixation times between ASD and TD children watching a 182 10-second video of a female speaking. Their results revealed that fixation times at the mouth and body could 183 significantly discriminate ASD from TD with a classification accuracy of 85.1%. Jiang, et al. ⁶⁸ collected eye-184 tracking data during a dynamic affect recognition evaluation task, extracted handcrafted features and used a 185 random forest classifier to identify ASD individuals. Zhao, et al. ⁶⁹ collected eye-tracking data during a live 186 interaction with an interviewer, extracted handcrafted features and employed four ML classifiers to identify 187 individuals with ASD. These prior studies rely on handcrafted features that may provide less discriminative 188 information between TD and ASD individuals.

189 Numerous studies employed an image classification approach based on a published dataset that contains the visualisation of eye-tracking data (i.e., scanpath images) of the participants during the experiment.⁴⁵ 190 191 For example, Carette, et al. ^{45,70} used the raw pixel values as features and compared ML and DL algorithms for 192 ASD classification. Their results revealed that DL algorithms achieved the highest performance when compared 193 to ML models. Elbattah, et al.⁷¹ trained a deep autoencoder and used a k-means clustering approach on the 194 learned latent representation to identify clusters of participants. Their analysis revealed that an identified cluster 195 contained a high percentage of ASD participants, suggesting that the algorithm can be used for ASD 196 classification. Using a similar unsupervised learning approach, Akter, et al. ⁷² performed k-means clustering to 197 divide the dataset into 4 groups and compared different ML models to identify participants with ASD. Cilia, et 198 al. ⁷³ used CNN and a fully-connected layer to predict ASD participants. Similarly, Kanhirakadavath and 199 Chandran ⁷⁴ compared Principal Component Analysis (PCA) and CNN for feature extraction and different ML 200 and DL models for ASD classification. Gaspar, et al. ⁷⁵ performed additional image augmentation to generate 201 more training data. Afterwards, they used a kernel extreme learning machine optimised using the Giza Pyramids 202 Construction metaheuristic algorithm to identify ASD individuals. Their approach achieved higher performance

when compared to ML approaches. Ahmed, et al. ⁷⁶ compared ML, DL and a combination of both approaches
for ASD diagnosis. The results in these prior studies suggest that DL models for feature extraction and ASD

205 classification perform better when compared to traditional ML approaches.

206 There are also prior studies that explored the use of dynamic stimuli that are effective in evoking 207 significant differences in visual attention of ASD and TD participants. For example, de Belen, et al.¹⁴ used the 208 GeoPref Test^{11,12} in EyeXplain Autism, a system for eye-tracking data analysis, automated ASD prediction and 209 interpretation of deep learning network predictions. Recently, Oliveira, et al.¹⁵ used similar video stimuli, 210 trained a visual attention model and utilised an ML model to identify individuals with ASD. Fan, et al. 77. Fang, 211 et al. ⁷⁸ used biological motion stimuli and different ML classifiers for ASD diagnosis. Using a stimulus for 212 initiating joint attention, Carette, et al.⁷⁹ extracted features related to saccadic movement (e.g., amplitude, 213 velocity, acceleration) and trained an LSTM network to predict three diagnostic groups (i.e., ASD, TD, 214 unclassified). Putra, et al.⁸⁰ collected eye-tracking data during Go/No-Go tasks, identified spatial and auto-215 regressive temporal gaze-related features that differ significantly between ASD and TD participants and applied 216 an AdaBoost meta-learning algorithm to identify participants with ASD.

Although previous studies utilised dynamic stimuli, the most common approach was to convert the participant's eye-tracking data into an image, potentially losing spatiotemporal information that can be leveraged for classification. In addition, this approach disregards the pixel information around the fixation, a crucial insight into what part of the stimuli attracts human attention. In this paper, we propose a DNN approach that utilises dynamic saliency prediction to identify individuals with ASD.

While previous works have investigated the feasibility of leveraging visual attention in identifying individuals with ASD, limited research has been conducted to explore the effectiveness of exploiting the dynamic visual attention of the participant in ASD classification. Our approach utilises eye-tracking data captured during a dynamic stimulus viewing task. Our approach follows a similar deep learning framework reported in the literature³³, however it provides an extension from static stimuli, widening the diagnostic paradigm to include dynamic stimuli.

228	Table 4 Eye T	racking on Dynamic	Stimuli for ASD	Diagnosis
-----	---------------	--------------------	-----------------	-----------

Authors	Mean age (SD) in years	Sample size	Stimuli	Input used	Method	Conclusions
Wan, et al. ⁶⁷	ASD: 4.60 (0.70) TD: 4.80 (0.40)	ASD: 37 TD: 37	Dynamic, 10- second video of a female actor speaking	Eye-tracking data of the participant	They defined ten AOIs and computed different fixation time ratio. Afterwards, they used SVM to determine which AOI can be used for classification.	They found that using fixation times at the mouth and body results in an ASD classification accuracy of 85.1%, sensitivity of 86.5% and specificity of 83.8%.
Jiang, et al. ⁶⁸	ASD: 12.74 (2.45) TD: 14.11 (5.09)	ASD: 23 TD: 35	Combination of static and dynamic stimuli	Dynamic stimuli with the associated eye-tracking data of the participant	They computed eye-tracking variables (e.g., response time, fixation locations, length, frequency, duration, saccadic amplitude) and extracted face features using a DL model. They then used RF for classification	The combination of all the handcrafted and extracted features resulted in a classification accuracy of 72.5%. Using a soft voting approach, the classification accuracy increased to 86.2% in identifying ASD participants.
Zhao, et al. ⁶⁹	ASD: 8.30 (2.09) TD: 9.07 (2.25)	ASD: 19 TD: 20	Dynamic, structured face- to-face conversation with a female interviewer	Dynamic stimuli with the associated eye-tracking data of the participant	They computed visual fixation ratios in four pre-defined AOIs across four sessions and added five features on session length, resulting in 21 features. Afterwards, they compared combinations of these features using different ML classifiers (e.g., SVM, LDA, DT and RF).	Their model that used the total session length, percentage of visual fixation time on the mouth AOI and the percentage of visual fixation time on the body as features achieved the highest classification accuracy. Looking at a single feature, the total session length was an effective discriminative feature.
Carette, et al. 45	All participants: 7.88 (NR)	ASD: 29 TD: 30	Combination of static and dynamic stimuli that depict naturalistic scenes, initiate joint attention and static face or objects.	They visualised the eye-tracking data of a participant as a scanpath image. Using the scanpath images, they converted it to a grayscale image and rescaled for further processing.	They defined the ASD classification as an image classification problem using a logistic regression model.	Their result achieved an AUC of 0.819 based on 10-fold cross validation.
Carette, et al. ⁷⁰	Same as Carette, et al. ⁴⁵	Same as Carette, et al. ⁴⁵	Same as Carette, et al. ⁴⁵	Same as Carette, et al. 45	They defined the ASD classification as an image classification problem using several ML and ANN models.	Their MLP achieved the best performance when compared to ML models. They noted that there was no performance increase as the complexity is increased.

Elbattah, et al. ⁷¹ Akter, et al. ⁷²	Same as Carette, et al. ⁴⁵ Same as Carette, et al. ⁴⁵	Same as Carette, et al. ⁴⁵ Same as	Same as Carette, et al. ⁴⁵ Same as	Same as Carette, et al. ⁴⁵	They trained an autoencoder for feature extraction. Afterwards, they implemented a k-means clustering algorithm and analysed the cluster qualities in terms of ASD classification.	They showed that by using a clustering technique on the latent space representation in the autoencoder bottleneck, they could get a cluster that contains a high percentage of ASD participants, suggesting that the algorithm can be used for ASD classification. Their results showed that the MLP
		Carette, et al. ⁴⁵	Carette, et al. ⁴⁵	al. ⁴⁵	implemented a k-means clustering algorithm to divide the data into four groups. They trained different ML models in each cluster for classification.	achieved the best performance on different metrics when compared to ML models.
Cilia, et al. ⁷³	ASD: 7.58 (2.50) TD: 8.00 (2.67)	ASD: 29 TD: 30	Similar to Carette, et al. ⁴⁵	Scanpath images	They developed a four-layer CNN interspersed with pooling layers and a final FCLs for classification.	Their model achieved an accuracy of around 90%, sensitivity of around 83% and a precision of around 80%.
Kanhirakadavath and Chandran ⁷⁴	Same as Carette, et al. 45	Same as Carette, et al. ⁴⁵	Same as Carette, et al. ⁴⁵	Same as Carette, et al. 45	They compared two frameworks: (1) PCA for feature extraction and different ML techniques for classification. (2) CNN for feature extraction and different numbers of FCLs for classification.	Their results showed that the deep learning approach achieved higher performance across different metrics when compared to the different ML approaches.
Gaspar, et al. ⁷⁵	Same as Carette, et al. ⁴⁵	Same as Carette, et al. ⁴⁵	Same as Carette, et al. ⁴⁵	Scanpath images	Their approach is a kernel extreme learning machine that uses giza pyramids construction metaheuristic algorithm for kernel parameters optimisation. They compared this technique to other optimisation algorithms, as well as ML algorithms, in terms of classification accuracy.	Their proposed pipeline achieved the highest performance on different metrics when compared to other optimisation algorithms. In addition, their model achieved the highest performance on difference metrics when compared to other ML algorithms.
Ahmed, et al. ⁷⁶	Same as Carette, et al. ⁴⁵	Same as Carette, et al. ⁴⁵	Same as Carette, et al. ⁴⁵	Scanpath images	They developed three models that are based on ML, DL and hybrid techniques for classification.	The highest performing model was the ANN that uses the features extracted from the snake algorithm trained for image segmentation.

de Belen, et al. ¹⁴	All participants: 4.60	ASD: 17	Same as Pierce,	Dynamic stimuli	They trained a VAM and used	Using different number of fixations
	(0.50)	TD: 17	et al. ^{11,} Pierce,	with the associated	SVM for classification.	their model achieved an accuracy of
			et al. ¹² ,Moore, et al. ¹³	eye-tracking data of		68%-100%, sensitivity of 57%-
01'	Demons 2 to 19	ASD: 76		the participant	Fourtheoutine sides down tion	100% and specificity of 65%-100%
Oliveira, et al. ¹⁵	Range: 3 to 18	ASD: 76 TD: 30	Dynamic, similar to	Dynamic stimuli with the associated	For the entire video duration, they created two sets (one for	Their model achieved an average precision of 90%, average recall o
		TD: 50	GeoPref that	eye-tracking data of	each group) that contain the	69% and average specificity of 93
			contains	the participant	aggregated fixation locations on	05% and average specificity of 55
			biological and	the participant	each frame. They created a	
			geometric		group-specific fixation map	
			movements		which was then used to train	
					VAMs. Afterwards, an	
					individual classification was	
77					performed based on the VAMs.	
Fan, et al. 77	All participants:	ASD: 21	Point-light	They defined 5	They used the fixation	Their method achieved an AUC of
	Range: 3 to 13	TD: 47	biological	'zones' where the	distribution in different zones to	0.95.
			motion animation with	visual attention of	identify zones helpful for classification. They trained an	
			upright/inverted	the participant is allocated.	SVM for classification.	
			persons that	Afterwards, they	S v W for classification.	
			perform	computed data		
			different	distribution within		
			actions.	these zones.		
Fang, et al. ⁷⁸	Age range:	ASD: 33	Same as Fan, et	Same as Fan, et al.	Using the extracted features,	Their results showed that the
	ASD: 4 to 10	TD: 50	al. 77	77	they compared kNN, Gaussian	nonlinear SVM achieved higher
	TD: 2 to 15				Naïve Bayes and Nonlinear	performance than the other MLP
G 1 79	All	AGD 17			SVM for ASD classification.	approaches.
Carette, et al. ⁷⁹	All participants: 8 to 10	ASD: 17	Dynamic, an	Eye-tracking data of	Different saccadic movement	Their model was able to identify
		TD: 15	actor initiating bids of joint	the participants	variables were calculated as input to a two-layer LSTM	ASD participants from TD participants with an accuracy of
			attention		network for classification.	83%.
Putra, et al. ⁸⁰	ASD: 5.00 (0.60)	ASD: 21	Dynamic,	Eye-tracking data of	They extracted different features	Their approach achieved an
	TD: 4.60 (0.40)	TD: 31	CatChicken	the participants	and used the AdaBoost	accuracy of 88.6%.
			game	r · · · · ·	metalearning algorithm.	J

229 ANN: Artificial Neural Network, AOI: Area Of Interest, ASD: Autism Spectrum Disorder, AUC: Area Under the Curve, CNN: Convolutional Neural Networks, DL: Deep 230 Learning, DT: Decision Tree, FCL: Fully-Connected Layer, kNN: k-Nearest Neighbour, LDA: Linear Discriminant Analysis, LSTM: Long Short-Term Memory, ML: 231 Machine Learning, MLP: Multi-Layer Perceptron, NR: Not reported, PCA: Principal Component Analysis, RF: Random Forest, SD: Standard deviation, SVM: Support 232 TD: Vector Machine, Typically Developing, VAM: Visual Attention Model

233 Eye-tracking in ASD risk and symptom severity prediction

234 Although there has been a great deal of research on the use of eye-tracking in ASD diagnosis, relatively 235 little research focus on other applications, such as automatically predicting the risk of ASD (e.g., low, medium 236 and high) and symptom severity, as shown in Table 5. Nevertheless, previous studies provide insights into the potential use of eye tracking in symptom severity prediction. For example, Kou, et al. ⁸¹ found that a reduction 237 238 in visual preference for social scenes is significantly correlated with the ADOS social affect score, which may 239 be useful in severity prediction. On the other hand, Bacon, et al.⁸² found that a higher visual preference of 240 toddlers for geometric scenes is significantly correlated with later symptom severity at school age, further 241 suggesting the clinical utility of eye tracking for ASD symptom severity prediction.

Recently, Revers, et al. ¹⁶ trained two computational models⁸³ to generate saliency maps of severe and non-severe groups and used the RELIEFF algorithm⁸⁴ to select the most important features for classification. Afterwards, a neural network was trained to identify symptom severity for each fixation made by the participant. The final prediction is considered to be severe if more than 20 fixations were classified as severe by the trained neural network. Their approach obtained an average accuracy of 88%, precision of 70%, sensitivity of 87% and specificity of 60% in predicting symptom severity.

248 In a slightly different problem, Canavan, et al. ²³, Fabiano, et al. ²⁴ proposed a method for predicting 249 ASD risk using eye gaze and demographic feature descriptors (e.g., age and gender). Handcrafted features, such 250 as average fixation duration and average velocity, were tested on four different classifiers, namely random 251 forests, decision trees, partial decision trees and a deep forward neural network. Although their results with a 252 maximum classification rate of 93.45% are promising, it is crucial to compare their handcrafted features to 253 features learned by modern deep learning models and determine if the latter improves the risk prediction 254 accuracy. In this paper, we present the same DNN approach we used in ASD classification to predict the level of 255 ASD-related symptoms.

256 Table 5 Eye Tracking in ASD Risk and Symptom Severity Prediction

Authors	Mean age (SD) in years	Sample size	Stimuli	Input used	Method	Conclusions
Canavan, et al. ^{23,} Fabiano, et al. ²⁴	Two experiments: Experiment 1: Range: between 2 and 60 years old Experiment 2: Range: between 2 and 40 years old	Two experiments: Experiment 1: 257 with different risk types (low, medium, high and confirmed ASD) Experiment 2: 237 (subset of the first experiment)	Image and Video	They used the raw eye- tracking data (x and y locations), handcrafted features (e.g., average fixation duration, velocity), age and gender	They compared different ML and DL algorithms for ASD risk prediction.	Their approach achieved a maximum classification rate of 93.45%.
Revers, et al. ¹⁶	Range: between 3 and 16 years old.	NSG: 49 SG: 39	Same as Pierce, et al. ^{11.} Pierce, et al. ^{12.} Moore, et al. ¹³	They used the stimulus and the associated eye- tracking data of the participant.	They trained two computational models ⁸³ to generate saliency maps of SG and NSG. Afterwards, they used RELIEFF algorithm to select features for classification. ⁸⁴	Their model achieved an average accuracy of 88%, precision of 70%, sensitivity of 87% and specificity of 60% for ASD symptom severity prediction.
Carette, et al. ⁷⁰	Same as Carette, et al.	Same as Carette, et al. ⁴⁵	Same as Carette, et al. ⁴⁵	Same as Carette, et al. ⁴⁵	They defined the symptom severity prediction as an image classification problem using ANN models.	Their model achieved an average accuracy of around 83%. Their model was able to better identify TD participants compared to other ASD symptom severity. The prediction accuracy of symptom severity labels was 20% lower and worse for severe ASD participants.

ANN: Artificial Neural Network, ASD: Autism Spectrum Disorder, ML: Machine Learning, NSG: Non-Severe Group, SD: Standard Deviation, SG: Severe Group, TD:
 Typically Developing

259 Materials and methods

260 In this work, we used a data-driven approach to extract rich features learned from a dynamic stimulus 261 to identify participants with autism and predict the level of ASD-related symptoms. In Error! Reference source 262 **not found.**, an overview of the proposed approach is provided. The method is divided into different stages, 263 including eye-tracking data collection, dynamic saliency detection trained on the difference of fixations between 264 ASD and TD individuals, and SVM-based classification and severity prediction. This study was approved by the 265 Human Research Ethics Committee of the University of New South Wales. Written informed consent was 266 obtained from the parents/legally authorised representatives of the participants. All methods were carried out in 267 accordance with relevant guidelines and regulations.

Figure 1 Overview of the proposed feature learning/extraction, classification and symptom severity prediction
approach. (a) Given a video input, per-frame features are learned using an end-to-end approach to predict the
difference of fixation (DoF) maps; (b) Extracted features at fixated pixels from each fixation stage are cascaded
and passed on to an SVM to identify individuals with ASD and predict the level of ASD-related symptoms.

273 Eye-tracking

274 **Participants**

268

There were 57 children (9 females) in the ASD group and 17 children (9 females) in the TD group. Participants were matched by their age at the time of the study. 24 children in the ASD group were recruited from an Autism Specific Early Learning and Care Centre (ASELCC) and 33 children were recruited from the Child Development Unit (CDU) of a Children's Hospital. The TD children were recruited from a children's services preschool. All participants in the ASD group met the criteria for ASD based on the Diagnostic and Statistical Manual of Mental Disorders (DSM-5)⁸⁵ criteria and the diagnosis of ASD was confirmed using the

Autism Diagnostic Observation Schedule (ADOS), Second Edition⁸⁶. Of the 57 ASD children, there were 24 who showed high ASD-related symptoms and 33 had moderate symptoms. There are no specific exclusion criteria for the ASD group in this study. The TD group's exclusion criteria included known neurodevelopmental disorders, significant developmental delays and known visual/hearing impairments. No child had any visual acuity problems.

286 **Dynamic stimulus**

287 We used the GeoPref Test^{11,12} dynamic stimulus, which has been shown to be an effective stimulus for 288 detecting ASD subgroups. This stimulus consists of dynamic geometric images (DGIs) on one side and dynamic 289 social images (DSIs) on the other. The DGIs were constructed from recordings of animated screen-saver 290 programs. The DSIs were produced from a series of short sequences of children performing yoga exercises. It 291 included images of children performing a wide range of movements (e.g., waving arms and appearing as if 292 dancing). The stimulus contained a total of 28 different scenes and was presented in order, based on the 293 originally published stimulus^{11,12}. It has a resolution of 1281 x 720 pixels and contains a total of 1,488 frames, 294 which is equivalent to 61 seconds of video playback.

295 Eye-tracking apparatus and procedure

296 Participants were tested using the Tobii X2-60 eye tracker and eye-tracking data was processed using 297 Tobii Studio software to identify fixations and saccades. Eye movements were recorded at 60 Hz (with an 298 accuracy of 0.5°) during the dynamic stimuli viewing. Each participant was seated approximately 60 cm in front 299 of a 22" monitor with a video resolution of 1680 x 1050 pixels in a quiet room and shown dynamic visual 300 stimuli in full-screen. A built-in five-point calibration in Tobii studio was completed before administering the 301 task for accurate eye gaze tracking. The calibration procedure required gaze following on an image of an animal 302 paired with auditory cues, starting with the centre of the screen, and moving across the four corners of the 303 screen. The eve-tracking procedure was conducted during a clinical assessment or the intake assessment for 304 entry to an early intervention program. Multiple attempts were made to ensure that the eye tracker has been 305 calibrated properly for accurate data collection. Multiple attempts were also made to ensure that the participants 306 were engaged during the experiment. As a result, depending on the capacity of the child, the procedure was 307 conducted over 2 to 3 sittings or with smaller breaks in between. The overall clinical assessment and eye-308 tracking procedure were completed in approximately 2.5h per participant.

309

310

311 Data processing and statistical analysis

Tobii Studio's I-VT filter⁸⁷ was used to process the raw eye-tracking data, exclude random noise and define fixations for further analysis. More specifically, short fixations (<100ms) were discarded and adjacent fixations (75ms, 0.5°) were merged. Trials were excluded if the total fixation duration was less than 15 seconds. That is, to be included, the participant should be looking at the stimulus for approximately 25% of the entire video duration. Once included, the eye-tracking data captured during the entire length of the stimulus are used for training and evaluation.

A calibration quality assessment was performed to rule out the possibility of eye-tracking data quality as a confounding factor. In this assessment, a toy accompanied by a sound was used to attract the participants' gaze to the calibration point in the middle of the screen. The mean distance between the detected fixation locations and the calibration point was calculated as a measure of accuracy. A t-test showed no significant difference between the groups, suggesting that data quality did not differ between the two groups: t(64) = -0.445, p = .658, ASD: 45.89 pixels (22.67), TD: 48.76 pixels (19.00).

An additional data quality assessment was performed to determine the overall nature of the visual attention of the participants to the stimuli. A t-test showed no significant difference in visual attention between groups: t(72) = 0.011, p = .991, ASD: 37.13 seconds (12.03), TD: 37.10 seconds (8.07). These analyses of quality suggest that it is unlikely that differences in data quality and general visual attention influenced the results.

An independent-samples t-test was used to investigate differences in visual attention across two groups for diagnosis (ASD vs. TD) and severity prediction (moderate vs. severe). All statistical analysis was performed in IBM SPSS Statistics Version 26.

332 Computation of per-frame saliency maps

333 Saliency detection models are typically optimised to detect salient features in a scene. They are trained 334 on a probability distribution of eye fixations, called the fixation map. The per-frame fixation maps of each 335 participant group were generated from the eye movement data collected in the study. For a given frame, all 336 fixation points of the children in each group were overlaid in a binary map, in which the fixation points were set 337 to 1 on a black background (value set to 0). The resulting per-frame fixation maps were smoothed with a

Gaussian kernel (bandwidth $= 1^{\circ}$) and normalised by the sum to generate per-frame visual attention heatmaps

339 (labelled ASD and TD heatmaps in Error! Reference source not found.).

340

341 Figure 2 Difference of Fixation (DoF) computation

342 Computation of per-frame difference of fixation (DoF) maps

343 Similar to Jiang and Zhao ³³, our network was optimised on the difference of fixation (DoF) maps, 344 highlighting the difference in visual attention between TD and ASD individuals. Since our approach uses a 345 dynamic stimulus, we predict DoF maps on each frame. In particular, let and be the fixation maps for the 346 ASD and TD groups, respectively. The DoF map of a frame is computed as:

where is a pixel-wise subtraction of fixation maps and represents the standard deviation of I.
The resulting DoF maps highlight the difference in visual attention between ASD and TD individuals (refer to **Error! Reference source not found.**). The white regions of the DoF map illustrate the visual attention of TD
individuals while the black regions are for ASD individuals. Note that this is the opposite of the DoF
computation elsewhere³³. This also resulted in better training performance compared to DoF maps that highlight
more fixations of the ASD group.

354 Figure 3 Learning Difference of Fixation Maps

355 **Per-frame prediction of difference of fixation maps**

As shown in **Error! Reference source not found.**, ACLNet⁸⁸, one of the best models available for dynamic saliency detection, is used for feature extraction. It consists of a CNN-LSTM network with an attention mechanism to enable fast, end-to-end saliency prediction. Since ACLNet already contains an attention network trained on TD individuals, we trained and fine-tuned our model with DoF maps that highlight more fixations of the TD group.

Our model was optimised using the following loss function⁸⁹ which considers three different saliency
evaluation metrics instead of the binary-cross entropy loss used before³³. We denote the predicted difference of
fixation map as and the ground truth saliency map as . Our loss function
combines Kullblack-Leibler (KL) divergence, the Linear Correlation Coefficient (CC) and the Normalised
Scanpath Saliency (NSS) similar to prior work⁸⁸:

is widely used for training saliency models and is computed by:

367 measures the linear relationship between Y and Q:

$$L_{CC}(Y,Q) = -\frac{cov(Y,Q)}{\sigma(Y)\sigma(Q)}$$

368 where cov(Y, Q) is the covariance of Y and Q while σ is the standard deviation.

369 L_{NSS} is defined as:

$$L_{NSS}(Y,Q) = -\frac{1}{N} \sum_{x} \overline{Y}(x) \times Q(x)$$

370 where $\overline{Y} = \frac{Y - \mu(Y)}{\sigma(Y)}$ and $N = \sum_{x} Q(x)$. It computes the mean of scores from the normalised saliency map \overline{Y} at 371 the predicted DoF maps Y.

- - -

372 **Training protocol**

Our classification and severity prediction models are iteratively trained with sequential DoF maps and image data. We train the model by using a loss defined over the predicted dynamic saliency maps from convLSTM. Let $\{Y_t^d\}_{t=1}^T$ and $\{Q_t^d\}_{t=1}^T$ denote the predicted dynamic saliency maps and continuous difference of fixation maps. We minimise the following loss:

$$L^d = \sum_{t=1}^T L(Y_t^d, Q_t^d)$$

The parameters of ACLNet are initialised to the pre-trained parameters ⁸⁸. The network is then fine-tuned on the
current dataset.

ASD classification and symptom severity prediction

380 Once the model has been trained to predict DoF maps of ASD and TD individuals from a given 381 dynamic stimulus, feature extraction and classification are performed, with Error! Reference source not 382 found. illustrating the process¹⁴. Based on the eye-tracking data, we determined the fixation positions and the 383 corresponding frames in which they were recorded. Each saccade-fixation pair was considered a fixation stage. 384 For each fixation stage, features were extracted from the corresponding fixation position on the feature map 385 obtained from the convLSTM output (note that the convLSTM output is upsampled 4 times before extracting 386 the feature map). More specifically, given a frame where a fixation has been identified, the feature map at the 387 corresponding fixation is extracted, which results in a 256-dimensional feature vector at each fixation. For a 388 corresponding number of fixation stages, feature vectors for all fixations are concatenated in their temporal 389 order starting from the first fixation to the last fixation stage. This serves as the feature space in which

- 390 classification is performed. If there were fewer identified fixations, zeros are appended at the end. We explored
- the number of fixation stages that provided the best performance.

392

393 Figure 4 Feature Extraction and Classification

A linear decision boundary between ASD and TD individuals was determined by training an SVM on the extracted features. In addition, another SVM model was trained on the DoF maps of moderate and high ASD individuals to predict autism severity. We used the ADOS-2 calibrated severity scores (CSS) as ground truth to determine the ASD severity. Participants with ADOS CSS of 5-7 are considered to have moderate symptoms, while those with ADOS CSS of 8-10 are considered to have more severe (high) symptoms.

399 Experimental setup

400 Training and testing protocols

We report the model's performance on ASD classification and symptom severity prediction using
leave-one-out cross-validation (LOOCV). Given the unbalanced nature and the limited number of samples in the

403 dataset, LOOCV is used to provide an almost unbiased estimate of the probability of error⁹⁰. In addition, it

404 allows us to maximise the number of training samples per fold unlike in a k-fold validation approach. While a

- 405 stratified k-fold cross-validation strategy may account for the group imbalance that is present in our dataset, it
- 406 results in smaller training samples per fold. However, removing a single sample from the training set done in
- 407 LOOCV also does not drastically change the class distribution. The combination of being able to use as much

408 training data as possible while also maintaining similar class distribution was the reason why we used LOO	reason why we used LOOCV
--	--------------------------

409 The same evaluation approach has been employed in prior studies^{14,33,34,43,68,69} in this application area.

410 **Implementation details**

- 411 We implemented our model in Tensorflow with Keras and Scikit-learn libraries. During the training
- 412 phase, we fine-tuned the network with Adam optimizer and a batch size of one image for a total of 20 epochs.
- 413 The learning rate was set to 0.0001. We did not perform any dropout and data augmentation. L2 regularisation
- 414 with the penalty parameter C=1 was used for SVM classification.

415 **Evaluation metrics**

- 416 We report on the performance of our model in terms of accuracy, sensitivity (i.e., true positive rate)
- 417 and specificity (i.e., true negative rate) recorded at different numbers of fixations. Once the best number of
- 418 fixations to be included in the classification was identified, the area under the receiver operating characteristic
- 419 (ROC) curve and the confusion matrix were also computed. To obtain a meaningful area under the ROC curve
- 420 (AUC) in an LOOCV, the output probability of the SVM for each fold (each consisting of just one subject) was
- 421 saved and the AUC was computed on the set of these probability estimates. The computation of the confusion
- 422 matrix was performed similarly using the predicted class to compare with the ground truth label.

423 **Computational load**

- 424 The entire training procedure for each video stimulus takes about 1 hour with two NVIDIA 2080 Super and a
- 425 3.5GHz Intel processor (i7-7800X CPU). Once the model has been trained, feature extraction and SVM
- 426 classification can be performed in less than 1 minute.

427 **Results**

428 Datasets

- 429 Children with ASD had a mean age of 4.63(standard deviation (SD) = 0.80) years and TD participants 430 also had a mean age of 4.61 (SD = 0.47) years. There was no significant difference in age between the ASD and
- 431 TD groups, t(72) = 0.009, p = 0.993.

432 Eye-tracking data analysis

433 **ASD Classification**

434 It was previously shown that ASD individuals with severe symptoms tend to fixate more on the 435 geometric stimuli than the social stimuli^{11,12}. Shown in **Error! Reference source not found.** are the %Geo 436 values, the percentage of time spent looking at the dynamic geometric stimuli. %Geo values are computed by 437 dividing the total fixation duration on the geometric stimuli by the total fixation duration on both geometric and 438 social stimuli. Independent-samples t-test was used to compare % Geo for each diagnostic group. Similar to 439 published results elsewhere¹¹⁻¹³, ASD participants in our study were significantly more attracted to dynamic 440 geometric images when compared to TD participants (t = 2.11, p < .0386). On average, the ASD group spent 441 49.37% (standard deviation (SD) = 24.14%) of their attention looking at the dynamic geometric images, while 442 the TD group spent 35.97% (SD = 18.58%) of their attention.

443
444 Figure 5 Comparison of the percentage of time spent looking at the dynamic geometric stimuli (%geo) between TD
445 and ASD participants. Each box plot contains the interquartile range, the x marker corresponds to the mean value and the
446 horizontal line inside correspond to the median. Each sample is also visualised using dot points.

447 **ASD symptom severity prediction**

Shown in **Error! Reference source not found.** are the %Geo values, the percentage of time spent on looking at the dynamic geometric stimuli. There was no significant difference in the %Geo values between the moderate and severe ASD participants (t = 0.424, p < .6729). On average, ASD participants with moderate symptoms fixated around 48.21% (SD = 23.82%) of their attention on the geometric stimuli. On the other hand, ASD participants with severe symptoms spent 50.98% (SD = 25.00%) of their attention looking at the geometric stimuli. We also performed pair-wise comparisons between the TD participants and the two ASD participant

- 454 groups (i.e., moderate and severe). There was a significant difference in the %Geo values between ASD
- 455 participants with severe symptoms and TD participants (t =2.096, p < .0426). On the other hand, there was only
- 456 a trend toward a significant difference in the %Geo values between ASD participants with mild symptoms and

457 TD participants (t = 1.846, p < .0710).

458

Figure 6 Comparison of the percentage of time spent looking at the dynamic geometric stimuli (%geo) ASD participants
with moderate and severe symptoms. Each box plot contains the interquartile range, the x marker corresponds to the mean
value and the horizontal line inside correspond to the median. Each sample is also visualised using dot points.

- 462
- In recent years, it has been shown that stimuli that have both dynamic geometric and social images can reliably separate the visual attention of ASD and TD individuals. We contribute to the literature by showing that a DNN-based approach using dynamic stimuli can result in highly accurate ASD classification and even predict the level of ASD-related symptoms with promising performance.

467 **ASD classification performance**

In Figure 7, different performance metrics for ASD prediction on the GeoPref Test dynamic stimulus are shown. In Figure 7a the accuracy, sensitivity and specificity of the model as the number of fixations (i.e., fixation length) increases are displayed. It can be observed that all measures generally increase as the number of fixations increases. In Figure 7b and Figure 7c, the receiver operating characteristics (ROC) curve and the confusion matrix of the model that reported the highest accuracy (i.e., using the optimal fixation length) in Figure 7a are shown. The area under the ROC curve (AUC) of our model is 0.96, significantly higher than

chance-level performance (AUC=0.5). Our model achieved the highest accuracy of 94.59% when 64 fixations
were included in the analysis. The high sensitivity of our model (highest value = 100%) suggests that it can
reliably identify ASD children. On the other hand, the specificity of our model (highest value = 76.47%)
suggests that it can reliably identify children without the disorder. However, four (4) children were mistakenly
flagged as having the disorder despite not having it.

479 **ASD severity prediction performance**

480 Similar to the results of the diagnosis prediction, it can be observed in Figure 8a that all performance 481 measures for ASD severity prediction generally increase as the number of fixations (i.e., fixation length) 482 increases. In Figure 8b and Figure 8c, the ROC curve and the confusion matrix of the model that reported the 483 highest accuracy in Figure 8a are shown. Our model achieved the highest accuracy of 94.74% when 44 484 fixations were included in the analysis. The area under the ROC curve (AUC) of our model is 0.99, significantly 485 higher than chance-level performance (AUC=0.5). The high specificity of our model (highest value = 100%) 486 suggests that it can reliably identify children with mild ASD. On the other hand, the high sensitivity of our 487 model (highest value = 87.50%) suggests that it can reliably identify children with severe symptoms. However, 488 three (3) children were mistakenly flagged as having severe diagnoses despite having milder symptoms.

489 **Comparison with other approaches**

As outlined in the related work section, a straightforward comparison with previous approaches that utilise dynamic stimuli is not possible because the published dataset contains a visualisation of eye-tracking participants (i.e., scanpath images) rather than the stimuli used and the associated eye-tracking data that our model requires. Nevertheless, we compared our proposed approach with a simple thresholding method¹¹⁻¹³ and ML algorithms using handcrafted features^{23,24}.

495 Figure 7 Different performance metrics for ASD prediction. A.) the plot of the model's sensitivity, specificity and accuracy as the number of fixations (i.e., fixation length) increases. B.) the plot
496 of the area under the receiving operating curve of the best-performing model. C.) the confusion matrix of the best-performing model.

497 Figure 8 Different performance metrics for ASD symptom severity prediction. A.) the plot of the model's sensitivity, specificity and accuracy as the number of fixations (i.e., fixation length)
 498 increases. B.) the plot of the area under the receiving operating curve of the best-performing model. C.) the confusion matrix of the best-performing model.

499 **ASD Classification**

500	Following the cut-off of %Geo > 69% to determine ASD participants in a similar study ¹¹⁻¹³ , we
501	obtained a sensitivity of 22.80%, specificity of 88.23% and accuracy of 37.84%. The AUC obtained was 0.67.
502	In comparison, our proposed model resulted in 77.2% higher sensitivity, 11.76% lower specificity and 56.75%
503	higher accuracy when compared to solely utilising the %Geo values. Handcrafted features that include raw eye
504	gaze points (x and y locations), average fixation duration, age and gender, were also used as input to a random
505	forest regressor and a decision tree classifier for ASD classification similar to a previous study ^{23,24} . The random
506	forest regressor achieved an accuracy of 72.97%, a sensitivity of 91.22% and a specificity of 0%. On the other
507	hand, the decision tree classifier achieved an accuracy of 58.11%, a sensitivity of 70.18% and a specificity of
508	17.65%.
509	Overall, our proposed model achieved the highest accuracy of 94.59%, the highest sensitivity of 100%

and the second-best specificity of 76.47%. The comparison results in ASD classification suggest that our model

511 better identified participants with ASD than the previous approaches.

512 Table 6 ASD Classification Results Comparison with Prior Approaches

Approach	Accuracy	Sensitivity	Specificity
Thresholding approach ¹¹⁻¹³	37.84%	22.80%	88.23%
Random forest regressor	72.97%	91.22%	0.00%
Decision tree classifier	58.11%	70.18%	17.65%
Ours	94.59%	100%	76.47%

513 **ASD symptom severity prediction**

514 We also used the same $^{11-13}$ cut-off of %Geo > 69% to identify ASD participants with severe symptoms 515 and obtained a sensitivity of 25.00%, specificity of 78.79% and accuracy of 43.24%. The AUC obtained was 516 0.54. Again, our proposed method showed promising results for severity prediction, resulting in a 62.50% 517 increase in sensitivity, a 21.21% increase in specificity and a 51.5% increase in accuracy when compared to 518 solely utilising the %Geo values. In comparison to our model, using handcrafted features and ML classifiers 519 resulted in the same accuracy of 94.74%, slightly higher sensitivity of 91.67% and slightly lower specificity of 520 96.97%. 521 Overall, our proposed model achieved the highest accuracy of 94.47%, the second-best sensitivity of

522 87.50% and the highest specificity of 100%. The comparison results in ASD symptom severity prediction

523 suggest that our model better identifies participants with moderate symptoms than the previous approaches.

524 Table 7 ASD Symptom Severity Prediction Results Comparison with Prior Approaches

Approach	Accuracy	Sensitivity	Specificity
Thresholding approach ¹¹⁻¹³	43.24%	25.00%	78.79%

Random forest regressor	94.74%	91.67%	96.97%
Decision tree classifier	94.74%	91.67%	96.97%
Ours	94.74%	87.50%	100%

525 **Discussion**

526 Over the past decade, eye-tracking studies have revealed significant differences in visual attention 527 between ASD and TD individuals. This motivated researchers to leverage recent advances in saliency prediction 528 when designing a more quantitative approach to ASD diagnosis, as well as risk and symptom severity 529 prediction. In this context, researchers have explored the use of static and dynamic stimuli during free-viewing 530 tasks. The most common approach in the literature comprised of a traditional two-stage method that consists of 531 a feature extraction stage followed by a classification stage. Increasing evidence suggests that the DL-based 532 approach produced more discriminative features when compared to ML-based approaches. Classification 533 methods that utilise DL also resulted in better performance than ML models. The rapid advances in DL 534 approaches and the increasing number of publicly available datasets may help further advance the literature and 535 improve classification performance. In this paper, we utilised a combination of DL and ML approaches for ASD 536 diagnosis and symptom severity prediction.

537 Unlike prior research that utilised dynamic stimuli and converted the participant's eye-tracking data 538 into an image for classification, we propose a data-driven approach utilising a dynamic saliency model to extract 539 discriminative features from the stimuli and an ML approach based on eye-tracking data to automatically 540 identify individuals with ASD. In addition, we show that the same approach can predict the level of ASD-541 related symptoms in preschool children. Our approach to identifying children with ASD offers several 542 advantages when compared to existing eye-tracking research. Most notably, our method only takes one minute 543 of eye-tracking, a substantial decrease in recording time when compared to about 10 minutes required in 544 previous studies^{33,34}. While our method requires a substantially shorter amount of time, it is not a replacement 545 for standard clinical assessments. Extensive experiments are necessary before the true clinical utility and 546 usability of our proposed method can be realised.

547 Our results support other studies¹¹⁻¹³ that found a significant difference in the overall attention towards 548 geometric stimuli between ASD and TD participants. This significant difference in visual attention was also 549 found between ASD children with severe symptoms and TD children in our study. Despite these differences, 550 using the ratio of visual attention towards the geometric stimuli and the total overall attention and implementing 551 a thresholding technique employed previously¹¹⁻¹³ resulted in lower classification performance than our 552 proposed model. Using an ML-based approach on handcrafted features^{23,24} also resulted in lower accuracy in

ASD prediction and a similar accuracy in symptom severity prediction than our proposed model. Overall, our results demonstrate the feasibility of using our approach in accurately identifying ASD children and children with severe symptoms. Our model achieved promising performance with high accuracy, sensitivity and specificity.

557 Finally, most published research reviewed in this paper attempted to identify adults with ASD or older 558 ASD children. In contrast, we investigated the possibility of diagnosing autism and predicting the level of ASD-559 related symptoms in preschool children (around 4 years old), an age range where diagnosis and assessment are 560 typically performed. As a result, we provide an alternative to augment (and not replace) existing clinical 561 observation tools with a more objective and efficient approach to ASD diagnosis. This takes us closer to an 562 early ASD screening system and allows children to access intervention for better health outcomes. While our 563 results are promising, our proposed approach needs to be trained and tested on a much larger dataset before it 564 can be utilised in clinical settings.

565 From a clinical perspective, our findings suggest that eye-tracking technology could be used as a 566 biomarker of the presence of ASD and symptom severity in preschool children. Initial findings already found 567 significant correlations between changes in eye-tracking measures and changes in clinical measures captured 568 before and after interventions, suggesting that eye-tracking can be utilised to quantify treatment response⁹¹. 569 Given the rapid advances in technology supported by the promising performance of the classification models 570 reviewed in this paper, it is not hard to imagine that future research would explore the use of a similar eye-571 tracking paradigm in predicting other clinical phenotypes and treatment response outcomes in preschool ASD 572 children. This will have a tremendous impact on targeting interventions that maximise health outcomes in 573 patients.

574 Limitations

575 Despite the utility of the current study, there are several limitations to keep in mind. First, there was a 576 gender skew towards males in the ASD group, as would be clinically expected. Nevertheless, further studies 577 with more female participants are required to clarify our results, as differences in autism presentation and 578 diagnosis between males and females have been documented.⁹² For example, studies have shown that girls on 579 the spectrum behave similarly to neurotypical boys and girls on certain socially orientated tasks, such as 580 enhanced attention to faces during scenes that do not have social interactions.^{93,94} In addition, TD men with high 581 ASD traits exhibit worse accuracy of gaze shifts, while TD women have similar gaze-following behaviour 582 regardless of ASD traits.95

583 Further, the participant groups also differed in sample size, with the ASD group being three times as 584 large as the TD group. The ASD participants in this study were recruited from an ASD-specific centre and there 585 was good uptake to the study. Despite significant efforts of the team to recruit control participants, there was 586 less interest from the families of neurotypical children to participate in the study, which is probably not 587 surprising given the study is less meaningful for children without a developmental diagnosis. We also 588 acknowledge that the dataset size is relatively small in comparison to the dataset required to train modern DL 589 models. To aid our model training and leverage transfer learning, we utilised one of the best dynamic saliency 590 detection model⁸⁸ and finetuned its weights to our dataset. This allowed our model to learn better and extract 591 more robust and semantically meaningful features when compared to a model trained from scratch on our 592 dataset. We believe that using the leave-one-out cross-validation approach to train and test the model addressed 593 the class imbalance and small sample size in our study. This validation approach has been used extensively in prior research 14,33,34,43,68,69 594

It is also useful to note that the participant groups were matched on chronological age but not on developmental abilities. Further studies with larger sample sizes with a developmentally age-matched group are suggested to confirm our findings. As reported in the Materials and methods section, children with ASD were not excluded from the study if they had a comorbid diagnosis. Although this has implications for any strict interpretation of the findings reported here, the inclusion of comorbid conditions in ASD research is ecologically valid. Indeed, it is rare in clinical practice to encounter a young person who has a 'pure' autism spectrum diagnosis with no other psychiatric or developmental comorbidities.

Finally, we cannot report on the performance of the stimuli-based classification approaches and compare it with our dynamic stimuli-based classification approach since this study is part of a larger study that aimed to find differences in eye-tracking data between ASD and TD participants while watching dynamic stimuli. As such, no eye-tracking data from the same participants were collected while viewing static stimuli.

606 Author contributions

607 RAJDB conceptualised the methodology, conducted the pre-processing of the eye-tracking data, 608 performed the statistical analysis, developed the deep neural network, and wrote the initial draft of the 609 manuscript under the supervision of VE, TB and AS. All authors reviewed the manuscript and contributed to the 610 revision of the article. All authors approved the final version of the manuscript.

611 Additional information

612 The authors have declared that no competing interests exist.

613 Acknowledgements

- 614 We extend our gratitude to the children and their families who participated in this study and to the staff
- 615 where this study was conducted.
- 616 Availability of data and materials: The datasets generated and/or analysed during the current study are not
- 617 publicly available but are available from the corresponding author upon reasonable request.

618		References
619		
620	1	Huerta, M., Bishop, S. L., Duncan, A., Hus, V. & Lord, C. Application of DSM-5 criteria
621		for autism spectrum disorder to three samples of children with DSM-IV diagnoses of
622		pervasive developmental disorders. <i>American Journal of Psychiatry</i> 169 , 1056-1064
623		(2012).
624	2	Randall, M. <i>et al.</i> Diagnostic tests for autism spectrum disorder (ASD) in preschool
625		children. Cochrane Database of Systematic Reviews (2018).
626	3	Taylor, L. J. <i>et al.</i> Brief Report: An Exploratory Study of the Diagnostic Reliability for
627		Autism Spectrum Disorder. Journal of Autism and Developmental Disorders 47, 1551-
628		1558, doi:10.1007/s10803-017-3054-z (2017).
629	4	Estes, A. et al. Long-term outcomes of early intervention in 6-year-old children with
630		autism spectrum disorder. Journal of the American Academy of Child & Adolescent
631		Psychiatry 54 , 580-587 (2015).
632	5	de Belen, R. A. J., Bednarz, T., Sowmya, A. & Del Favero, D. Computer vision in autism
633		spectrum disorder research: a systematic review of published studies from 2009 to
634		2019. Translational Psychiatry 10 , 333, doi: <u>https://doi.org/10.1038/s41398-020-</u>
635		<u>01015-w</u> (2020).
636	6	Sapiro, G., Hashemi, J. & Dawson, G. Computer vision and behavioral phenotyping:
637		an autism case study. <i>Current Opinion in Biomedical Engineering</i> 9 , 14-20,
638		doi: <u>https://doi.org/10.1016/j.cobme.2018.12.002</u> (2019).
639	7	Ahmed, Z. A. T. & Jadhav, M. E. A Review of Early Detection of Autism Based on Eye-
640		Tracking and Sensing Technology in 2020 International Conference on Inventive
641		Computation Technologies (ICICT). 160-166 (IEEE) (Year).
642	8	Kollias, KF., Syriopoulou-Delli, C. K., Sarigiannidis, P. & Fragulis, G. F. The
643		Contribution of Machine Learning and Eye-Tracking Technology in Autism Spectrum
644		Disorder Research: A Systematic Review. <i>Electronics</i> 10 , 2982 (2021).
645	9	de Belen, R. A. <i>et al.</i> Eye-tracking correlates of response to joint attention in
646		preschool children with autism spectrum disorder. BMC Psychiatry 23, 211,
647		doi:10.1186/s12888-023-04585-3 (2023).
648	10	Osterling, J. & Dawson, G. Early recognition of children with autism: a study of first
649		birthday home videotapes. J Autism Dev Disord 24 , 247-257,
650		doi:10.1007/bf02172225 (1994).
651	11	Pierce, K., Conant, D., Hazin, R., Stoner, R. & Desmond, J. Preference for Geometric
652		Patterns Early in Life as a Risk Factor for Autism. Archives of General Psychiatry 68,
653		101-109, doi:10.1001/archgenpsychiatry.2010.113 (2011).
654	12	Pierce, K. <i>et al.</i> Eye Tracking Reveals Abnormal Visual Preference for Geometric
655		Images as an Early Biomarker of an Autism Spectrum Disorder Subtype Associated
656		With Increased Symptom Severity. <i>Biological Psychiatry</i> 79 , 657-666,
657		doi: <u>https://doi.org/10.1016/j.biopsych.2015.03.032</u> (2016).
658	13	Moore, A. <i>et al.</i> The geometric preference subtype in ASD: identifying a consistent,
659		early-emerging phenomenon through eye tracking. <i>Molecular autism</i> 9, 1-13 (2018).
660	14	de Belen, R. A. J., Bednarz, T. & Sowmya, A. EyeXplain Autism: Interactive System for
661		Eye Tracking Data Analysis and Deep Neural Network Interpretation for Autism
662		Spectrum Disorder Diagnosis in Extended Abstracts of the 2021 CHI Conference on
663		Human Factors in Computing Systems. Article 364 (Association for Computing
664		Machinery), doi:https://doi.org/10.1145/3411763.3451784 (Year).

665	15	Oliveira, J. S. et al. Computer-aided autism diagnosis based on visual attention
666		models using eye tracking. <i>Scientific reports</i> 11 , 1-11 (2021).
667	16	Revers, M. C. <i>et al.</i> Classification of Autism Spectrum Disorder Severity Using Eye
668		Tracking Data Based on Visual Attention Model in 2021 IEEE 34th International
669		Symposium on Computer-Based Medical Systems (CBMS). 142-147 (IEEE) (Year).
670	17	ltti, L., Koch, C. & Niebur, E. A model of saliency-based visual attention for rapid
671		scene analysis. IEEE Transactions on pattern analysis and machine intelligence 20 ,
672		1254-1259 (1998).
673	18	Borji, A. Saliency prediction in the deep learning era: Successes and limitations. <i>IEEE</i>
674		transactions on pattern analysis and machine intelligence 43 , 679-700 (2019).
675	19	de Belen, R. A. J., Bednarz, T. & Sowmya, A. ScanpathNet: A Recurrent Mixture
676		Density Network for Scanpath Prediction in <i>Proceedings of the IEEE/CVF Conference</i>
677		on Computer Vision and Pattern Recognition. 5010-5020 (Year).
678	20	Duan, H. <i>et al.</i> A dataset of eye movements for the children with autism spectrum
679	20	disorder in Proceedings of the 10th ACM Multimedia Systems Conference. 255–260
680		(Association for Computing Machinery), doi:10.1145/3304109.3325818 (Year).
	21	
681	21	Gutiérrez, J., Che, Z., Zhai, G. & Le Callet, P. Saliency4ASD: Challenge, dataset and
682		tools for visual attention modeling for autism spectrum disorder. <i>Signal Processing:</i>
683		Image Communication 92 , 116092 (2021).
684	22	Le Meur, O., Nebout, A., Cherel, M. & Etchamendy, E. From Kanner Austim to
685		Asperger Syndromes, the Difficult Task to Predict Where ASD People Look at. IEEE
686		Access 8 , 162132-162140 (2020).
687	23	Canavan, S. <i>et al.</i> Combining gaze and demographic feature descriptors for autism
688		classification in 2017 IEEE International Conference on Image Processing (ICIP).
689		3750-3754 (IEEE) (Year).
690	24	Fabiano, D., Canavan, S., Agazzi, H., Hinduja, S. & Goldgof, D. Gaze-based
691		classification of autism spectrum disorder. Pattern Recognition Letters 135, 204-212
692		(2020).
693	25	Chaddad, A., Desrosiers, C. & Toews, M. Multi-scale radiomic analysis of sub-cortical
694		regions in MRI related to autism, gender and age. <i>Scientific Reports</i> 7 , 45639,
695		doi:10.1038/srep45639 (2017).
696	26	Chaddad, A., Desrosiers, C., Hassan, L. & Tanougast, C. Hippocampus and amygdala
697		radiomic biomarkers for the study of autism spectrum disorder. BMC Neuroscience
698		18 , 52, doi:10.1186/s12868-017-0373-0 (2017).
699	27	Chanel, G. <i>et al.</i> Classification of autistic individuals and controls using cross-task
700		characterization of fMRI activity. <i>NeuroImage: Clinical</i> 10 , 78-88,
701		doi:https://doi.org/10.1016/j.nicl.2015.11.010 (2016).
702	28	Eslami, T. & Saeed, F. Auto-ASD-Network: A Technique Based on Deep Learning and
703	20	Support Vector Machines for Diagnosing Autism Spectrum Disorder using fMRI Data
704		in Proceedings of the 10th ACM International Conference on Bioinformatics,
704		Computational Biology and Health Informatics. 646–651 (Association for Computing
705		Machinery), doi:10.1145/3307339.3343482 (Year).
	29	
707	29	Zheng, W. <i>et al.</i> Multi-feature based network revealing the structural abnormalities
708		in autism spectrum disorder. <i>IEEE Transactions on Affective Computing</i> , 1-1,
709		doi:10.1109/TAFFC.2018.2890597 (2018).

710	30	Crimi, A., Dodero, L., Murino, V. & Sona, D. Case-control discrimination through
711		effective brain connectivity in 2017 IEEE 14th International Symposium on
712		<i>Biomedical Imaging (ISBI 2017)</i> . 970-973, doi:10.1109/ISBI.2017.7950677 (Year).
713	31	Shukla, P., Gupta, T., Saini, A., Singh, P. & Balasubramanian, R. A Deep Learning
714		Frame-Work for Recognizing Developmental Disorders in 2017 IEEE Winter
715		Conference on Applications of Computer Vision (WACV). 705-714,
716		doi:10.1109/WACV.2017.84 (Year).
717	32	Li, B. <i>et al.</i> A Facial Affect Analysis System for Autism Spectrum Disorder in 2019 IEEE
718		International Conference on Image Processing (ICIP). 4549-4553,
719		doi:10.1109/ICIP.2019.8803604 (Year).
720	33	Jiang, M. & Zhao, Q. Learning Visual Attention to Identify People with Autism
721		Spectrum Disorder in 2017 IEEE International Conference on Computer Vision (ICCV).
722		3287-3296, doi:10.1109/ICCV.2017.354 (Year).
723	34	Liu, W., Li, M. & Yi, L. Identifying children with autism spectrum disorder based on
724		their face processing abnormality: A machine learning framework. Autism Research
725		9 , 888-898, doi:10.1002/aur.1615 (2016).
726	35	Liu, W. <i>et al</i> . Efficient autism spectrum disorder prediction with eye movement: A
727		machine learning framework in 2015 International Conference on Affective
728		Computing and Intelligent Interaction (ACII). 649-655,
729		doi:10.1109/ACII.2015.7344638 (Year).
730	36	Vu, T. <i>et al.</i> Effective and efficient visual stimuli design for quantitative autism
731		screening: An exploratory study in 2017 IEEE EMBS International Conference on
732		Biomedical & Health Informatics (BHI). 297-300, doi:10.1109/BHI.2017.7897264
733		(Year).
734	37	Vyas, K. <i>et al.</i> Recognition Of Atypical Behavior In Autism Diagnosis From Video Using
735		Pose Estimation Over Time in 2019 IEEE 29th International Workshop on Machine
736		Learning for Signal Processing (MLSP). 1-6, doi:10.1109/MLSP.2019.8918863 (Year).
737	38	Zunino, A. et al. Video Gesture Analysis for Autism Spectrum Disorder Detection in
738		2018 24th International Conference on Pattern Recognition (ICPR). 3421-3426,
739		doi:10.1109/ICPR.2018.8545095 (Year).
740	39	Rajagopalan, S. S., Dhall, A. & Goecke, R. Self-Stimulatory Behaviours in the Wild for
741		Autism Diagnosis in 2013 IEEE International Conference on Computer Vision
742		Workshops. 755-761, doi:10.1109/ICCVW.2013.103 (Year).
743	40	Rajagopalan, S. S. & Goecke, R. Detecting self-stimulatory behaviours for autism
744		diagnosis in 2014 IEEE International Conference on Image Processing (ICIP). 1470-
745		1474, doi:10.1109/ICIP.2014.7025294 (Year).
746	41	Wang, Z. <i>et al.</i> Screening Early Children with Autism Spectrum Disorder via
747	. –	Response-to-Name Protocol. <i>IEEE Transactions on Industrial Informatics</i> , 1-1,
748		doi:10.1109/TII.2019.2958106 (2019).
749	42	Wang, Z., Xu, K. & Liu, H. Screening Early Children with Autism Spectrum Disorder via
750	74	Expressing Needs with Index Finger Pointing in <i>Proceedings of the 13th International</i>
751		Conference on Distributed Smart Cameras. Article 24 (Association for Computing
752		Machinery), doi:10.1145/3349801.3349826 (Year).
753	43	Chen, S. & Zhao, Q. Attention-Based Autism Spectrum Disorder Screening With
754	73	Privileged Modality in 2019 IEEE/CVF International Conference on Computer Vision
755		(<i>ICCV</i>). 1181-1190, doi:10.1109/ICCV.2019.00127 (Year).
100		$(100 v)$. $1101 - 1130$, $001 \cdot 10.1103 (100 v \cdot 2013 \cdot 00127 (1001))$.

756	44	Minissi, M. E., Chicchi Giglioli, I. A., Mantovani, F. & Alcaniz Raya, M. Assessment of
757		the autism spectrum disorder based on machine learning and social visual attention:
758		A systematic review. Journal of Autism and Developmental Disorders 52, 2187-2202
759		(2022).
760	45	Carette, R., Elbattah, M., Dequen, G., Guérin, JL. & Cilia, F. Visualization of eye-
761		tracking patterns in autism spectrum disorder: method and dataset in 2018
762		Thirteenth International Conference on Digital Information Management (ICDIM).
763		248-253 (IEEE) (Year).
764	46	Duan, H. et al. Learning to predict where the children with asd look in 2018 25th ieee
765		international conference on image processing (icip). 704-708 (IEEE) (Year).
766	47	Duan, H. <i>et al.</i> Visual attention analysis and prediction on human faces for children
767		with autism spectrum disorder. ACM Transactions on Multimedia Computing,
768		Communications, and Applications (TOMM) 15 , 1-23 (2019).
769	48	Fang, Y., Huang, H., Wan, B. & Zuo, Y. Visual attention modeling for autism spectrum
770	40	disorder by semantic features in 2019 IEEE International Conference on Multimedia
771		& Expo Workshops (ICMEW). 625-628 (IEEE) (Year).
772	49	Wei, W., Liu, Z., Huang, L., Nebout, A. & Le Meur, O. Saliency prediction via multi-
773	45	level features and deep supervision for children with autism spectrum disorder in
774		2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).
775		621-624 (IEEE) (Year).
776	50	
	50	Nebout, A., Wei, W., Liu, Z., Huang, L. & Le Meur, O. Predicting saliency maps for asd
777		people in 2019 IEEE International Conference on Multimedia & Expo Workshops
778	F 1	(ICMEW). 629-632 (IEEE) (Year).
779	51	Fang, Y. <i>et al.</i> Visual attention prediction for Autism Spectrum Disorder with
780		hierarchical semantic fusion. <i>Signal Processing: Image Communication</i> 93 , 116186
781 782	БЭ	(2021).
782	52	Wei, W. <i>et al.</i> Predicting atypical visual saliency for autism spectrum disorder via
783		scale-adaptive inception module and discriminative region enhancement loss.
784	F 2	Neurocomputing 453 , 610-622 (2021).
785	53	Min, X. <i>et al.</i> Visual attention analysis and prediction on human faces. <i>Information</i>
786		Sciences 420 , 417-430 (2017).
787	54	Wang, S. <i>et al.</i> Atypical Visual Saliency in Autism Spectrum Disorder Quantified
788		through Model-Based Eye Tracking. <i>Neuron</i> 88 , 604-616,
789		doi:10.1016/j.neuron.2015.09.042 (2015).
790	55	Yaneva, V., Eraslan, S., Yesilada, Y. & Mitkov, R. Detecting high-functioning autism in
791		adults using eye tracking and machine learning. <i>IEEE Transactions on Neural Systems</i>
792		and Rehabilitation Engineering 28 , 1254-1261 (2020).
793	56	Startsev, M. & Dorr, M. Classifying autism spectrum disorder based on scanpaths and
794		saliency in 2019 IEEE International Conference on Multimedia & Expo Workshops
795		<i>(ICMEW).</i> 633-636 (IEEE) (Year).
796	57	Arru, G., Mazumdar, P. & Battisti, F. Exploiting visual behaviour for autism spectrum
797		disorder identification in 2019 IEEE International Conference on Multimedia & Expo
798		Workshops (ICMEW). 637-640 (IEEE) (Year).
799	58	Wu, C., Liaqat, S., Cheung, Sc., Chuah, CN. & Ozonoff, S. Predicting autism
800		diagnosis using image with fixations and synthetic saccade patterns in 2019 IEEE
801		International Conference on Multimedia & Expo Workshops (ICMEW). 647-650 (IEEE)
802		(Year).

803	59	Tao, Y. & Shyu, ML. SP-ASDNet: CNN-LSTM based ASD classification model using
804		observer scanpaths in 2019 IEEE International conference on multimedia & expo
805		workshops (ICMEW). 641-646 (IEEE) (Year).
806	60	Fang, Y., Duan, H., Shi, F., Min, X. & Zhai, G. Identifying children with autism
807		spectrum disorder based on gaze-following in 2020 IEEE International Conference on
808		Image Processing (ICIP). 423-427 (IEEE) (Year).
809	61	Rahman, S., Rahman, S., Shahid, O., Abdullah, M. T. & Sourov, J. A. Classifying eye-
810		tracking data using saliency maps in 2020 25th International Conference on Pattern
811		Recognition (ICPR). 9288-9295 (IEEE) (Year).
812	62	Xu, S., Yan, J. & Hu, M. A new bio-inspired metric based on eye movement data for
813		classifying ASD and typically developing children. Signal Processing: Image
814		Communication 94 , 116171 (2021).
815	63	Wei, W. et al. Identify autism spectrum disorder via dynamic filter and deep
816		spatiotemporal feature extraction. Signal Processing: Image Communication 94,
817		116195 (2021).
818	64	Liaqat, S. <i>et al.</i> Predicting ASD diagnosis in children with synthetic and image-based
819		eye gaze data. Signal Processing: Image Communication 94 , 116198 (2021).
820	65	Mazumdar, P., Arru, G. & Battisti, F. Early detection of children with autism spectrum
821		disorder based on visual exploration of images. <i>Signal Processing: Image</i>
822		Communication 94 , 116184 (2021).
823	66	Tseng, PH. et al. High-throughput classification of clinical populations from natural
824		viewing eye movements. <i>Journal of neurology</i> 260 , 275-284 (2013).
825	67	Wan, G. <i>et al</i> . Applying eye tracking to identify autism spectrum disorder in children.
826		Journal of autism and developmental disorders 49 , 209-215 (2019).
827	68	Jiang, M. et al. Classifying individuals with ASD through facial emotion recognition
828		and eye-tracking in 2019 41st Annual International Conference of the IEEE
829		Engineering in Medicine and Biology Society (EMBC). 6063-6068 (IEEE) (Year).
830	69	Zhao, Z. et al. Classification of Children With Autism and Typical Development Using
831		Eye-Tracking Data From Face-to-Face Conversations: Machine Learning Model
832		Development and Performance Evaluation. J Med Internet Res 23, e29328,
833		doi:10.2196/29328 (2021).
834	70	Carette, R. et al. Learning to Predict Autism Spectrum Disorder based on the Visual
835		Patterns of Eye-tracking Scanpaths in HEALTHINF. 103-112 (Year).
836	71	Elbattah, M., Carette, R., Dequen, G., Guérin, JL. & Cilia, F. Learning clusters in
837		autism spectrum disorder: Image-based clustering of eye-tracking scanpaths with
838		deep autoencoder in 2019 41st Annual international conference of the IEEE
839		engineering in medicine and biology society (EMBC). 1417-1420 (IEEE) (Year).
840	72	Akter, T., Ali, M. H., Khan, M. I., Satu, M. S. & Moni, M. A. Machine learning model to
841		predict autism investigating eye-tracking dataset in 2021 2nd International
842		Conference on Robotics, Electrical and Signal Processing Techniques (ICREST). 383-
843		387 (IEEE) (Year).
844	73	Cilia, F. <i>et al.</i> Computer-aided screening of autism spectrum disorder: eye-tracking
845		study using data visualization and deep learning. <i>JMIR Human Factors</i> 8 , e27706
846		(2021).
847	74	Kanhirakadavath, M. R. & Chandran, M. S. M. Investigation of Eye-Tracking Scan Path
848		as a Biomarker for Autism Screening Using Machine Learning Algorithms. <i>Diagnostics</i>
849		12 , 518 (2022).

850	75	Gaspar, A., Oliva, D., Hinojosa, S., Aranguren, I. & Zaldivar, D. An optimized Kernel
851		Extreme Learning Machine for the classification of the autism spectrum disorder by
852		using gaze tracking images. <i>Applied Soft Computing</i> 120 , 108654 (2022).
853	76	Ahmed, I. A. et al. Eye Tracking-Based Diagnosis and Early Detection of Autism
854		Spectrum Disorder Using Machine Learning and Deep Learning Techniques.
855		Electronics 11 , 530 (2022).
856	77	Fan, L. et al. Screening of Autism Spectrum Disorder Using Novel Biological Motion
857		Stimuli. 371-384 (Springer Singapore) (Year).
858	78	Fang, H., Fan, L. & Hwang, JN. Auxiliary Diagnostic Method for Early Autism
859	70	Spectrum Disorder Based on Eye Movement Data Analysis in 2021 IEEE 7th
860		International Conference on Cloud Computing and Intelligent Systems (CCIS). 72-77
861		
	70	(IEEE) (Year).
862	79	Carette, R. et al. Automatic autism spectrum disorder detection thanks to eye-
863		tracking and neural network-based approach in Internet of Things (IoT) Technologies
864		for HealthCare: 4th International Conference, HealthyIoT 2017, Angers, France,
865		October 24-25, 2017, Proceedings 4. 75-81 (Springer) (Year).
866	80	Putra, P. U., Shima, K., Alvarez, S. A. & Shimatani, K. Identifying autism spectrum
867		disorder symptoms using response and gaze behavior during the Go/NoGo game
868		CatChicken. <i>Scientific reports</i> 11 , 1-12 (2021).
869	81	Kou, J. <i>et al.</i> Comparison of three different eye-tracking tasks for distinguishing
870		autistic from typically developing children and autistic symptom severity. Autism
871		Research 12, 1529-1540, doi: <u>https://doi.org/10.1002/aur.2174</u> (2019).
872	82	Bacon, E. C. <i>et al.</i> Identifying prognostic markers in autism spectrum disorder using
873	02	eye tracking. Autism 24, 658-669 (2020).
874	83	Treisman, A. M. & Gelade, G. A feature-integration theory of attention. <i>Cognitive</i>
	05	
875	0.4	psychology 12 , 97-136 (1980).
876	84	Kononenko, I., Šimec, E. & Robnik-Šikonja, M. Overcoming the myopia of inductive
877		learning algorithms with RELIEFF. Applied Intelligence 7, 39-55 (1997).
878	85	Association, A. P. Diagnostic and statistical manual of mental disorders (DSM-5®).
879		(American Psychiatric Pub, 2013).
880	86	Lord, C. <i>et al.</i> Autism diagnostic observation schedule, (ADOS-2) modules 1-4. <i>Los</i>
881		Angeles, California: Western Psychological Services (2012).
882	87	Olsen, A. The Tobii I-VT fixation filter. <i>Tobii Technology</i> 21 (2012).
883	88	Wang, W., Shen, J., Guo, F., Cheng, MM. & Borji, A. Revisiting video saliency: A
884		large-scale benchmark and a new model in <i>Proceedings of the IEEE Conference on</i>
885		Computer Vision and Pattern Recognition. 4894-4903 (Year).
886	89	Huang, X., Shen, C., Boix, X. & Zhao, Q. Salicon: Reducing the semantic gap in saliency
887		prediction by adapting deep neural networks in Proceedings of the IEEE international
888		conference on computer vision. 262-270 (Year).
889	90	Vapnik, V. N. An overview of statistical learning theory. <i>IEEE transactions on neural</i>
890	50	networks 10 , 988-999 (1999).
	01	
891	91	Bradshaw, J. et al. The Use of Eye Tracking as a Biomarker of Treatment Outcome in
892		a Pilot Randomized Clinical Trial for Young Children with Autism. <i>Autism Research</i> 12 ,
893		779-793, doi: <u>https://doi.org/10.1002/aur.2093</u> (2019).
894	92	Lai, MC. & Szatmari, P. Sex and gender impacts on the behavioural presentation
895		and recognition of autism. <i>Current Opinion in Psychiatry</i> 33 , 117-123,
896		doi:10.1097/yco.0000000000000575 (2020).

- Harrop, C. *et al.* Visual attention to faces in children with autism spectrum disorder:
 are there sex differences? *Molecular Autism* 10, 28, doi:10.1186/s13229-019-0276-2
 (2019).
- 90 94 Harrop, C. *et al.* Social and Object Attention Is Influenced by Biological Sex and Toy
 901 Gender-Congruence in Children With and Without Autism. *Autism Research* 13, 763902 776, doi:https://doi.org/10.1002/aur.2245 (2020).
- 903 95 Whyte, E. M. & Scherf, K. S. Gaze Following Is Related to the Broader Autism 904 Phenotype in a Sex-Specific Way: Building the Case for Distinct Male and Female
- 905 Autism Phenotypes. *Clinical Psychological Science* **6**, 280-287,
- 906 doi:10.1177/2167702617738380 (2018).
- 907