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Unsupervised machine-learning identifies clinically distinct subtypes of ALS that reflect 

different genetic architectures and biological mechanisms  
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Abstract 

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease 

characterised by a highly variable clinical presentation and multifaceted genetic and 

biological bases that translate into great patient heterogeneity. The identification of 

homogeneous subgroups of patients in terms of both clinical presentation and biological 

causes, could favour the development of effective treatments, healthcare, and clinical trials. 

We aimed to identify and characterise homogenous clinical subgroups of ALS, examining 

whether they represent underlying biological trends. 

 

Methods: Latent class clustering analysis, an unsupervised machine-learning method, was 

used to identify homogenous subpopulations in 6,523 people with ALS from Project MinE, 

using widely collected ALS-related clinical variables. The clusters were validated using 7,829 

independent patients from STRENGTH. We tested whether the identified subgroups were 

associated with biological trends in genetic variation across genes previously linked to ALS, 

polygenic risk scores of ALS and related neuropsychiatric traits, and in gene expression data 

from post-mortem motor cortex samples. 

 

Results: We identified five ALS subgroups based on patterns in clinical data which were 

general across international datasets. Distinct genetic trends were observed for rare 

variants in the SOD1 and C9orf72 genes, and across genes implicated in biological processes 

relevant to ALS. Polygenic risk scores of ALS, schizophrenia and Parkinson’s disease were 

also higher in distinct clusters with respect to controls. Gene expression analysis identified 

different altered biological processes across clusters reflecting the genetic differences. We 

developed a machine learning classifier based on our model to assign subgroup membership 

using clinical data available at first visit, and made it available on a public webserver at 

http://latentclusterals.er.kcl.ac.uk. 

 

Conclusion: ALS subgroups characterised by highly distinct clinical presentations were 

discovered and validated in two large independent international datasets. Such groups were 

also characterised by different underlying genetic architectures and biology. Our results 

showed that data-driven patient stratification into more clinically and biologically 

homogeneous subtypes of ALS is possible and could help develop more effective and 

targeted approaches to the biomedical and clinical study of ALS. 

Key words: amyotrophic lateral sclerosis, patient stratification, latent class analysis, machine 

learning, clustering 
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Introduction 

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterised 

by progressive neuromuscular degeneration leading to death, typically from respiratory 

failure within three years of onset (1). The disease affects upper and lower motor neurons in 

the brain and spinal cord and has an estimated lifetime risk of between 1 in 300-400 people. 

 

ALS is clinically defined, yet its clinical presentation varies greatly. The mean age of onset is 

around 60 years although people may develop ALS at almost any age during adulthood (2). 

ALS normally leads to death within 3-5 years of onset, however, in some patients it can 

occur within a year, and 5-10% of people live for over 10 years (3-5). Between 60 and 70% of 

people first develop symptoms in the spinal innervated muscles, with others having bulbar, 

mixed or, in about 3%, respiratory onset (2, 6-8). The extent of involvement of upper and 

lower motor neurons varies, ranging between a pure upper motor neuron (primary lateral 

sclerosis; PLS) and pure lower motor neuron phenotype (progressive muscular atrophy; 

PMA), with most presentations being a mixture of the two (9, 10). An overlap with 

frontotemporal dementia (FTD) is also recognised, with a joint diagnosis for up to 15% of 

people in some studies and cognitive dysfunction in around 50%, according to disease stage 

(11, 12). 

 

The genetic landscape of ALS is similarly heterogenous, with recognised monogenic, 

oligogenic, and polygenic contributions to disease (1, 13-17). Known genetic variation 

explains disease for around 15-20% of people, implicating variants in over 40 genes as 

causal for or modifiers of ALS (15, 18, 19). Likewise, ALS is associated with disruption to 

various biological processes, including cytoskeletal transport, RNA function, autophagy, and 

proteostasis (1, 7, 20). 

 

Unfortunately, the efficacy of existing treatments for ALS is limited; the most effective drug 

therapies extend life expectancy from onset by no more than a few months (21, 22). This 

poor efficacy is partially due to the heterogeneity of the disease, and therefore more 

effective treatments may be discovered within a precision medicine framework. Existing 

research supports this hypothesis. For instance, treatment with lithium appears to extend 

survival trajectories specifically among people with an UNC13A variant (23). Further 

research examining the utility of gene therapies that aim to offset aberrant gene function 

associated with specific genetic variation is ongoing (24). This is valuable for SOD1-ALS 

which appears biologically separate from non-SOD1 ALS (25) but may be suboptimal when 

the biological disease signature is indistinguishable between people with and without a 

given variant, as for C9orf72 and non-C9orf72 associated ALS (26), given the breadth of 

processes implicated in the disease. 

 

Patient stratification is an effective avenue for discovery of biological mechanisms relevant 

to particular subgroups (27). Such stratification has been attempted previously. For 

instance, clusters of ALS have been identified based on biological trends in transcriptomic 

and neuroanatomical data, with evidence suggesting that these groups may be reflected in 

the phenotype (28-33). 

 

Previous attempts to clustering in ALS have been limited to individual national cohorts and 

were not generalisable. For example, clinical clusters, predictive of disease duration, were 
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identified in a British cohort using latent class cluster analysis (LCA) (34). Independently, 

semi-supervised machine-learning applied to high-dimensional clinical data from two 

independent Italian cohorts identified clusters conforming to the following clinical 

subgroups: bulbar, respiratory, flail arm, classical, pyramidal, and flail leg (35). 

 

No study to date has validated the subgroups they identified using independent samples 

from different populations which greatly limits their applicability. Moreover, despite ALS 

being clinically defined, no study has examined whether data-driven clinical subgroups differ 

biologically beyond subgroups defined by individual gene variants. The identification of 

clinically and biologically homogenous subgroups that are robust and consistent across 

populations of patients will likely benefit development of precision medicine approaches for 

ALS extending beyond those targeting specific genetic vulnerabilities. 

 

Accordingly we examined: (A) whether data-driven clusters defined by widely collected 

clinical measures could be identified and validated across international ALS cohorts; (B) 

clinical characteristics defining these clusters; (C) whether clusters differ biologically in 

terms of (i) the frequency of rare variants in genes previously associated with ALS, (ii) 

common genetic variation captured within polygenic risk scores (PRS) for risk of ALS and 

related neuropsychiatric disorders, and (iii) molecular signatures via gene expression levels; 

(D) the extent to which clinically driven clusters could be identified using data attainable 

around the time of diagnosis. Across these investigations we used data of over 14,000 ALS 

patients from the Project MinE (36), the Survival, Trigger and Risk, Epigenetic, 

eNvironmental and Genetic Targets for motor neuron Health (STRENGTH) consortia, and the 

King’s College London (KCL) Brain Bank (37, 38).  
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Methods 

Sample 

People with a diagnosis of ALS, PMA, or PLS were sampled from two international consortia: 

Project MinE (36) and STRENGTH. All samples underwent pre-processing (see Figure 1) to 

determine the sample entered into LCA and subsequent analyses (N: Project MinE = 6,523, 

STRENGTH = 7,829). Missingness was present in both cohorts (see Figure S1). This is handled 

in LCA using a full information maximum likelihood approach, which enables model fitting 

for records with incomplete data (39). Subsequent analyses employed a complete case 

analysis approach, retaining only people with information recorded for all variables used in 

that analysis. 

 

Age- and sex-matched control participants from Project MinE (N = 2,414 after pre-

processing; see Figure 1) were also sampled as a comparison group for analysis of trends in 

common genetic variation. 
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Figure 1. Summary of data processing and samples available by country for the Project MinE and STRENGTH cohorts. ALS = 

amyotrophic lateral sclerosis, PLS = primary lateral sclerosis, PMA = progressive muscular atrophy. *Quality control 

procedures for Project MinE have been described previously (cf. (14, 36, 40)); **ALS clinical diagnosis encompasses 

recorded as: ALS, ALS/frontotemporal dementia, ALS/PLS, ALS/PMA, or progressive bulbar palsy (cf. (9)); PLS and PMA are 

retained as distinct ALS subtypes in all analysis. Panel A: processing for people with ALS and healthy controls from the 

whole-genome sequencing cohort from Project MinE; Panel B: processing of the clinical ALS dataset from STRENGTH; Panel 

C: distribution of people in the final ALS cohort across countries. 

 

Study design 

Clinical data 

Phenotypic information from the Project MinE and STRENGTH datasets were used as 

features for clustering. The included variables are all frequently collected for people with 

ALS: sex at birth (male or female), site of onset (not-bulbar or bulbar), clinical diagnosis (ALS, 

PLS, or PMA), age of onset (years), disease duration (years) from onset until death or last 

ALS and subtypes ** (n = 6863)

Project MinE dataset (N = 9584)

Extract people diagnosed with ALS or ALS subtypes, and healthy control participants. 

Exclude people with diagnosis as ‘other’, frontotemporal dementia, or missing

(n ALS = 6863; n healthy controls = 2543)

Remove duplicates and 

related individuals

(n = 6680)

Exclude people failing 

quality control

(n = 6523)

Project MinE ALS cohort (n = 6523)

Records excluded

(n ‘other’ = 66)

(n missing = 98)

(n frontotemporal 

dementia = 14)

Records excluded

(n duplicates = 113)

(n family members = 62)

(n twins = 8)

Records excluded

(n = 157)* 

Healthy control sample (n = 2543)

Remove duplicates and 

related individuals

(n = 2471)

Exclude people failing 

quality control

(n = 2414)

Records excluded

(n duplicates = 13)

(n family members = 40)

(n twins = 18)

(n  missing record = 1)

Records excluded

(n = 57)* 

Project MinE healthy control cohort (n = 2414)

Exclude people also 

present in Project MinE

(n = 7891)

Country of origin for 

records excluded

(n Netherlands = 1636)

(n Ireland = 187)

(n Italy = 1)

Exclude people with 

missingness regarding 

diagnosis

(n = 7829)

Records excluded

(n = 62)

STRENGTH ALS cohort (n = 7829)

ALS cohort by country of originSTRENGTH dataset (N = 9805)

Country
Sample size

(Project MinE / STRENGTH)

Belgium 551 / 1063

France 236 / -

Ireland 466 / 1451

Israel 104 / -

Italy 66 / 1174

Netherlands 1807 / 2353

Portugal 59 / -

Spain 379 / -

Sweden 204 / -

Switzerland 53 / -

Turkey 613 / -

United Kingdom 1554 / 1788

United States of America 431 / -

(C)

(A)

(B)
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status update with associated censoring status (alive or deceased), and delay from onset 

until diagnosis. Diagnostic delay was standardised by country to account for any inter-

country differences (see Figure S2). Standardisation was performed by centring each 

person’s diagnostic delay by the per-country mean and scaling relative to the per-country 

standard deviation (see Table S1). 

 

Genetic data  

Associations between clinically-defined clusters and biological trends were performed using 

data from Project MinE. Whole-genome sequence data were generated as previously 

described (36). 

 

Information on rare genetic variation was extracted for a panel of 36 genes previously 

implicated in ALS: ALS2, ANG, ANXA11, ATXN1, ATXN2, CFAP410 (formerly C21orf2), 

CHCHD10, CHMP2B, C9orf72, DAO, DCTN1, ERBB4, FIG4, FUS, hnRNPA1, MATR3, MOBP, 

NEFH, NEK1, OPTN, PFN1, SCFD1, SETX, SIGMAR1, SOD1, SPG11, SQSTM1 (p62), TAF15, 

TARDBP, TBK1, TUBA4A, UBQLN2, UNC13A, VAPB, VCP, VEGFA. Summaries of variants 

occurring across Project MinE samples are available in the databrowser (40). 

 

Variation in C9orf72 and ATXN2 was reported regarding presence or absence of known 

pathogenic short tandem repeat expansions in each gene. Repeat expansion lengths were 

determined using Expansion Hunter (41). C9orf72 expansions were confirmed using repeat-

primed PCR, being classified as inconsistent if the dry and wet lab results did not match
 
(42, 

43). The minimum number of repeat units denoting presence of a repeat expansion was 30 

for C9orf72 and 28 for ATXN2 (44). For C9orf72, inconsistent expansions were reported in 32 

people and coded as missing. 

 

The presence or absence of rare variants (MAF <0.01 in both Project MinE controls and 

Gnomad controls v2.1.1) predicted by the Ensembl Variant Effect Predictor (45) to have a 

high or moderate impact upon gene function was recorded across the remaining 34 genes. 

Moderate impact variants included missense, in-frame insertions and deletions, and protein 

altering variants. High impact variants included stop lost and gained, start lost, transcript 

amplification, frameshift, transcript ablation and splice acceptor and donor variants.  

 

Variants across all genes except C9orf72 and SOD1 were aggregated into burden groups (see 

Table S2). The main burden groups described three functional pathways related to cellular 

processes disrupted in ALS: ‘autophagy and proteostasis’, ‘RNA function’, and ‘cytoskeletal 

dynamics and axonal transport’. Genes were assigned to pathways according to the 

involvement of their protein products within them and to the processes which are disrupted 

by deleterious variation in each gene (see Table S2); this was determined through literature 

review. A further ‘any pathway’ group, aggregating across the three functional pathways, 

was also defined. Each burden group was binary-coded according to presence or absence of 

variants in at least one gene assigned to the group. 

 

The SOD1 and C9orf72 genes were analysed individually since their variants are the most 

frequent genetic causes of ALS, likely reflecting that they are implicated in various disease 

pathways (46, 47), and each occurred with sufficient frequency to be tested individually.  
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Associations between clusters and common genetic variation were examined using PRS 

indicating risk for ALS and related neuropsychiatric diseases. PRS were derived from 

European ancestry genome-wide association study (GWAS) summary statistics of risk for 

ALS (14), FTD (48), Alzheimer’s disease (49), Parkinson’s disease (50), and schizophrenia 

(51). Scores were calculated with SBayesR (52) under the reference-standardised approach 

of GenoPredPipe (53) (see Supplementary Methods 1.1). 

 

Since samples from Project MinE are included within the ALS GWAS, PRS for this trait were 

generated based on GWAS summary statistics that exclude meta-analysis ‘stratum 6’, which 

includes most people from Project MinE. To ensure no sample overlap, analyses including 

the ALS PRS were performed using only those who were sampled within GWAS stratum 6. 

All available Project MinE samples were included in analyses based on PRS for other traits. 

 

Gene expression data 

The KCL BrainBank expression dataset consists of post-mortem bulk RNA-sequencing 

samples from the Medical Research Council (MRC) London Neurodegenerative Diseases 

Brain Bank at KCL. Frozen human post-mortem tissue was taken from the primary motor 

cortex of patients and controls whose genomes were sequenced as part of Project MinE. 

The protocols for RNA-sequencing (37, 38) has been described previously. 

 

Procedure 

1. Clustering of ALS clinical data 

Latent Class Cluster Analysis (LCA) was applied to identify data-driven subgroups in clinical 

variables (see Supplementary Methods 1.2.). LCA is an unsupervised machine-learning 

approach with various benefits: information returned enables the immediate inspection of 

fit quality; data across categorical, ordinal, and continuous modalities can be combined, 

including time-to-event variables with censoring; an in-built full information maximum 

likelihood approach (39) enables class (cluster) assignment for people with incomplete 

records.  

 

Project MinE was used as the discovery cohort, holding back independent samples from 

STRENGTH for model validation. After validation, the independent Project MinE and 

STRENGTH samples were pooled together and LCA was repeated within the joint dataset. 

Consistency between the discovery and joint dataset latent class models was established by 

inspecting cluster assignment overlap between them. The joint-dataset model was used for 

subsequent analyses. 

 

2. Clinical characterisation of clusters 

Characteristics of the identified clusters predicted by the features used in LCA were first 

examined using linear discriminant analysis. This algorithm derives linear axes that maximise 

separation between the classes. The associations between these axes and the predictor 

variables indicate which variables best distinguish the classes. Although the method 

performs adequately with categorical data (55, 56), linear discriminant analysis assumes 

that predictors are continuous and normally distributed. Multinomial logistic regression 

(57), which makes no such assumption, was therefore applied with stepwise feature 

selection to support linear discriminant analysis. 
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Differences in disease duration between classes were examined first via pairwise log-rank 

tests and second within a cox proportional-hazards model, including class and the other LCA 

model features as covariates. 

 

Additional procedural information is provided in supplementary methods 1.3. 

 

3. Biological trends across clusters 

Associations between the k clusters identified and rare variation in ALS-implicated genes 

were investigated using kx2 Fisher’s exact tests, with a significance threshold of false-

discovery rate adjusted p<0.05. Odds ratios for having a variant in a given cluster vs all other 

clusters were also determined. 

 

Binary logistic regression models were used to compare PRS for each cluster against all 

other clusters and against healthy controls. Reflecting the non-independence of these tests, 

significance was defined by a nominal p<0.05. Each analysis was performed with a given PRS 

as a univariate predictor and after including the first five principal components of ancestry 

as covariates.  

 

To determine whether the clusters displayed alterations in biological processes, we 

performed differential expression and gene enrichment analysis for the samples from 

Project MinE which had matching motor cortex expression data available (N = 88) and 59 

controls. The processing pipeline used for the expression analysis is documented and 

available on GitHub (https://github.com/rkabiljo/RNASeq_Genes_ERVs and 

https://github.com/rkabiljo/DifferentialExpression_Genes). Briefly, reads are first 

interleaved using reformat.sh from BBtools (58), adapters and low-quality reads are 

trimmed using bbduk.sh (58). The data is then aligned to Hg38 using STAR (59). Transcripts 

are quantified using HTSeq (60). DESeq2 (61) is used for normalisation and differential 

expression analysis. An extensive description of the pipeline was recently published (62). 

Gene enrichment analysis was performed using the most significant 500 differentially 

expressed genes with clusterProfiler (63). 

 

Further procedural details are provided in supplementary methods 1.4. 

 

4. Prediction of cluster membership using baseline data 

Random forest and eXtreme Gradient Boosting classification algorithms were trained to 

examine whether cluster membership could be predicted using only information accessible 

around the time of first diagnosis. Six algorithms were trained across the two machine-

learning methods with a multiclass classification objective, predicting assignments to the 

LCA-identified clusters, across three data configurations: first, all clinical features used in 

LCA except disease duration (which cannot be assessed at this time); second, clinical 

features from model 1 alongside rare and common genetic variables used to assess 

biological trends across classes; third, clinical features from model 1, sample-matched with 

model 2. 

 

Shapley Additive exPlanations (SHAP) (64, 65) were used to examine which features were 

more influential upon machine-learning algorithm class membership predictions. To further 

examine which features were important for prediction of exclusively Class 1 versus 2, the 
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largest LCA clusters, 6 additional binary classification algorithms were trained across the two 

machine-learning methods and three data configurations after restricting only to people 

assigned to these classes. 

 

Only people without missingness in included features were used in each multiclass (binary) 

analysis, therefore the total sample size was 12,508 (11,109) in the first data configuration 

and 3,226 (2,996) in the second and third. The Algorithms were trained with 10-fold cross-

validation, repeated 10 times using pseudorandom seeding. Out-of-fold prediction 

performance was evaluated using the metrics of sensitivity, specificity, precision, and 

balanced accuracy.  
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Results 

 

1. Clustering of ALS clinical data 

We identified that clinical subgroups of ALS were well described within a 5-class latent class 

model (see Table S3; Table 1). 

 
Table 1. Class membership characteristics for a 5-class model in the Project MinE, STRENGTH, and joint datasets. Numbers 

presented in bold refer to average posterior probability of belonging to the assigned class. The statistics in the discovery 

and validation datasets are for the 5-class model fitted to the discovery sample. The Joint dataset statistics are for the 5-

class model fitted to the joint dataset which combines Project MinE and STRENGTH. 

Dataset 
Assigned 

class 

N in class (% of dataset) based on 
Average posterior probability of belonging 

to class 

posterior 

probabilities 

most likely class 

membership 
1 2 3 4 5 

Discovery 

(Project 

MinE) 

1 3702.34 (0.568) 3952 (0.606) 0.883 0.106 0.01 0.001 0 

2 2110.49 (0.324) 2023 (0.310) 0.104 0.818 0.056 0.011 0.011 

3 527.84 (0.081) 409 (0.063) 0.01 0.075 0.909 0.006 0 

4 114.15 (0.018) 87 (0.013) 0 0.006 0.047 0.944 0.003 

5 68.18 (0.010) 52 (0.008) 0.002 0.118 0.016 0.036 0.829 

Validation 

(STRENGTH) 

1 3887.36 (0.497) 4126 (0.527) 0.89 0.101 0.008 0.001 0 

2 2606.34 (0.333) 2452 (0.313) 0.084 0.866 0.044 0.004 0.002 

3 1009.62 (0.130) 943 (0.120) 0.009 0.07 0.912 0.008 0 

4 263.43 (0.034) 252 (0.032) 0 0.001 0.041 0.955 0.003 

5 62.24 (0.008) 56 (0.007) 0.001 0.006 0 0.008 0.984 

Joint 

1 7027.66 (0.490) 7401 (0.516) 0.9 0.093 0.006 0.001 0 

2 5602.10 (0.390) 5470 (0.381) 0.067 0.879 0.044 0.006 0.004 

3 1319.10 (0.092) 1138 (0.079) 0.003 0.085 0.898 0.013 0.001 

4 302.60 (0.021) 259 (0.018) 0 0 0.04 0.957 0.003 

5 100.54 (0.007) 84 (0.006) 0 0.067 0.024 0.019 0.889 

 

The 5-class model was first identified in the Project MinE discovery sample, with lower 

Akaike information criterion (AIC) and Bayesian Information Criterion (BIC) values than 

models with fewer classes (Table S3). Latent class models did not converge when 

considering a higher number of classes. Acceptance of the 5-class model was supported by 

its entropy (0.791) indicating that the model had reasonable certainty in classification, and 

by people having a high probability of belonging to their assigned classes (Table 1). An 

equivalent model, with high entropy (0.850), was identified when repeating LCA after 

restricting to only people without missingness in diagnostic delay and disease duration (see 

Table S4). 

 

The external validity of this solution was affirmed through application to independent 

samples from STRENGTH. High entropy (0.830) and high average class probability of 
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belonging to assigned classes (Table 1) indicated that the solution fit these data well. 

Accurate prediction of class membership for people from STRENGTH within a k-nearest 

neighbours algorithm trained upon the clinical data from Project MinE samples further 

supported the validity of the subgroups identified (see Table S5). 

 

Since the initial 5-class model fitted both the discovery and validation datasets well, LCA was 

repeated using a joint dataset, pooling across independent samples from Project MinE and 

STRENGTH. Models of 1 to 9 classes were fitted and the 5-class model was accepted above 

those with additional classes since the external validity of a 5-class model had already been 

demonstrated and because improvements to AIC and BIC were not substantial with 

additional classes (Table S3). Entropy in the 5-class solution remained high (0.836) and 

people had high probability of belonging to their assigned classes (Table 1). As before, a 

highly comparable model, with 0.881 entropy, was identified when repeating LCA after 

restricting to only people with diagnostic delay and disease duration reported (see Table 

S4). 

 

Equivalence between the 5-class models fitted to the Project MinE and joint datasets was 

determined by examining cluster similarity: ~91% of people from Project MinE and ~92% of 

STRENGTH were assigned to the equivalent cluster in the joint dataset model (see Figure 

S4).  

 

Accordingly, the joint dataset 5-class solution was accepted as the final model and used for 

subsequent analyses. 

 

2. Clinical characterisation of clusters 

We examined the clinical characteristics of the clinically-defined ALS subgroups identified 

with LCA. Table 2 and Figure 2 present descriptive statistics for clinical features across each 

class. Linear discriminant and multinomial logistic regression analyses highlight that 

diagnostic delay and disease duration were the main class delineators (See Figure 3; Table 3; 

Table S7-S8). Interestingly, although both linear discriminant 1 and 2 (LD1 and LD2) 

presented high correlations with diagnostic delay and disease duration, LD1 positively 

correlated with these clinical measures, while LD2 positively correlated with disease 

duration and negatively correlated with diagnostic delay (Table 3). All features were 

retained in the multinomial logistic regression model analysing only people without 

censored disease duration; sex was dropped as a predictor when people with censored 

disease duration were included in the analysis (Table S7-S8). 

 

Survival analysis further demonstrated the relationship between class and disease duration, 

indicating that the classes are each associated with distinct survival trajectories (Figure 2), 

and class remains the most influential predictor of survival within a cox proportional-

hazards model after adjusting for other clinical features (Table S9).  
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Table 2. Descriptive statistics for the clinical characteristics of people with ALS across the 5-class solution fitted to the joint 

dataset.
 †

calculated within the survfit function of the R survival package (66); see Figure 2 for Kaplan-Meier curves stratified 

by class. Patterns of missingness across each variable are shown in Figure S1. 

 Total 1 2 3 4 5 

Number of people 14352 7401 5470 1138 259 84 

N female (%) 
5823 

(0.41) 

3250 

(0.44) 

1987 

(0.36) 
460 (0.4) 97 (0.37) 29 (0.35) 

N Bulbar onset (%) 
4063 

(0.3) 

2911 

(0.42) 

951 

(0.18) 

155 

(0.14) 
37 (0.15) 9 (0.12) 

Mean age of onset in 

years (standard deviation) 

60.96 

(12.24) 

64.74 

(10.39) 

56.85 

(12.62) 

59.26 

(12.07) 

56.11 

(12.25) 

39.55 

(17.28) 

Median diagnostic delay 

in years (inter-quartile 

range) 

1 (0.58, 

1.67) 

0.72 

(0.47, 

1.03) 

1.17 

(0.75, 

1.83) 

3.48 

(2.92, 

4.34) 

6.8 (5.06, 

9.42) 

16.92 

(10.97, 

21.51) 

N with censored disease 

duration (%) 

3534 

(0.26) 

428 

(0.06) 

2363 

(0.45) 

532 

(0.47) 
148 (0.57) 63 (0.75) 

Median disease duration, 

years (inter-quartile 

range) 

2.94 

(1.86, 

5.08) 

1.97 

(1.39, 

2.53) 

4.67 (3.7, 

6.83) 

7.02 (5.1, 

9.81) 

11.54 

(8.84, 

16.95) 

21.75 

(15.39, 

29.58) 

Median duration after 

accounting for censoring
†
 

3.19 2.01 5.67 9.12 19.55 46.14 

Clinical diagnosis 

ALS 
13115 

(0.91) 

7217 

(0.98) 

4795 

(0.88) 

894 

(0.79) 
155 (0.6) 54 (0.64) 

PLS 
533 

(0.04) 
23 (0) 

250 

(0.05) 

159 

(0.14) 
79 (0.31) 22 (0.26) 

PMA 
704 

(0.05) 

161 

(0.02) 

425 

(0.08) 
85 (0.07) 25 (0.1) 8 (0.1) 
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Figure 2. Trends in clinical features used in latent class analysis according to class. Panel A: Kaplan-Meier curves for disease 

duration from onset until death or censoring; pairwise log-rank tests indicate that survival differs significantly between all 

classes (p <1x10
-6

 for all comparisons after false discovery rate adjustment for all pairwise tests performed). Orthogonal tick 

marks on the survival curves indicate censoring. Colouring around the curves indicates 95% confidence intervals. Panel B: 

Kaplan-Meier curves for age of onset. Panel C: density curves for diagnostic delay centred and scaled on the mean and 

standard deviation for diagnostic delay according to country of origin (see Figure S2; Table S1). Panels D-F: stacked bar-

charts indicating distribution of the categorical variables sex (D), clinical diagnosis (E), and site of onset (F) across classes. 

ALS = amyotrophic lateral sclerosis; PLS = primary lateral sclerosis; PMA = progressive muscular atrophy. 
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Figure 3. Distribution of people across the first two axes of linear discriminant analysis for all case-complete data. LD1 is 

highly correlated with diagnostic delay, while LD2 is associated primarily with disease duration (see Table 3). Figure S5 

presents a comparison figure for LDA when restricting to only people with non-censored disease duration. Figure S6 shows 

this figure with people stratified by country of origin.  
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Table 3. Results of the linear discriminant analysis of all people with no missingness across clinical features used in latent 

class analysis (n=12,508). The proportion of trace describes the proportion of the separation between classes accounted for 

by each linear discriminant (LD) axis. Pooled within-group correlations greater than 0.5 are presented in bold and are 

considered variables associated with a given LD. Reference groups for categorical variables are: ‘not-bulbar’ for site of 

onset, ‘male’ for sex, ‘amyotrophic lateral sclerosis’ for clinical diagnosis. This analysis includes people with censored 

disease duration; Table S6 presents comparable results for this analysis after restricting to only non-censored individuals. 

Figure 3 visualises the distribution of people and classes across the first two LD axes. PLS = primary lateral sclerosis; PMA = 

progressive muscular atrophy. 

Statistic Variable LD1 LD2 LD3 LD4 

Eigenvalue - 130.01 31.57 4.80 2.28 

Proportion of trace - 0.943 0.056 1.28x10
-3

 2.90x10
-4

 

Pooled within-group correlation 

Diagnostic delay 0.950 -0.295 0.031 -0.084 

Age of onset -0.081 -0.449 -0.388 -0.149 

Disease duration 0.406 0.795 0.024 0.198 

Site of onset (bulbar) -0.065 -0.362 0.520 0.634 

Sex (female) -0.009 -0.107 -0.052 -0.219 

Clinical diagnosis (PLS) 0.136 0.072 -0.700 0.648 

Clinical diagnosis (PMA) 0.034 0.181 0.008 -0.074 
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3. Biological trends across clusters 

Fisher’s exact tests were applied to examine associations between rare genetic variation 

and class for variants occurring within genes previously associated with ALS (see  

Table 4). SOD1 variants and the C9orf72 expansion differed in frequency across classes. 

C9orf72 expansions were overrepresented in Class 1 and underrepresented in Class 2; the 

opposite was observed for SOD1 variants. The frequency of variants in genes linked to RNA 

processing and to cytoskeletal dynamics and axonal transport also differed across classes. 

 
Table 4. Association between class and rare genetic variation in ALS-associated genes. Odds ratios are for having a variant 

in each class relative to all other classes; those with 95% confidence intervals (CI) which do not cross the null value of 1 are 

presented in bold. 
† 

False Discovery Rate (FDR) adjusted p-values <0.05 after adjusting for all Fisher’s exact tests in the 

column are presented in bold. 
∆ 

Sample size differs for C9orf72 comparison, n in class: 1 = 3,374, 2 = 2,494, 3 = 322, 4 = 65, 5 

= 36. 
§
Any pathway refers to having a variant in any of the autophagy and proteostasis, RNA function, cytoskeletal 

dynamics and axonal transport pathways.  

Genetic 

variation 

(PFDR

†
) 

 
Class (sample size) 

1 (3,401) 2 (2,512) 3 (327) 4 (65) 5 (36) 

SOD1 

(2.04x10
-4

) 

N with 

variant (freq) 

13 

(3.84x10
-3

) 
31 (0.01) 6 (0.02) 2 (0.03) 1 (0.03) 

Odds ratio 

[95% CI] 

0.28 [0.14, 

0.53] 

2.16 [1.21, 

3.93] 

2.37 [0.82, 

5.62] 

3.87 [0.45, 

15.31] 

3.43 [0.08, 

21.27] 

C9orf72 repeat 

expansion
 ∆ 

(2.42x10
-6

) 

N with 

variant (freq) 
250 (0.07) 101 (0.04) 14 (0.04) 1 (0.02) 0 (0) 

Odds ratio 

[95% CI] 

1.93 [1.53, 

2.44] 

0.56 [0.44, 

0.71] 

0.73 [0.39, 

1.25] 

0.25 [0.01, 

1.46] 
0 [0, 1.75] 

Autophagy and 

proteostasis 

(0.546) 

N with 

variant (freq) 
309 (0.10) 241 (0.11) 24 (0.08) 6 (0.10) 5 (0.16) 

Odds ratio 

[95% CI] 

0.96 [0.81, 

1.15] 

1.08 [0.9, 

1.28] 

0.77 [0.48, 

1.18] 

1 [0.35, 

2.32] 

1.59 [0.48, 

4.15] 

RNA function 

(0.036) 

N with 

variant (freq) 
319 (0.10) 244 (0.11) 19 (0.06) 8 (0.14) 0 (0) 

Odds ratio 

[95% CI] 

1.02 [0.86, 

1.21] 

1.08 [0.91, 

1.29] 

0.59 [0.35, 

0.94] 

1.37 [0.56, 

2.91] 
0 [0, 1.05] 

Cytoskeletal 

dynamics and 

axonal transport 

(0.036) 

N with 

variant (freq) 
461 (0.16) 416 (0.20) 45 (0.16) 9 (0.16) 4 (0.13) 

Odds ratio 

[95% CI] 
0.82 [0.71, 

0.94] 

1.27 [1.1, 

1.46] 

0.92 [0.65, 

1.27] 

0.93 [0.4, 

1.9] 

0.72 [0.18, 

2.04] 

Any pathway
 § 

(0.029) 

N with 

variant (freq) 
979 (0.40) 799 (0.47) 81 (0.33) 23 (0.55) 8 (0.29) 

Odds ratio 

[95% CI] 
0.9 [0.81, 

1] 

1.17 [1.05, 

1.31] 

0.77 [0.58, 

0.99] 

1.29 [0.74, 

2.21] 

0.67 [0.26, 

1.52] 

 

 

Binary logistic regression models were fitted to examine associations between class and PRS 

for ALS and related neuropsychiatric disorders (see Figure 4). Class 1 was significantly 

associated with higher PRS for risk of ALS, compared both to patients in other classes and to 

healthy controls. Interestingly, PRSs for schizophrenia and Parkinson’s disease were lower in 

Class 1 compared to other classes, and were higher in Classes 2 and 5. PRS for schizophrenia 

were higher in most classes compared to controls, and those for Parkinson’s disease were 

higher for Classes 2 and 5. 
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Figure 4. Odds ratios for association between polygenic risk scores (PRS) for neuropsychiatric diseases and class. Odds ratios 

are derived as exponentiated coefficients from binary logistic regression models, with the outcome variable of class vs all 

other classes in blue and class vs healthy controls in red. A circle denotes a ‘simple’ model including only the PRS indicated 

for that panel as a predictor, a triangle denotes a model which adjusts for the first five principal components (PC) of 

ancestry. Nominal statistical significance is indicated by asterisks for ‘simple’ models only, and colour coded according to 

the reference group. Sample sizes for each group in the PRS analyses [amyotrophic lateral sclerosis PRS sample size]: Class 1 

= 3,464 [2,126], 2 = 2,421 [1,466], 3= 327 [203], 4 = 65 [45], 5 = 34 [20], controls = 2,371 [1,909]. 

 

RNA-sequencing data from 88 KCL BrainBank samples (a subset of Project MinE) assigned to 

classes via LCA (n: Class 1 = 70, Class 2 = 18) and KCL BrainBank controls (n = 59) was used to 

perform gene enrichment analysis of the 500 most significant differentially expressed genes 

present in three designs (Class 1 vs Controls, Class 1 vs Class 2, and Class 2 vs Controls). 

When comparing Classes 1 and 2, we found that the 500 most significant differentially 

expressed genes were enriched for cytoskeletal, extracellular matrix, calcium and 

neurotransmitter-specific synaptic signalling and muscle-function related processes, whilst 

both classes shared enrichments for oxidative phosphorylation and postsynaptic activity-

based pathways (Figure 5). Comparisons of each class with controls highlighted processes 

implicated exclusively in ALS; Class 1 was enriched for ubiquitin and unfolded protein 

binding and nucleocytoplasmic transport, whereas Class 2 displayed enrichment for multiple 

neurodegenerative diseases in addition to Golgi-ER transport and T-cell signalling (Figure 5). 

Interestingly, these analyses showed clear reflections of the genetic differences that we 

found among clusters. For example, gene expression highlighted cytoskeletal and tubulin 

processes in the differentiation of Class 1 and 2 and so did the occurrence of rare variants in 

patients from these two classes. Furthermore, PRS for Parkinson’s disease was higher in 

Class 2 and differential expression analysis for Class 2 versus controls showed enrichment 

for genes involved in Parkinson’s disease pathways (KEGG). The full results are available in 

Tables SX1-3. 
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Figure 5. Selected results of gene enrichment analysis of the top 500 differentially expressed genes of KCL BrainBank cases 

assigned to classes via LDA (Class 1: n = 70, Class 2: n = 18) and controls (n = 59) in three scenarios (Class 1 vs control 

(onevscon), Class 1 vs Class 2 (onevstwo) and Class 2 vs Control (twovscon)). Enrichments were generated using 

ClusterProfiler for three databases – GO (left), Reactome (middle) and KEGG (right). Circles represent enrichments for that 

term with the particular scenario, with the colours denoting the p-adjusted value of the analysis. The size of the circles 

corresponds to the number of genes in each enrichment gene set which were present in each group. GO: Gene Ontology, 

KEGG: Kyoto Encyclopaedia of Genes and Genomes. The full results are available in Tables SX1-3. 

4. Prediction of cluster membership using baseline data 

We examined the extent to which machine-learning algorithms could predict class 

membership using data available around the time of diagnosis. Random Forest and eXtreme 

Gradient Boosting algorithms were trained using clinical data only or a combination of 

clinical and genetic variables. Comparison of the area under the receiver operating 

characteristic curve for prediction of each class versus all other classes determined that the 

two approaches performed comparably (see Figures S7-S9). Table 5 presents performance 

metrics for the multiclass eXtreme Gradient Boosting algorithms trained upon each data 

configuration. Class membership was predicted with high accuracy for Classes 3-5 (see Table 

5; Figure 6). Prediction of Classes 1 and 2 still performed reasonably, but with poorer 

specificity in Class 1 and sensitivity in Class 2; most misclassification in these groups was for 

people in the opposing class (see Figures S7-S9). The algorithm performance was 

comparable across sample-matched datasets when using clinical features alone and using 

clinical and genetic measures. 

 

Evaluation of feature importance using SHAP values identified diagnostic delay as the most 

influential feature upon predictions from either approach and that various other features 

contributed more greatly to the prediction of Class 1 and 2 in particular (see Figure S10). 
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Table 5. Performance of eXtreme Gradient Boosting classification algorithms for predicting class membership. Class 5 was 

omitted from the algorithm when fewer than 20 people in the class remained in the dataset. Figures S7-S9 present receiver 

operating-characteristic curves and corresponding area under the curve (AUC) for each class combination pairwise.
 †

AUC 

values presented are for prediction of class vs all other classes (see Figure 6). 
*
The ‘first visit clinical data [matched]’ rows 

describe an algorithm trained using features equivalent to the ‘first-visit clinical data’ model but after restricting the sample 

to match people included for the ‘First-visit clinical data and genetic features’ model. 

Model  
Class 

1 2 3 4 5 

First-visit 

clinical data 

Sample size 6547 4562 1096 248 55 

AUC
†
 0.847 0.827 0.999 0.999 1.000 

Sensitivity 0.77 0.68 0.97 0.99 1.00 

Specificity 0.76 0.81 0.99 1.00 1.00 

Precision 0.78 0.67 0.92 0.95 1.00 

Balanced 

Accuracy 
0.77 0.74 0.98 0.99 1.00 

First-visit 

clinical data 

and genetic 

features 

Sample size 1813 1177 192 44 - 

AUC
†
 0.840 0.822 0.999 1.000 - 

Sensitivity 0.774 0.685 0.983 0.977 - 

Specificity 0.747 0.800 0.995 1.000 - 

Precision 0.797 0.663 0.925 0.977 - 

Balanced 

Accuracy 
0.760 0.743 0.989 0.988 - 

First-visit 

clinical data 

[matched]
*
 

Sample size 1813 1177 192 44 - 

AUC
†
 0.839 0.820 0.999 1.000 - 

Sensitivity 0.776 0.681 0.984 0.977 - 

Specificity 0.743 0.802 0.995 1.000 - 

Precision 0.795 0.664 0.924 0.977 - 

Balanced 

Accuracy 
0.760 0.742 0.989 0.988 - 
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Figure 6. Receiver operator characteristic curves for performance of eXtreme Gradient Boosting algorithms in classifying 

each class versus all other classes averaged across all repeated cross-validation iterations. Each panel represents algorithms 

trained with different data configurations: A is upon clinical features available at diagnosis across all samples with 

complete clinical data (n=12,508), B is these clinical features and measured genetic risks (n=3,226), C is upon clinical 

features only, as in panel A, with a restricted sample to match the dataset of B (n=3,226). Class 5 is excluded from 

classification in panels B and C owing to small sample size in these datasets. AUC = area under the curve. 

 

Discussion 

Latent class clustering analysis was applied to clinical data from large international ALS 

datasets to identify data-driven clinical subgroups and investigate whether biological 

differences exist between groups. Five distinct disease subgroups were identified, 

delineated primarily by diagnostic delay and disease duration, with importance also 

attributed to age and site of disease onset and clinical phenotype (ALS, PLS, or PMA). 

Notably, these clusters generalise across 13 countries (see Figure S6).  

 

Survival analysis indicated that the clusters were distinct regarding disease duration; 

duration was greater for each respective class between 1 and 5. Diagnostic delay also 

generally increased with respect to class number, but, unlike disease duration, was similar in 

Class 1 and 2. Although diagnostic delay is commonly regarded as directly correlated with 

disease duration and often considered its proxy, our results suggest a more complex 

relationship between these two clinical measures. Indeed, the opposite signs of their 

correlation coefficients with LD1 and LD2 suggest the existence different patterns of 

progression across patients that require both diagnostic delay and disease duration to be 

discerned. Other features also aggregated unequally between clusters; bulbar onset was 

more frequent in Class 1; age of onset was later in Class 1 and earlier in Class 5, but 

comparable for Classes 2-4; the PLS clinical subtype was more frequent in Classes 4 and 5; 

the PMA subtype was more evenly distributed, but less frequent in Class 1. Figure 2 

visualises the clinical characteristics of each class. 

 

The main clinical variables discriminating subgroups from this study are consistent with 

those distinguishing subgroups from a previous application of LCA in a UK ALS cohort (34). 

Both studies find diagnostic delay as an important discriminator of ALS subgroups and that 

subgroups have distinct survival trajectories. However, comparing class assignments of 

people from STRENGTH using the latent class model from each study demonstrates that the 

clusters are not the same (see Figure S11). The most striking distinction is that most people 

assigned to Classes 1 and 2 using the present model are assigned to a single class by the 

model from the previous study, resulting in low resolution model that assigns the great 

majority of patients to only one group. This difference might be the result of two key 
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differences between the models: the inclusion of disease duration in present model, which 

was withheld in the previous study and instead used as a tool for clinical validation, and the 

use of larger international ALS cohorts, instead of data from only one country, to train our 

model, which underpins its generalisability to all ALS patients. 

 

Interestingly, the identified subgroups do not correspond to clinically defined ALS subtypes 

(e.g., PMA or PLS). Although this might support the hypothesis that the validity of current 

clinically defined subtypes should be reconsidered, it may also reflect a high rate of 

misdiagnosis or that the variables required to distinguish between clinical subtypes were 

not captured within these models. The use of high-dimensional clinical data identified ALS 

subgroups congruent with the classification system in a recent study (35). However, these 

subgroups would have fallen within the pure ALS diagnosis in our study and extreme 

subtypes such as PMA and PLS were not represented. 

 

Analysis of rare genetic variants showed that the pathogenic C9orf72 repeat expansion was 

more frequent in Class 1, consistent with evidence that the variant is associated with 

shorter disease duration (14, 67-69). Putatively deleterious SOD1 variants were 

overrepresented in Class 2, the characteristics of which were more representative of the 

disease phenotype associated with variants in this gene than for than Class 1 (70).  

 

Variants in genes associated with cytoskeletal dynamics and axonal transport cell processes 

were more frequent in Class 2. Variants in genes associated with RNA function were also 

unequally distributed across groups, although no individual group appeared to drive the 

association. These findings suggest that the ALS phenotype may present differently 

according to disruption of certain cellular processes. Recent studies support this possibility, 

reporting differences in disease progression and survival according to common variants 

associated with antioxidant and inflammatory disease pathways (71) and according to 

expression-based clusters (31, 33). Associations between disruption to particular biological 

processes and the ALS phenotype warrant further investigation.  

 

Trends in common genetic variation were examined using PRS for risk of ALS or related 

neuropsychiatric traits. Class 1 was associated with higher ALS PRS. Conversely, Classes 2 

and 5 were associated with higher schizophrenia PRS, which was also generally higher 

across ALS subgroups compared to healthy controls. Classes 2 and 5 were also associated 

with higher, and Class 1 with lower, Parkinson’s disease PRS. No associations emerged 

between class and PRS for FTD or Alzheimer’s disease. The lack of association with FTD PRS 

may reflect the limited sample size of the only available GWAS for this trait (48), and thus an 

underpowered PRS.  

 

The finding that ALS PRS were only higher than controls in Class 1, the largest cluster (~49% 

of all ALS), suggests that the GWAS primarily captures variants relevant to disease risk in this 

subgroup. Future ALS GWASs could benefit from prioritizing patients from this class to 

maximise their statistical power. Different variants may therefore be relevant for disease 

risk in the other subgroups. The possibility is supported by the association between Classes 

2 and 5 and higher Parkinson’s disease PRS. These associations also suggest that genetic 

overlaps between ALS and other traits could be driven by certain disease subgroups (13, 14). 

Interestingly, the schizophrenia PRS was consistently higher than controls across all classes, 
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supporting the hypothesis that common mechanisms are shared by all ALS patients and that 

these overlap at least partially with those underlying the development of schizophrenia. 

 

Analysis of matching post-mortem motor cortex transcriptomic data available for a subset 

of Project MinE supported the differences in biological trends between Classes 1 and 2 in 

several ways. Firstly, gene enrichment analysis identified many significant processes and 

pathways linked to cytoskeletal dynamics and axonal transport, congruent with our finding 

that variants in genes linked to this pathway were more frequent in Class 2. Secondly, Class 

2 was uniquely enriched for genes involved in Parkinson’s disease and schizophrenia (ErbB 

signalling (72, 73)), which supports our finding that Class 2 displays higher polygenic risk 

scores of these diseases with respect to both controls and other classes. Finding differences 

in oxidative stress and apoptotic processes between Classes 1 and 2 aligns well with our 

finding that variants in the SOD1 gene (which codes for an antioxidant enzyme that has 

been proposed to affect ALS via both gain and loss of function mechanisms (47, 74)) were 

more frequent in Class 2. The variability in biological trends observed across these clinical 

subgroups supports the perspective that patient stratification may be important for 

identifying biological disease mechanisms (27). 

 

Lastly, we found that class membership could be predicted with only information attainable 

around the time of diagnosis using machine-learning classification algorithms (see Table 5; 

Figure 6). Classes 3 to 5 were clearly distinguished (AUC = 0.999) and lower performance for 

Classes 1 and 2 (AUCclass1 = 0.847 and AUCclass2 = 0.827) is expected since their main 

delineator is disease duration which was excluded as a feature (see Table 2; Figure 2; Figure 

3). Algorithms making predictions using both genetic and clinical features performed 

comparably to those trained using clinical features only. For rare variants in particular, this 

may reflect that the presence of a given variant only informs predictions for a small 

proportion of the whole cohort. 

 

A limitation of this study is that rare variant analysis was conducted under the assumption 

that identified variants are relevant for the risk or modification of the ALS phenotype. We 

included rare variants predicted to have a functional effect upon genes previously 

implicated in ALS. Such broad inclusion criteria will likely identify a range of variants with a 

spectrum of relevance to the disease. Without further supporting evidence, or larger sample 

sizes, it is difficult to ascertain the role of each individual variant (75).  

 

A further limitation is that biological trends could only be tested to a limited degree. 

Although the genetic architecture of all classes was investigated, analysis with 

transcriptomic data was constrained by the availability of data for relatively limited samples 

from only Classes 1 and 2. The genetic analyses were similarly limited by the small sample 

size for certain clusters. However, our investigation drew upon one of the richest genomic 

resources for ALS currently available (36) and this constraint should lessen in future studies 

as resources continue to expand.  

 

Future studies should refine the disease classifications we have developed. The identified 

subgroups were partly and differentially separated by diagnostic delay and disease duration. 

Progression has been identified as an indicator of disease duration in ALS (76, 77), and the 

present patterns suggest non-linearity of progression across the disease course, which has 
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been recognised previously (78). Our measurement of diagnostic delay is likely an imperfect 

proxy for disease progression. Therefore, future studies should include measures of 

patterns in disease progression. Recognising overlaps between ALS and other conditions 

(11, 14), it is also pertinent to measure non-motor features of ALS, such as cognitive or 

behavioural change. 

 

In conclusion, we illustrated that our data-driven approach can identify distinct clinical 

subtypes of ALS and suggests that differences between these subgroups reflect the role of 

distinct biological mechanisms, beyond individual gene variants, upon the phenotype. The 

study supports the perspective that data-driven patient stratification may aid identification 

of biological disease mechanisms and, therefore, that such approaches should be 

considered in the design of future ALS studies. Defining clinically and biologically meaningful 

subtypes of ALS has important implications for future research and clinical practice 

regarding: the inherent utility of an early and reliable prediction of disease prognosis for 

improving and personalising patient care; improved matching of people across clinical trial 

placebo and active arms to facilitate testing of treatment efficacy; precision medicine 

development owing to easier identification of disease processes relevant for particular 

subgroups; the design of genetic and biological studies.  

 

Future research should aim to develop detailed understanding of ALS subtypes by 

employing multi-omics datasets to examine how they are reflected across the spectrum of 

genome to phenome. 

 

Data availability 

The Project Mine clinical and genetic data is available upon request at 

https://www.projectmine.com/research/data-sharing/. Accessing the STRENGTH clinical 

data requires a collaboration and data sharing agreement with the EU JPND STRENGTH 

consortium, administered through King's College London (contact ammar.al-
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