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Abstract

Loneliness is linked to wide ranging physical and mental health problems, including increased rates of
mortality. Understanding how loneliness manifests is important for targeted public health treatment and
intervention. With advances in mobile sending and wearable technologies, it is possible to collect data
on human phenomena in a continuous and uninterrupted way. In doing so, such approaches can be used
to monitor physiological and behavioral aspects relevant to an individual’s loneliness. In this study, we
proposed a method for continuous detection of loneliness using fully objective data from smart devices and
passive mobile sensing. We also investigated whether physiological and behavioral features differed in their
importance in predicting loneliness across individuals. Finally, we examined how informative data from
each device is for loneliness detection tasks. We assessed subjective feelings of loneliness while monitoring
behavioral and physiological patterns in 30 college students over a 2-month period. We used smartphones to
monitor behavioral patterns (e.g., location changes, type of notifications, in-coming and out-going calls/text
messages) and smart watches and rings to monitor physiology and sleep patterns (e.g., heart-rate, heart-rate
variability, sleep duration). We also collected participants’ loneliness feeling scales multiple times a day
through a questionnaire app on their phone. Using the data collected from their devices, we trained a random
forest machine learning based model to detect loneliness levels. We found support for loneliness prediction
using a multi-device and fully-objective approach. Furthermore, behavioral data collected by smartphones
generally were the most important features across all participants. The study provides promising results for
using objective data to monitor mental health indicators, which could provide a continuous and uninterrupted
source of information in mental healthcare applications.
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1. Introduction

1.1. Loneliness and Social Isolation – a Public Health Epidemic

Though frequently used and described in the same contexts, loneliness is distinct from social isolation.
Loneliness refers to a subjective feeling wherein the individual experiences a lack of actual connection
within social interactions [1, 2]. Social isolation refers to the specific lack of social interaction or access to
one’s social networks [3]. Both loneliness and social isolation have profound health implications and are
linked with increased morbidity and mortality rates [4, 5]. Concerns for the health implications of loneliness
and social isolation were heightened during the COVID-19 pandemic [6, 7], during which people around
the world were requested to minimize contact and comply with stay-at-home orders to reduce transmission
of the disease. Individuals with lower socioeconomic status, younger adults, and students in particular were
found to have high feelings of loneliness during the pandemic [8, 9], though empirical evidence regarding the

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2023.06.12.23291296doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.06.12.23291296
http://creativecommons.org/licenses/by/4.0/


differences in loneliness over time and the psychological implications of lockdown remain unclear [10, 11,
12]. However, a recent meta-analysis by Ernst and colleagues [13] suggested a small yet significant effect
size in the differences between feelings of loneliness before and after the pandemic. Several researchers
argue that there are differential associations between loneliness and social isolation with health outcomes,
such that loneliness contributes more to mental health outcomes while social isolation is more important in
predicting declines in cognitive and physical health [14, 15, 16, 17]. However, other studies suggest that the
differential health implications of loneliness and social isolation are much more difficult to disentangle; for
example both constructs are associated with increased risk for cardiovascular disease and interact in their
relation with mortality [18, 3, 19]. In summary, given their crucial link to health-risks, both loneliness and
social isolation are necessary to address. To target ways of reducing these feelings, it is important to first
determine when and how they occur.

1.2. Assessments and Predictions of Loneliness and Social Isolation in Daily Life
Although a robust body of literature has established a strong link between loneliness and health outcomes

[20, 21], this work is constrained by the fact that the majority of this work has relied on self-reported
measures of loneliness and social isolation that require that participants report on their symptoms spanning
an extended period of time (e.g., in the past two weeks). It can be difficult to accurately report on symptoms
over such a long time period, and such symptom reports can be influenced by current mood [22, 23, 24].
An on-going and exciting avenue to examine loneliness, both its occurrence and association with health and
social outcomes, is through its occurrence in daily life [25]. By assessing loneliness with greater ecological
validity, we may be able to understand how and when loneliness plays a role in physical and mental health
outcomes. For example, existing literature has found that loneliness in daily life is linked to increased
feelings of negative affect, greater negative appraisals of social interactions, and more time spent alone;
furthermore, these associations had lagged associations with loneliness and depression at a later time point
[26, 25].

In addition to outcomes associated with loneliness, several studies have been conducted to assess the
feasibility of detecting and modeling loneliness and social isolation in real-world settings. Previous ap-
proaches using intensive longitudinal self-reports can put a heavier load on users, resulting in unsatisfactory
experiences for the users due to the reliance on frequent engagement [27, 28]. An attempt to resolve this
issue involves leveraging users’ behavioral data as collected by continuous mobile sensing. Using continu-
ous and objective sensing devices (e.g., smartwatches) to monitor loneliness allows for a more accurate and
representative assessment when taking into account contextual factors in a user’s environment. Smartphones
can monitor certain aspects of a user’s life using multiple embedded sensors (e.g. GPS, accelerometer, mi-
crophone, light sensor and phone usage logs). Furthermore, passive sensing can quantify the behavioral
patterns of participants, including the type and frequency of activities performed, changes in geographic
location, and phone usage. Such work has already begun to leverage this type of data to determine features
that contribute to loneliness with high predictive accuracy [29, 30, 31, 32]. For example, mobility and digital
media use are found to be features linked to feelings of loneliness [33, 27]. Additionally, the presence of
other people and differences in phone usage were also shown to be predictors of loneliness [33, 34]. Doryab
and colleagues [33] have attempted to classify loneliness levels amongst college students before and after
a semester by leveraging data collected with smart wristbands and phones. Using these devices, Doryab
and colleagues were able to extract features about calls, locations and screen usage collected from phones
along with sleep and activity level features from smart wristbands. Nevertheless, the loneliness scale la-
bels obtained in this study were limited to only two timepoints: pre- and post-semester, which obscures the
temporal dynamics of the loneliness data. The wristband used in this study (Fitbit Flex 2) assessed sleep
information using the same motion sensors used for activity level recognition. This is while recent devices
are capable of leveraging heart rate and other physiological sensors for sleep quality assessment [35, 36].

Despite existing literature that has leveraged the capabilities of smartphones in monitoring loneliness
and well-being more broadly, a few novel directions in this approach have yet to be fully explored. First,
ubiquitous sensing and advances in technology can allow us to potentially monitor and predict loneliness
with higher granularity. Most studies have assessed loneliness as a trait measure or with few assessments
throughout the study duration (Bello-Valle et al., 2022; Doryab et al., 2018; Gao et al., 2016; MacDonald
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et al., 2020) as opposed to intensive assessments of loneliness across multiple days over a long period of
time. For example, work by [34] and [37] measured loneliness, social anxiety, and affect at the beginning
and end of their study. Although measuring these levels at two time points can provide general trends, such
approaches likely omit the temporal changes in loneliness during the course of the study or at the daily level.
There are, however, a few studies that have assessed loneliness and mental health states multiple times a day
[38, 39]. In a study by Ben-Zeev et. al. [38], participants completed a 10-week study that passively col-
lected their speech patterns, location, kinesthetic activities, and sleep duration using smartphones alongside
self-reported assessments of daily stress, depression, and loneliness. StudentLife [39], was another study
conducted by Wang and colleagues [39], participating 48 students during a 10 week period collecting var-
ious contextual data from phone and comprehensive ecological momentary assessments (EMA) assessing
variables including stress, mood, and loneliness etc. The authors performed detailed analysis on the cor-
relation of contextual information extracted by smartphones and different EMA data however they did not
report loneliness detection/classification tasks. While these works provide a relational analysis between the
loneliness scales and data, our study aims to take a predictive approach to loneliness.

Lastly, an exciting avenue for the field is the use of a comprehensive approach to monitor and predict
loneliness and mental states that involves multiple modalities of passive sensing. A limitation of previous
work that relies on passive sensing using smartphones is the expectation of continuous user engagement.
While individuals do frequently access their smartphones, there may be times where data collection through
smartphones may lack granularity in assessment (e.g., leaving smartphones in bags while at the gym or do-
ing an activity). With the progression of technological tools for entertainment, users, particularly younger
adults, may use other modalities for their online presence, such as tablets, game consoles, and smartwatches.
Furthermore, smartphone assessments are often limited to assessment of behaviors, unlike other ubiquitous
devices such as smart wearables that can provide physiological state measurements. Indeed, prior literature
that has used smartphones in real time typically focuses on usage of phone features (e.g., incoming and out-
going calls or messages), geolocation, and participant self-reported responses to assess how these behaviors
relate to health and social outcomes [37, 39]. Incorporating other ubiquitous devices such as the OuraRing
and Samsung smartwatch allows for the continuous collection of several features such as sleep (e.g., sleep
duration, quality, restlessness) and cardiovascular (e.g., heart-rate, heart-rate variability, blood pressure)
indicators [35]. The ability to assess sleep and cardiovascular indicators is important, given existing litera-
ture suggesting the links between loneliness with sleep disturbances and lower cardiac output [40, 26, 41].
Therefore, leveraging passive sensing using multiple devices with the capacity to detect unique factors such
as sleep and cardiovascular activity would build upon existing literature to provide a more comprehensive
and granulary understanding of when and how loneliness occurs.

1.3. Current Research

Altogether, the intersection of mental health and technology offers an exciting opportunity to build upon
foundational work in the field [33, 39, 42] by developing a more comprehensive monitoring framework
capable of assessing the occurrence and predictability of loneliness. In this study, we develop a method
of passively and continuously monitoring loneliness using smart wearables and smartphone devices. Using
these devices together allows us to assess a wide range of behavioral patterns such as phone usage, com-
munications, and locations as well as physiological patterns such as sleep indices and cardiovascular data.
We leverage these devices to propose and evaluate a fully objective loneliness detection method that does
not rely on user engagement. We also aim to examine which behavioral and physiological features were
most predictive of loneliness for each individual. Finally, our third aim is to determine device efficiency of
loneliness monitoring and detection.

2. Method

2.1. Participants

Full-time college students (N=30) at a West coast university between the ages of 18-22 were recruited to
participate in an intensive longitudinal study investigating loneliness and mental health . Participants were

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2023.06.12.23291296doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.12.23291296
http://creativecommons.org/licenses/by/4.0/


eligible if they spoke fluent English and used an Android smartphone compatible with the Oura Ring and
Samsung Active 2 watch. Students were ineligible to participate if they were married, had children, were
returning to school after a three year hiatus, or if they experienced any severe forms of psychopathology (i.e.,
diagnosed with clinical depression or substance use disorders, psychosis, or any form of suicidal ideation).
The exclusion criteria were intended to ensure a relatively homogenous sample of college students and
individuals in emerging adulthood. We reasoned that students whose demographics were different (parents,
older adults, and individuals returning to school) may have a different experience than emerging adults as
they develop their identity and social networks . Students were recruited through faculty outreach where
professors may then make announcements to their classes. Social media posts on institutional platforms
(e.g., Facebook, Reddit, and Discord) were also used to recruit students. Interested participants reached
out via email and were administered a screening survey to assess for moderate to severe depression or
suicidal ideation. Individuals who met these criteria were then reached out by the clinical psychologist on
our team (JB) for additional support and follow-up. Campus and local wellness resources were provided to
all individuals who reached out or completed the screening survey.

2.2. Procedure

All procedures were approved by the researchers’ academic institutional review board (#2019-5153).
For the purpose of this investigation, only relevant procedures and our monitoring phase will be described
from the larger study. If participants met the inclusion criteria, they were then contacted to schedule their
first in-person lab session in which they completed a baseline battery assessment of mental health, emotions,
and well-being related measures. The mental health assessment included measures of psychopathology, on
the basis of which participants were withdrawn from the study if the research team determined in consulta-
tion with JB that continued participation would be unsafe. During the first lab session, Oura Ring, Samsung
Gear Sport watch, and smartphone apps related to the study were set up and downloaded for the partici-
pants. Participants were then instructed on how to use the devices and were guided through tasks that they
would be completing for the next four weeks of their participation. Participants were instructed to wear
their devices at all times throughout the study period, except under certain conditions (e.g., while charging
devices or while performing intensive activities that risked damage to the watch). For the smartphone apps,
participants downloaded AWARE that monitored their phone usage and a study-designed app, mSavorUs,
which would prompt individuals to complete a brief survey five times per day, using an interval-based eco-
logical momentary assessment (EMA) design. The survey included questions about affect, interactions with
others, and feelings of loneliness, social isolation, and connectedness. Apps relating to the wearable devices
were also downloaded onto participants’ phones for proper device functionality. Participants completed this
monitoring phase for about 8-weeks and were compensated for their involvement in all components of the
study.

2.3. Data Collection

To support our longitudinal study design, we built a platform capable of collecting and storing data
efficiently. We designed a research dashboard that allowed the researchers to have constant access to the data
being collected in order to monitor participants’ progress. The dashboard visually displayed the collected
data and a summary of each participant’s daily activities. The information was then used to track and
assess possible connectivity issues with the devices throughout the study duration. The collected data fell
under three categories: objective physiological data, objective behavioral data, and subjective self-report
questionnaires. Participants’ objective physiological data was collected using the Oura ring and Samsung
watch. The Oura ring was used to assess information regarding the participant’s sleep patterns, and the
Samsung watch was employed to conduct continuous physiological assessments throughout the day. The
objective behavioral data was collected using the AWARE phone application. AWARE provides us with
mobile sensory data and participants’ phone usage details, which can then be used to derive behavioral
features. Subjective self-report data was collected using the mSavorUs phone application that was developed
for the purpose of collecting subjective experiential data and delivering interventions in this study.
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2.3.1. Objective Physiological Data using Samsung Watch and Oura Ring
The Oura Ring offers a range of metrics regarding the user’s physical activity, and sleep patterns [7].

However, Photoplethysmography (PPG)-based wearable devices, including the Oura Ring, can encounter
noise during signal collection, particularly when utilized in a home-based monitoring setting. For our pur-
poses, we used data from Oura that included the user’s sleep, physiology and physical activity. The final
list of selected data included heart-rate related information during sleep, the estimated time of start of sleep
after getting into bed, as well as the number of minutes with high, medium and low level of physical ac-
tivity during the day (refer to Appendix Table A.3 for a detailed list of features of Oura ring used in this
study). Samsung Active 2 watch operated on the Tizen open-source operating system [43], allowing for the
development of custom data collection applications. This open-source platform enabled us to develop an
application specifically designed for the watch to collect the data in a manner customized to the purposes of
our study. The watch app activated every two hours to collect twelve minutes of PPG signals, used to extract
heart rate and heart rate variability. The collected data was then synchronized with our server through wifi
or bluetooth.

2.3.2. Objective Behavioral Data using the AWARE app and Subjective Experiential Data using mSavorUs
For the objective behavioral data, we used the AWARE app available for Android. This app’s sensors

were configured to collect participants screen usage (e.g., lock, unlock time), application usage (e.g., no-
tification, time of opening any app), their keyboard strokes pattern, battery level, communications (e.g.,
message/calls sending and receiving time) and GPS location [44]. Finally, for subjective experience, we
designed and developed the mSavorUs application as a portion of a larger intervention-based study. This
application [45] included assessments of loneliness and social isolation using mobile app interfaces and
push notifications.

2.4. Data Analytic Plan

2.4.1. Feature Extraction
We developed Heart Rate (HR) and Heart Rate Variability (HRV) extraction methods from the raw PPG

signals collected by the Samsung watch. The raw PPG signals are highly susceptible to environmental noise
motion artifacts. To illustrate the problem, we plot two 60-second PPG signals. Figure 1 (a) is a clean PPG
signal, showing heart beat oscillations. However, Figure 1(b) is a noisy PPG, distorted by the subject’s hand
movements. Such distorted signals will result in unreliable HR and HRV features extraction. Therefore, we
developed a PPG processing pipeline to address this problem.

The pipeline includes 3 main stages: signal quality assessment (SQA), signal reconstruction, and PPG
peak detection. The SQA classifies PPG signals as “clean” or “noisy” by extracting five features from the
signal, including interquartile range, standard deviation of the power spectral density, range of energy of
heart cycles, average Euclidean distances, and average correlation between a template and heart cycles [46].
After we performed SQA, short-term “noisy” segments (less than 15 seconds) were reconstructed using
a trained generative adversarial network (GAN) model [47]. The GAN model was trained to reconstruct
noisy PPG using the information both in the distorted part and its proceeding clean signals. Then, a trained
Dilated Convolution Neural Network (DCNN) was employed to detect the systolic peaks [48] and inter-beat
intervals (IBI). Finally, HR and HRV-related features were extracted from the IBI signals. We access the
Oura ring data through an application programming interface (API) that provides the processed features of
sleep and activity. No further feature extraction or post-processing steps were done on the ring data (please
refer to Appendix Tables A.3, A.4 for the full list and description of the features extracted from ring and
watch).

We developed methods to extract behavioral parameters of the participants’ daily living through the
longitudinal behavioral data collected by the smartphones. For calls, we used the duration sums and number
of calls in each category (e.g., outgoing, incoming and voicemail). For location data we first located the
participant’s house as the most frequently visited place during the nights of study. Then given a location
time window, we extracted variance of latitude, variance of speed, mean of speed, number of places, home
duration, outdoor duration, mean of outdoor duration (>=2 places), standard deviation of outdoor duration

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2023.06.12.23291296doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.12.23291296
http://creativecommons.org/licenses/by/4.0/


0 10 20 30 40 50

−2

−1

0

1

A
m

pl
it
ud

e 
(a

.u
.)

0 10 20 30 40 50 60
Time (second)

60
Time (second)

−4

−2

0

2

4

A
m

pl
it
ud

e 
(a

.u
.)

(a)

(b)

Figure 1: 60-second PPG segments (a) clean (b) distorted by hand movements

(>= 2 places), longest duration type other than home (>= 2 places), and total travel distance(>= 2 places).
For messages and notifications, we counted the number of messages in each category. Table 1 demonstrates
all of the categories and three samples for each of them (please refer to the Appendix Table A.3 for a detailed
list of all features extracted from the phone.)

Table 1: Different categories of App notifications and with three examples of each

Apps Category App Examples

Productivity Google Doc Office Outlook Gmail
Photography Android Photos Bazaar Lightroom

Communication Whatsapp Android Messenger Discord
Lifestyle Oneconnect T-Mobile Tuesdays Samsung pay

Auto & Vehicles Gearhead Toyota Carfax
Travel & Local Couch Surfing Google Maps Uber

Education duolingo Wonder Canvas
Finance mint American Express SplitwiseMobile

Video Players & Editors Vlc player Youtube Capcut
Social Snapchat Katana TikTok

Books & Reference audible Scribd Chirp
Shopping Slickdeals Amazon Target

Health & Fitness Fitindex Myfitnesspal shealth
Entertainment Amazon Prime Video Netflix Hulu

Business Duo Slack LinkedIn
Music & Audio Spotify Youtube Music Soundcloud

Tools Sprint Android search box Google Mobile Service
Unknown Gametools Clock Calendar

Some of the features from the devices were collected in a single assessment per day (i.e., sleep related
features) whereas others were assessed with higher resolution, multiple times throughout the day (i.e., loca-
tion, phone lock-screen, and PPG recordings; for a list of all features, see Tables A1-3 in the appendix). For
data that was sampled multiple times per day, we tested different time windows (e.g., from 4 to 48 hours)
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Figure 2: Schematic presentation of feature extraction window and data record compilation from modalities. Each modality provides
different sensors and separate window lengths could be defined for extracting features from each of these sensors.

for aggregating the values in order to pair with the subjective responses (i.e., self-reported loneliness used
for labeling). Figure 2 shows how different window lengths for each modality have been used to compile
data records. After extracting mentioned feature values given a time window, we selected the optimum time
window for each feature based on the correlation with the target questionnaire response values.

2.5. Missing data

For intensive longitudinal studies assessing experiences in real-time, many factors could interrupt con-
tinuous data collection and result in missing data. These factors may result from participants forgetting to
wear their devices or charge them overnight, or may result due to technical issues (e.g., server congestion
or permission issues over the phone). Using the monitoring tools in the data collection server, we were able
to track most of these issues over the course of study and solve them in the shortest time possible. After all
these arrangements, having a certain degree of missing data is inevitable and must be taken care of in the
analysis stage. In our analysis, we tested two data imputation methods to handle missing data. We replaced
the missing values with the average of: A) two preceding and succeeding valid samples, or B) all valid
values [49] of that participant. The latter method yielded a higher correlation with the target questionnaire
response values for the majority of the features. Therefore, for consistency, we used this method to handle
missing data for all of the features.

2.6. Classification

We defined the binary classification labels (true/false values) based on the participant’s self-reported
loneliness rating (scaled from 0-100, 0 = not at all, 100 = extremely) as below or above the median to have a
balanced number of labels. We developed a random forest [50] method to predict these classification labels
using the 84 selected features. Random Forests is a machine learning algorithm that combines multiple
decision trees to make more accurate predictions. Leveraging multiple decision trees enables this algorithm
to process high dimensional data efficiently. Before training predictive models, we Z-normalized the features
using each participant’s data in the training set to reduce interpersonal bias in feature space. For model
evaluation, we used a one-subject-out policy for predictive modeling evaluation, where we used the most
recent 50% of each participant’s data as a test set and the remaining data of that participant with all the
other participants for the training model. We calculated the accuracy, F1-score, precision, recall, and mean
squared error for all the test entries combined. We defined true positive and false positive predictions if our
model detected the loneliness class respectively correct and incorrect (according to EMA labels). Similarly,
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true negative and false negative predictions were instances where the model did not detect the loneliness
class while they were correct and incorrect, respectively. Given these terms we can define aforementioned
performance metrics as:

Accuracy =
number o f true negative + number o f true positive

total number o f data records

Precision =
number o f true positive

number o f true positive + number o f f alse positive

Recall =
number o f true positive

number o f true positive + number o f f alse negative

F1 =
2 ∗ precision ∗ recall

precision + recall

MeanS quaredError =

∑
total data records

number o f f alse negative + number o f f alsepositives

total number f data records

2.7. Feature Importance

A limitation of using classic model evaluation metrics is that they lack insight into the dynamics of
prediction. To address this limitation, the SHapley Additive exPlanations (SHAP) method was used to
investigate the contribution of features to predictions given a model [51]. SHAP offers explainability and
insight into the contribution of each feature used by a given model in the prediction stage. Given a trained
model, this method generates numerical estimates (called SHAP values) that represent how much a feature
value affects the output value of the model and what direction (toward either of the classification labels)
this effect is. Variations of this method have been proposed for different machine learning models. Some of
them consider the trained model as black-box and extract local explanations using efficient sampling in the
feature space [52]. Other variations of SHAP analysis methods are proposed for specific machine learning
models. In this work, we leveraged path dependent feature perturbation algorithms [53] developed for tree-
based models. This method splits the feature space while recursively following the decision path for a given
datapoint. This approach enabled us to enhance the accuracy and interpretability of our models, making
them more effective tools for decision-making and analysis.

3. Results

3.1. Aim 1: Loneliness detection overall performance

We first present the performance of our proposed loneliness detection method enabled by using the
multiple ubiquitous sensing devices AWARE, Oura ring, and Samsung watch. As previously mentioned, we
conducted a two-month monitoring study with 30 participants who completed five self-report assessments
per day, totaling to about 7,300 data points. The trained model was evaluated by comparing the estimated
loneliness values with the corresponding ground truth values (i.e., collected by subjective questionnaires).
This procedure was repeated for every participant; in other words, 30 different personal models were built.
In the following, we report the aggregated results obtained from all the trained models. Our loneliness
detection models obtained an accuracy of 82% Table 2, precision score of 81%, and value of 0.83 Area
Under Curve (AUC). Higher AUC generally represents better classification capability (ranging from 0.5
showing random classification to 1 that is for a perfect classification). Figure 3 shows the confusion matrix
of the loneliness detection models extracted from about 3,600 tested samples. The obtained true positives
(detecting loneliness correctly) and true negatives (estimating no loneliness correctly) were considerably
lower compared to the false positives and false negatives.
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Figure 3: Confusion matrix of loneliness prediction model performance using all channels.

Figure 4: mean of absolute SHAP values for each participant-feature pairs. The top 20 features with the highest average values across
participants are presented in a sorted order. HRVS DANN1, HRVS DANN1 is the standard deviation of average RR intervals extracted
from segments of PPG collected by the smart watch for 1-minute and 5-minute intervals respectively. Please refer to Appendix A.4 for
a full description of all features.

3.2. Aim 2: Explainability and Feature Importance Analysis

As discussed, we obtained loneliness detection accuracy of 82% using all the modalities from three
devices (smartwatch, ring, and phone). In this section, we explore further into the analysis to investigate
the effect of the features on the performance of loneliness detection using explainable machine learning
techniques. To this end, we carried out SHapley Additive exPlanations [51] (SHAP) analysis to gain deeper
insight into the detection models. SHAP values serve as a measure showing the significance of each feature
in the model’s ability to perform the detection. As previously mentioned, we trained a personal model for
each participant. To assess the impact of each feature on the loneliness detection among participants, we
calculated the mean SHAP values across the test samples.

Figure 4 depicts the absolute SHAP values of the 20 features for each participant, with dark blue and
light green hues showing highest and lowest values, respectively. Overall, the 6 most influential features
from our prediction model were related to behavioral markers extracted from smartphones (i.e., the AWARE
platform), while the HRV features – collected from the smart watch – had less impact. However, the influ-
ence of each feature varied across participants. For example, the number of notifications from lifestyle and
communication applications had a significant impact on Participants 15 and 20, respectively, whereas these
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features did not exert as similar of an impact on the remaining participants. This inter-individual difference
indicates the importance of personalization in loneliness detection methods.

The findings shown in Figure 4 further offer a broad understating of the impact of individual features
on the loneliness detection. However, due to averaging the absolute values, this representation obscures the
distribution and direction of the effects of each feature on each participant. Specifically, a positive SHAP
value denotes that the corresponding feature shows a positive impact on the loneliness class detection, while
a negative value contributes to the non-loneliness class detection. Thus, Figure 5a,5b shows the positive and
negative SHAP values of two randomly selected participants, revealing the variation in the importance of the
features. Loneliness class is represented on the right side of the y axis in this Figure, while non-loneliness is
represented on the left side. The red and blue colors illustrate negative associations and positive associations
respectively for a given feature. For example, physiological features were the most influential for Participant
8 (Figure 5a), whereas Participant 10’s most important features (Figure 5b) were behavioral features. It also
shows that on average, Participant 8’s lower values of HRV metrics (represented by the blue color) are
associated with higher feelings of loneliness (left side of the vertical line). These figures also indicate how
the order and impact of features vary between the participants for loneliness detection. For example, for
Participant 8, the most influential features are extracted from the smartwatch. However, this effect is less
evident for Participant 10 (Figure 5b). For instance, decreases in the HRV CVSD feature (presented in blue
color) results in loneliness for Participant 10. This is while higher values of this feature (red) results in
non-loneliness class.

3.3. Aim 3: Loneliness Detection using Different Sets of Devices

We investigated the effects of different modalities on the performance of our loneliness detection method.
To this end, in the training phase, we built four random forest models, three of which were trained with data
collected from a single device (i.e., smart ring, smart watch, or smartphone), and one of which was trained
using data from all three devices. Subsequently, the models were evaluated using test data from the same
device(s). This assessment strategy allowed us to select the optimal set of devices based on the desired cri-
teria, including performance, costs, or user burden. The performance of the models is indicated in Table 2.
The smart ring (Oura) is small, lightweight, and easy-to-use, with a battery life of approximately one week
following a full charge. The device provides sleep quality, physical activity, and nocturnal HR and RMSSD
parameters with a rather high accuracy [54, 55, 35]. Although Oura obtained the highest recall value com-
pared to all other cases, it showed the poorest accuracy, F1-score, and precision for loneliness detection.
The second-best accuracy of a single device was obtained using the smart watch (Samsung), which enabled
us to acquire HR and multiple HRV measurements at all times. In comparison to Oura, the watch obtained
better precision but worse recall. The AWARE framework, which only uses smartphone logging and sensing
features, obtained the highest accuracy and precision but the lowest recall compared to the Oura ring and
Samsung watch. AWARE runs as a background application on the user’s smartphone. This passive sensing
eliminates the need for user input, in contrast to wearable devices that require continuous wear. It should
be noted however, that the AWARE data collection is limited to the behavioral and contextual parameters.
For instance, our previous study [56] indicated that COVID-19 lockdown had an adverse impact on such
passive smartphone-based data collection, as user mobility decreased (e.g., fewer location changes). Our
results showed that multimodality has a positive impact on the overall performance of loneliness detection,
providing an improved trade-off between precision and recall. Specifically, the three devices used in the
study together obtained higher precision values compared to the Oura ring alone, and slightly higher recall
values compared to Samsung Watch and AWARE alone.

4. Discussion

Advances in technology offer exciting future direction for mental health prevention and treatment. With
the availability of passive sensing and assessments of people’s experiences, behaviors, and mental states in
real-time and with greater ecological validity, researchers and medical professionals can have a better un-
derstanding of individualized experiences of mental health. Loneliness is an important predictor of physical
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(a)

(b)

Figure 5: Summary of SHAP-based explainers for top 10 features for Participants 8 (a) 10 (b). HRV data are extracted from watch
signals. HRV CVSD is RMSSD divided by the mean of the RR intervals (MeanNN). HRV LF and HRV HF are the spectral power of
low frequencies (0.04 to 0.15 Hz) and high frequencies (0.15 to 0.4 Hz) respectively. HRV LFn and HRV HFn are power-normalized
versions of HRV LF and HRV HF features. SDNN the standard deviation of the RR intervals. CVNN is the standard deviation of the
RR intervals (SDNN) divided by the mean of the RR intervals. Please refer to Appendix for the full list of features description.

Table 2: The performance of the loneliness detection methods using different devices

Device(s) Accuracy Precision Recall F1 score MSE

Oura Ring 0.565 0.556 0.988 0.711 0.434
Samsung Watch 0.781 0.809 0.780 0.794 0.220

AWARE (Smartphone) 0.810 0.877 0.756 0.812 0.189
Samsung Watch + Oura Ring + Aware 0.822 0.883 0.773 0.824 0.177
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health and mortality [57]. Furthermore, loneliness is associated with several sleep and physiological factors
[58]. The U.S. has previously announced a loneliness epidemic [59] and several recent studies are focus-
ing on loneliness across different populations [60]. To address loneliness requires a multimodal approach.
Our study adopted a comprehensive approach using multiple devices to passively and continuously monitor
people’s experiences in order to predict loneliness and assess how loneliness might look across individuals.

Our findings in this study showed that loneliness detection using multimodal assessment with commer-
cially available devices could yield an accuracy of 82%. We compare our proposed ML-based loneliness
detection method with current state-of-the-art methods for fully and objectively (i.e., only using sensors
from wearable and mobile devices) identifying loneliness. To the best of our knowledge, there exists only
one article in the literature which attempts to objectively detect instantaneous loneliness (i.e., not daily or
weekly classification) while having an acceptable sample size (N ≥ 10) . It should be noted that in order to
utilize a predictive model in just-in-time adaptive interventions (JITAI) [61], it is critical to deploy models
with the ability of instantaneous (fine-grained) predictions. Wu et. al. [32] conducted a three-week data
collection of 129 individuals using smartphones. The EMA was collected randomly up to four times a day
in which participants were asked to select 4 options of loneliness levels. Using a random forest classifier,
they obtained the average AUC of 0.73-0.74 for loneliness detection, which is 10% lower than our method’s
AUC. Although their results showed how contextual data collected from smartphone sensors could be used
in loneliness detection, they did not leverage physiological measurement and multi-modal assessment in
their study. As presented in the following, physiological indicators are rich sources of information for lone-
liness detection models when coupled with contextual markers.

With respect to feature importance for predicting loneliness, we found that across devices, assessments
of people’s phone behaviors using the AWARE app had the highest average values with loneliness across all
participants. More specifically, people’s use of their phones either through notifications or engagement with
phone apps and calls were highly associated with loneliness. In this respect, our findings do support the
existing literature that has primarily used mobile app assessments of loneliness using people’s geolocation
and phone interactions with others [33, 27, 32]. HRV parameters collected through the Samsung smartwatch
were second in their prediction weights on loneliness.

Surprisingly, sleep measures as assessed through the ring had less weight as predictors of loneliness.
This finding is somewhat inconsistent with existing literature. Past studies that have used subjective indices
of sleep suggest a link between reported sleep disturbances and loneliness [40, 41]. Furthermore, studies
that have used objective indicators of sleep (such as polysomnography, sleep watches, and neural scans) are
consistent with subjective indices, where sleep quality and deprivation was also found to be associated with
social withdrawal and loneliness [62]. One potential limitation of our work that may help to explain our
finding is that our model included several features from assessments collected during the day, whereas the
Oura ring was the only device that captured bedtime features. While behavioral and some of the activity
data are being generated throughout the day, sleep data has values per day. This difference in the frequency
of sleep data could suggest further exploration on specific data fusion techniques.

With respect to the nuances across behavioral features and cardiovascular features, one possible expla-
nation for why behavioral features weighed more heavily is the growing literature examining the importance
of context [63, 64, 65]. For example, the links across emotions, physiological assessments, and health vary
widely across different racial/ethnic groups [66, 67]. Assessing these objective markers lack meaning if
not measured with the context of the individual. Loneliness is highly related to a person’s perceived social
interactions or lack thereof. If an individual feels slight changes in their interactions with others, whether
it be in their use of phone apps or virtual engagement with others, it might have changes in their loneli-
ness. Therefore, in having a more comprehensive approach to understanding how loneliness occurs, it still
is needed to ground it in the context of social interactions and relationships.

Our aim was to obtain the best performance for objective loneliness detection using all available devices.
In other words, in addition to assessing the performance of loneliness detection methods, it is vital to eval-
uate how each device performs individually. Through this process, researchers can gain insights on how to
improve other metrics, such as feasibility and usability within the context of remote health monitoring stud-
ies. This information can assist researchers in selecting the optimal set of devices according to their specific
requirements. Our findings indicate that multimodality yields a beneficial effect on the overall performance
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of loneliness detection, offering an enhanced balance between precision and recall. Additionally, multi-
modality offers competitive data fusion [68] in loneliness detection, which can enhance service availability.
This enhancement is achieved through the utilization of three independent battery-powered devices, which
ensures that loneliness detection remains operational even if one or two of the devices become unavailable
due to factors such as battery depletion, technical problems, or decreased user mobility. Moreover, multi-
modality provides complementary fusion of sensing modalities [68], which can improve the explainability
of the analysis. Each device is not directly dependent on other devices, but the data can be aggregated to
provide a more complete depiction of loneliness under observation. The Oura ring collects physical activity
and nocturnal health parameters, including sleep quality and HR. The Samsung watch provides nighttime
and daytime physiological parameters, including HR and HRV. AWARE enables us to acquire behavioral in-
formation (e.g., social interactions) and contextual information (e.g., location). In other words, each device
assesses different phenomena, and assessing all of these at the same time, in real-time, can provide a more
comprehensive view of how loneliness occurs for each individual. By including each device in analyses, a
potentially more accurate examination of associations between loneliness and diverse health and well-being
parameters can be tested. Therefore, it can provide holistic actionable insights for health providers. Overall,
multimodality is a promising approach for improving the performance, availability, and explainability of
loneliness detection methods, however, it increases the cost and user burden.

5. Conclusion

In this paper we proposed a method for detecting loneliness in a multimodal fully objective setup using
smart phones and commercially available wearable devices. We tested our method in a 2-month long study
and showed that we can detect loneliness in a continuous way. Our results showed that smartphones and
activity-related information during the day are among the most important features for most of the partic-
ipants. Leveraging multi-modal assessments and passive sensing to continuously and objectively monitor
human experiences can help reduce participant burden and support on-going efforts to design personalized
treatment and programming to support well-being. Assessing human experiences in real-time can allow us
to take a more preventative approach for health treatment rather than a reactive approach. The work con-
ducted in this study was restricted to a demographic of college students and limited to a 2 month period,
which therefore suggests further investigation for confirming the generalizability. We are planning to fur-
ther investigate device-specific feature extraction techniques and personalized modeling for our proposed
method.
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[36] M. Nissen, S. Slim, K. Jäger, M. Flaucher, H. Huebner, N. Danzberger, P. A. Fasching, M. W. Beckmann, S. Gradl, B. M.
Eskofier, et al., Heart rate measurement accuracy of fitbit charge 4 and samsung galaxy watch active2: Device evaluation study,
JMIR Formative Research 6 (3) (2022) e33635.

[37] N. C. Jacobson, B. Summers, S. Wilhelm, Digital biomarkers of social anxiety severity: digital phenotyping using passive
smartphone sensors, Journal of medical Internet research 22 (5) (2020) e16875.

[38] D. Ben-Zeev, E. A. Scherer, R. Wang, H. Xie, A. T. Campbell, Next-generation psychiatric assessment: Using smartphone sensors
to monitor behavior and mental health., Psychiatric rehabilitation journal 38 (3) (2015) 218.

[39] R. Wang, F. Chen, Z. Chen, T. Li, G. Harari, S. Tignor, X. Zhou, D. Ben-Zeev, A. T. Campbell, Studentlife: assessing mental
health, academic performance and behavioral trends of college students using smartphones, in: Proceedings of the 2014 ACM
international joint conference on pervasive and ubiquitous computing, 2014, pp. 3–14.

[40] S. C. Griffin, A. B. Williams, S. G. Ravyts, S. N. Mladen, B. D. Rybarczyk, Loneliness and sleep: A systematic review and
meta-analysis, Health psychology open 7 (1) (2020) 2055102920913235.

[41] M. A. Hom, C. Chu, M. L. Rogers, T. E. Joiner, A meta-analysis of the relationship between sleep problems and loneliness,
Clinical Psychological Science 8 (5) (2020) 799–824.

[42] I. Moura, A. Teles, D. Viana, J. Marques, L. Coutinho, F. Silva, Digital phenotyping of mental health using multimodal sensing
of multiple situations of interest: A systematic literature review, Journal of Biomedical Informatics (2022) 104278.

[43] G. Vashisht, R. Vashisht, A study on the tizen operating system, International Journal of Computer Trends and Technology 12 (1)
(2014) 14–15.

[44] D. Ferreira, V. Kostakos, A. K. Dey, Aware: mobile context instrumentation framework, Frontiers in ICT 2 (2015) 6.
[45] [link].

URL https://play.google.com/store/apps/details?id=org.healthscitech.thrive

[46] M. Feli, I. Azimi, A. Anzanpour, A. M. Rahmani, P. Liljeberg, An energy-efficient semi-supervised approach for on-device
photoplethysmogram signal quality assessment, Smart Health 28 (2023) 100390.

[47] Y. Wang, I. Azimi, K. Kazemi, A. M. Rahmani, P. Liljeberg, Ppg signal reconstruction using deep convolutional generative
adversarial network, in: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), IEEE, 2022, pp. 3387–3391.

[48] K. Kazemi, J. Laitala, I. Azimi, P. Liljeberg, A. M. Rahmani, Robust ppg peak detection using dilated convolutional neural
networks, Sensors 22 (16) (2022) 6054.

[49] J. M. Engels, P. Diehr, Imputation of missing longitudinal data: a comparison of methods, Journal of clinical epidemiology
56 (10) (2003) 968–976.

[50] L. Breiman, Random forests, Machine learning 45 (2001) 5–32.
[51] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, Advances in neural information processing

systems 30.
[52] E. Strumbelj, I. Kononenko, An efficient explanation of individual classifications using game theory, The Journal of Machine

Learning Research 11 (2010) 1–18.
[53] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal, S.-I. Lee, From local

explanations to global understanding with explainable ai for trees, Nature machine intelligence 2 (1) (2020) 56–67.
[54] M. A. Mehrabadi, I. Azimi, F. Sarhaddi, A. Axelin, H. Niela-Vilén, S. Myllyntausta, S. Stenholm, N. Dutt, P. Liljeberg, A. M.

Rahmani, et al., Sleep tracking of a commercially available smart ring and smartwatch against medical-grade actigraphy in
everyday settings: instrument validation study, JMIR mHealth and uHealth 8 (11) (2020) e20465.

[55] H. Niela-Vilen, I. Azimi, K. Suorsa, F. Sarhaddi, S. Stenholm, P. Liljeberg, A. M. Rahmani, A. Axelin, Comparison of oura
smart ring against actigraph accelerometer for measurement of physical activity and sedentary time in a free-living context, CIN:
Computers, Informatics, Nursing.

[56] S. Jafarlou, J. Lai, I. Azimi, Z. Mousavi, S. Labbaf, R. C. Jain, N. Dutt, J. L. Borelli, A. Rahmani, et al., Objective prediction
of next-day’s affect using multimodal physiological and behavioral data: Algorithm development and validation study, JMIR
Formative Research 7 (1) (2023) e39425.

[57] T. J. Holwerda, T. G. Van Tilburg, D. J. Deeg, N. Schutter, R. Van, J. Dekker, M. L. Stek, A. T. Beekman, R. A. Schoevers,
Impact of loneliness and depression on mortality: results from the longitudinal ageing study amsterdam, The British Journal of
Psychiatry 209 (2) (2016) 127–134.

[58] T. Matthews, A. Danese, A. M. Gregory, A. Caspi, T. E. Moffitt, L. Arseneault, Sleeping with one eye open: loneliness and sleep
quality in young adults, Psychological medicine 47 (12) (2017) 2177–2186.

[59] D. V. Jeste, E. E. Lee, S. Cacioppo, Battling the modern behavioral epidemic of loneliness: suggestions for research and inter-
ventions, JAMA psychiatry 77 (6) (2020) 553–554.

[60] D. L. Surkalim, M. Luo, R. Eres, K. Gebel, J. van Buskirk, A. Bauman, D. Ding, The prevalence of loneliness across 113
countries: systematic review and meta-analysis, bmj 376.

[61] D. Spruijt-Metz, W. Nilsen, Dynamic models of behavior for just-in-time adaptive interventions, IEEE Pervasive Computing

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2023.06.12.23291296doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.12.23291296
http://creativecommons.org/licenses/by/4.0/


13 (3) (2014) 13–17.
[62] E. Ben Simon, M. P. Walker, Sleep loss causes social withdrawal and loneliness, Nature communications 9 (1) (2018) 3146.
[63] K. H. Greenaway, E. K. Kalokerinos, L. A. Williams, Context is everything (in emotion research), Social and Personality Psy-

chology Compass 12 (6) (2018) e12393.
[64] I. Kim, H. Goh, N. Narziev, Y. Noh, U. Lee, Understanding user contexts and coping strategies for context-aware phone distrac-

tion management system design, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4 (4)
(2020) 1–33.

[65] A. Mehrotra, S. R. Müller, G. M. Harari, S. D. Gosling, C. Mascolo, M. Musolesi, P. J. Rentfrow, Understanding the role of
places and activities on mobile phone interaction and usage patterns, Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 1 (3) (2017) 1–22.

[66] B. Mesquita, M. Boiger, J. De Leersnyder, Doing emotions: The role of culture in everyday emotions, European Review of Social
Psychology 28 (1) (2017) 95–133.

[67] D. R. Williams, S. A. Mohammed, Discrimination and racial disparities in health: evidence and needed research, Journal of
behavioral medicine 32 (2009) 20–47.

[68] W. Elmenreich, An introduction to sensor fusion, Vienna University of Technology, Austria 502 (2002) 1–28.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2023.06.12.23291296doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.12.23291296
http://creativecommons.org/licenses/by/4.0/


Appendix A. Full List of Used Features

Table A.3: List of features extracted from smart ring

Category Feature

Activity

Average activity level during the whole day.
Number of kilocalories one spent in a day based on the amount of physical activity
The total number of kilocalories one consumed in a day
Every 5 minutes a character is shown to indicate the level of intensity of an activity.
How many minutes of high intensity activity was performed in a day.
Number of minutes where one is not doing anything in a day.
Number of minutes where one is doing low intensity activity in a day.
Number of minutes where one is doing medium intensity activity in a day.
The average amount of energy it costs to complete a task for each minute of the span
of one activity period.
Total number of minutes of when the user was not wearing the ring during the day
Total number of minutes spent sleeping during a day.
Number of steps taken during the day

Sleep Features

the amount of time spent awake during your sleep period
average beats per minute
percentage of sleep period spent asleep
heart rate at 5 minutes each sleep period
average heart rate during the sleep period
lowest heart rate during sleep period (resting heart rate)
The time it takes a person to fall asleep after turning the lights out
Percentage of sleep time when the user was moving
Measure of the beat-to-beat differences in heart rate
Measures the beat-to-beat differences in heart rate in the first five minutes of the sleep
period
The measure of the change in your body temperature while you sleep
The difference between your body’s core temperature and the temperature of your
sleeping environment
Represents the amount of time a person spends asleep during a given period of time
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Table A.4: List of features extracted from smart watch

ID Feature
HRV MeanNN The mean of the RR intervals.
HRV SDNN The standard deviation of the RR intervals.

HRV SDANN1 The standard deviation of average RR intervals extracted from 1-minute segments of time
series data

HRV SDNNI1 The mean of the standard deviations of RR intervals extracted from 1-minute segments of
time series data

HRV RMSSD The square root of the mean of the squared successive differences between adjacent RR in-
tervals.

HRV SDSD The standard deviation of the successive differences between RR intervals.
HRV CVNN The standard deviation of the RR intervals (SDNN) divided by the mean of the RR intervals

(MeanNN).
HRV CVSD The root mean square of successive differences (RMSSD) divided by the mean of the RR

intervals (MeanNN).
HRV MedianNNThe median of the RR intervals.
HRV MadNN The median absolute deviation of the RR intervals.
HRV MCVNN The median absolute deviation of the RR intervals (MadNN) divided by the median of the

RR intervals (MedianNN).
HRV IQRNN The interquartile range (IQR) of the RR intervals.
HRV PNN50 The proportion of RR intervals greater than 50ms, out of the total number of RR intervals.
HRV PNN20 The proportion of RR intervals greater than 20ms, out of the total number of RR intervals.

HRV HTI The HRV triangular index, measuring the total number of RR intervals divided by the height
of the RR intervals histogram.

HRV TINN The baseline width of the RR intervals distribution obtained by triangular interpolation, where
the error of least squares determines the triangle. It is an approximation of the RR interval
distribution.

HRV LF The spectral power of low frequencies (0.04 to 0.15 Hz).
HRV HF The spectral power of high frequencies (0.15 to 0.4 Hz).

HRV VHF The spectral power of very high frequencies ( 0.4 to .5 Hz).
HRV LFHF The ratio obtained by dividing the low frequency power by the high frequency power.
HRV LFn The normalized low frequency, obtained by dividing the low frequency power by the total

power.
HRV HFn The normalized high frequency, obtained by dividing the low frequency power by the total

power.
HRV LnHF The log transformed HF.
HRV SD1 Standard deviation perpendicular to the line of identity. It is an index of short-term RR

interval fluctuation
HRV SD2 Standard deviation along the identity line. Index of long-term HRV changes.

HRV SD1SD2 Ratio of SD1 to SD2. Describes the ratio of short term to long term variations in HRV.
HRV S Area of ellipse described by SD1 and SD2 (pi * SD1 * SD2)

HR Heart rate
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Table A.5: List of features extracted from smartphone

Category Feature

Call

Outgoing call duration
Income call counts
Outgoing call counts
Missedcall counts
Voicemail counts

Notification

Number of notifications from applications type: Productivity
Number of notifications from applications type: Photography
Number of notifications from applications type: Communication
Number of notifications from applications type: Lifestyle
Number of notifications from applications type: Social
Number of notifications from applications type: Shopping
Number of notifications from applications type: Health & Fitness
Number of notifications from applications type: Entertainment
Number of notifications from applications type: Music & Audio

Messages Number of received messages
Number of sent messagess

Screen

Number of screen off
Number of screen on
Number of screen locks
Number of screen unlocks

Location (GPS)

Variance of latitude
Variance of speed
Mean of speed
Number of places
Home duration
Outdoor duration
Mean of outdoor duration
Standard deviation of outdoor duration
Type of the place with longest duration other than home
Total travel distance

Battery Number of battery charger plugins
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