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2 

ABSTRACT  20 

Background. Current recommendations for the diagnosis of mpox rely on lesion-swabs as 21 

the gold-standard specimen type, even though many patients experience symptoms prior to 22 

lesion-onset. Alternative sample types, such as saliva, which enable earlier detection could 23 

bolster the mpox response by mitigating transmission and facilitating access to antiviral 24 

treatments. 25 

 26 

Methods. We evaluated five PCR assays and compared their detection of mpox DNA 27 

extracted from 30 saliva specimens collected in Spectrum SDNA-1000 tubes. We sequenced 28 

seven mpox-positive samples and assessed concordance with the primers and probes of the 29 

PCR assays. Following, we incorporated these PCR assays into a simplified, extraction-free 30 

protocol to evaluate its feasibility for testing raw (unsupplemented) saliva samples. To further 31 

explore the potential of this approach, we investigated the stability of mpox detection in raw 32 

saliva diluted 1:10 and 1:100 in mpox-negative saliva, after storage at 4°C, room temperature 33 

(~19°C), 30°C, and 40°C for 72 hours and through simulated shipping conditions.  34 

 35 

Results. Despite identifying three nucleotide substitutions in the CDC’s Monkeypox virus 36 

Generic Real-Time PCR Test’s primer sequences, we observed no difference in the mean Ct-37 

values generated between assays. We successfully incorporated each assay into our saliva-38 

based extraction-free PCR protocol. Detection in raw saliva following storage at 4°C, ~19°C, 39 

and 30°C remained relatively stable for 24-48 hours and following simulated shipping 40 

conditions.  41 

 42 

Conclusions. This pilot investigation supports a flexible, saliva-based, extraction-free PCR 43 

test as a promising approach for diagnosis, outbreak response or ongoing surveillance of 44 

mpox. With detection in raw saliva remaining stable for 24-48 hours and through simulated 45 

shipping temperatures, saliva-based sampling and simplified testing could reduce diagnostic 46 

costs, increase access to testing and address hurdles in low- and middle-income countries.  47 

 48 

Keywords: mpox, saliva, qPCR, molecular diagnostics  49 
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BACKGROUND 50 

Countries in Western and Central Africa have long dealt with outbreaks of mpox virus, with a 51 

likely rodent reservoir contributing to spillover [1]. Few outbreaks of mpox virus have occurred 52 

outside of Africa, and when they have, they have been largely self-limiting. However, in 2022, 53 

the virus spread globally, particularly in the sexual networks of men who have sex with men 54 

[2]. Much like the challenges seen with SARS-CoV-2, public health systems struggled as case 55 

counts rapidly grew, with testing bottlenecks and insufficient access to treatment and 56 

prophylaxis [2].  57 

 58 

Mpox infection typically presents with a viral prodrome followed by the characteristic “pox” 59 

lesions. During the 2022 outbreak, studies highlighted that cases were experiencing oral or 60 

mucosal lesions, with some reporting oropharyngeal symptoms first [2,3]. These reports 61 

corroborate historical data; a study from the Democratic Republic of Congo found that 29% of 62 

cases had mouth/throat lesions, with 78% of cases also reporting a sore throat, with blood 63 

and pharyngeal samples confirming infection earlier than lesion swabs [4].  64 

 65 

Through 2022, saliva emerged as a viable diagnostic specimen for mpox, demonstrating high 66 

sensitivity [5–9]. Notably, Allen-Blitz et al. found that testing saliva accurately identified 22 67 

cases, four of which did not have a rash and one had no symptoms at all [5]. Hernaez et al. 68 

found systemic symptoms and lesions associated with higher viral loads in saliva and isolated 69 

infectious virus from 22/33 saliva samples [8]. When followed over the course of the infection, 70 

mpox has been detected in saliva at lower qPCR cycle threshold (Ct) values than from skin 71 

lesions [6,7] and oral swab samples [9]. In a systematic review, saliva, anorectal and skin 72 

lesion samples had the highest viral loads, all greater than that of pharyngeal samples [10]. 73 

Moreover, viral loads peaked earliest in saliva, within four days of symptom onset [10], with 74 

Brosius et al. detecting DNA and replication-competent mpox virus up to four days before 75 

symptom onset [11]. While detection of mpox in saliva typically declines within 14 days of 76 

symptoms onset [10], mpox virus has been reported in saliva 76 days after diagnosis [12]. 77 

The diagnostic implications for this suggest that mpox virus can circulate systemically prior to 78 

lesions and in some cases following their resolution, which raises questions surrounding the 79 

potential for asymptomatic transmission and opportunities for improved screening measures, 80 

particularly of close-contacts.  81 

 82 
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Together with saliva being a CDC-recognized source of transmission [13], the growing body 83 

of literature underscores the potential of saliva as a specimen type for the detection of mpox 84 

virus – its advantages including its ease of self-collection and ability to detect infection prior to 85 

lesion onset. With these benefits supporting serial sample collection from exposed individuals, 86 

this could identify cases earlier than lesion development. Early detection facilitates faster 87 

access to antivirals, which may lessen the severity of disease and concomitantly, facilitates 88 

earlier isolation, thus aiding public health workers in halting transmission chains. Therefore, in 89 

this study, we evaluated the potential of a simplified PCR test for the detection of mpox virus 90 

in saliva, aiming to enhance outbreak response and sustainable surveillance efforts. 91 

 92 

 93 

METHODS 94 

Ethics statement 95 

This study was conducted with Institutional Review Board approval from Yale Human 96 

Research Protection Program (Protocol ID. 2000033293), which allowed for the use of 97 

remnant clinical samples and was considered as non-human subjects research. No personal 98 

identifiable information was permitted for use in this study. 99 

 100 

Samples 101 

We received 30 known mpox-positive saliva samples in Spectrum SDNA-1000 collection 102 

devices from FlowHealth (Culver City, CA). These collection devices contain patented 103 

preservative media to stabilize analytes. Additionally, we received five raw (unsupplemented) 104 

mpox-positive saliva samples from Neelyx Labs (Wood Dale, IL) that were collected from 105 

patients with positive lesion-swabs.  106 

 107 

PCR assay performance 108 

Using synthetic mpox virus DNA (ATCC VR-3270SD, ATCC Manassas, VA), we assessed the 109 

limit of detection (LOD) for five different PCR assays: the Logix Smart™ Mpox (2-Gene) RUO 110 

(Co-Diagnostics, Inc., Salt Lake City, UT), the Mirimus MPOX RT-PCR assay (Mirimus Labs, 111 

Brooklyn, NY), the assay targeting Clade II developed by Yu Li et al. [14], and the CDC 112 

assays consisting of targets for both mpox virus and non-variola orthopoxvirus [15] (Table 1). 113 

As the sequences for the primers and probes of the Logix Smart™ Mpox (2-Gene) RUO 114 

assay from Co-Diagnostics, Inc. are proprietary, they are not listed. Two target assays had 115 
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been recommended by the US Food and Drug Administration (FDA) and supported by assay 116 

developers in order to provide two, independent outputs to corroborate each other, and to 117 

make the assay more robust against future variants that could emerge over time.  118 

 119 

Triplicate tests were performed using two-fold dilution series of the synthetic DNA controls in 120 

water, ranging from 100 copies/µl to 1 copy/µl. Reaction mixes, including primer and probe 121 

concentrations, either followed the manufacturer’s instructions (Co-Diagnostics), the CDC 122 

guidance for the detection of non-variola orthopoxvirus (CDC and Clade II assays) [15], or as 123 

detailed in Supplementary Table 1 (Mirimus). Assays other than the Logix Smart™ Mpox (2-124 

Gene) RUO assay from Co-Diagnostics were run with the Luna® Universal One-Step RT-125 

qPCR Kit (New England Biolabs, MA). Thermocycler conditions for each assay are provided 126 

in Supplementary Table 2. For the Mirimus MPOX RT-PCR assay, the CDC Monkeypox 127 

virus Generic Real-Time PCR Test, and the CDC Non-variola Orthopoxvirus Real-Time PCR 128 

Test, samples were considered positive when Ct values <40. For the Logix SmartTM Mpox (2-129 

Gene) RUO assay and the assay targeting Clade II samples were considered positive when 130 

Ct values were <42. 131 

 132 

We then validated the five PCR assays on the 30 samples received from FlowHealth. In each 133 

assay, 5 µl of DNA template, extracted using the MagMAX™ Viral/Pathogen Nucleic Acid 134 

Isolation Kit (ThermoFisher Scientific, MA), was tested in a 20 µl reaction volume.  135 

 136 

 137 

Table 1. Gene targets, primers, and probe sequences of the mpox PCR assays 138 

evaluated 139 

Assay Supplier Gene Targets Component Sequence 

Logix Smart™ 

Mpox (2-Gene) 

RUO 

Co-Diagnostics, 

Inc. Salt Lake 

City, UT 

L6R (T3) 

F8L (T4) 

Forward 

Primer 

Proprietary 

Reverse 

Primer 

Proprietary 

Probe Proprietary 
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Mirimus MPOX 

RT-PCR Assay 

Mirimus Labs, 

Brooklyn, NY 

G2R (Generic) 

E9L 

Forward 

Primers 

5’-GGA AAA TGT AAA GAC AAC 

GAA TAC AG-3’ 

 

5’-TCA ACT GAA AAG GCC ATC 

TAT GA-3’ 

Reverse 

Primers 

5’-GCT ATC ACA TAA TCT GGA 

AGC GTA-3’ 

 

 

5’-GAG TAT AGA GCA CTA TTT 

CTA AAT CCC A-3’ 

Probes 5’-FAM-AAG CCG TAA TCT 

A<BHQ-1dT>GT TGT CTA TCG 

TGT CC-Spacer C6-3’  

 

5’-FAM-CCA TGC AAT A (T–

BHQ1) A CGT ACA AGA TAG 

TAG CCA AC-Phos-3’ 

Clade II RT-PCR 

Assay 

 

Yu Li et. Al (11) G2R (Clade II) Forward 

Primer 

5′-CAC ACC GTC TCT TCC ACA 

GA-3’ 

Reverse 

Primer 

5′-GAT ACA GGT TAA TTT CCA 

CAT CG-3’ 

Probe 5′ FAM-AAC CCG TCG TAA CCA 

GCA ATA CAT TT-3′ BHQ1 

CDC Monkeypox 

virus Generic Real-

Time PCR Test 

Centers for 

Disease Control 

and Prevention, 

USA 

G2R (Generic) Forward 

Primer 

5’-GGA AAA TGT AAA GAC AAC 

GAA TAC AG-3’ 

Reverse 

Primer 

5’-GCT ATC ACA TAA TCT GGA 

AGC GTA-3’ 

Probe 5’-FAM-AAG CCG TAA TCT 

A<BHQ-1dT>G TTG TCT ATC 
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GTG TCC-Spacer C6-3’  

CDC Non-variola 

Orthopoxvirus 

Generic Real-Time 

PCR Test 

Centers for 

Disease Control 

and Prevention, 

USA 

E9L Forward 

Primer 

5’-TCA ACT GAA AAG GCC ATC 

TAT GA-3’ 

Reverse 

Primer 

5’-GAG TAT AGA GCA CTA TTT 

CTA AAT CCC A-3’ 

Probe 5’-FAM-CCA TGC AAT A (T–

BHQ1) A CGT ACA AGA TAG 

TAG CCA AC-Phos-3’ 

 140 

Extraction-free workflows 141 

To explore the potential of streamlined, extraction-free PCR testing of saliva for the detection 142 

of mpox virus, we validated each of the three SalivaDirect workflows developed for the 143 

detection of SARS-CoV-2 [16] on three raw saliva samples from Neelyx Labs. Briefly, 144 

workflow one includes the addition of proteinase K followed by heat inactivation at 95°C for 5 145 

minutes, workflow two includes heat treatment at 95°C without addition of proteinase K, and 146 

workflow three includes heat pre-treatment at 95°C for 30 minutes, followed by addition of 147 

proteinase K, then heat inactivation at 95°C for 5 minutes. 148 

 149 

Stability of detection of mpox virus in raw, unsupplemented saliva 150 

Having demonstrated the stability of detection of other respiratory pathogens in raw saliva 151 

[17–19], we explored the stability of the detection of mpox virus DNA in the raw mpox-positive 152 

samples diluted 1:10 and 1:100 into mpox-negative saliva. Saliva lysates prepared from the 153 

1:10 dilutions using workflow one of the extraction-free protocol were tested with the Logix 154 

Smart™ Mpox (2-Gene) RUO assay and the lysates prepared from the 1:100 dilutions were 155 

tested with the Mirimus MPOX RT-PCR assay. Time zero values were adjusted based on this 156 

dilution factor, for which a dilution of 1:10 would yield approximately a +3 increase in Ct value. 157 

To test stability, we assessed the change in Ct values at 24, 48, and 72 hours of incubation at 158 

4°C, room temperature (~19°C), 30°C, and 40°C. Due to limited volume of raw saliva, we 159 

further assessed the stability of detection using the DNA extracted from a subset of the saliva 160 

samples in Spectrum SDNA-1000 collection devices, spiked into raw mpox-negative saliva at 161 

a ratio of 1:100, and incubated at room temperature for  up to 72 hours.  162 
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 163 

Additionally, we assessed the stability of mpox detection following incubation through a 164 

modification of the US FDA’s summer and winter shipping profile conditions, modeled after 165 

International Safe Transit Association (ISTA) 7D shipping standards. Due to limited sample 166 

volume, only three samples were run through the simulated shipping profiles, and all three 167 

samples were diluted 1:5 into mpox-negative saliva. 168 

 169 

Amplicon sequencing from saliva samples 170 

To assess concordance of the primers and probes of the assays, we followed the sequencing 171 

protocol developed by Chen et. al. [20], after performing DNA extraction on the 30 known-172 

positive samples collected into Spectrum SDNA-1000 tubes using the MagMAX™ 173 

Viral/Pathogen Nucleic Acid Isolation Kit (ThermoFisher Scientific, MA). After selecting 174 

specimens with Ct values <31 following PCR testing using the Logix Smart™ Mpox (2-Gene) 175 

RUO assay, we proceeded with sequencing seven saliva specimens using the Yale Center 176 

for Genomic Analysis’ Illumina MiSeq at a depth of 1.5 million reads, then followed the 177 

bioinformatics pipeline detailed by Chen et al. [20]. 178 

 179 

Next, we performed a reference-guided whole genome alignment using a reference sequence 180 

retrieved from the National Center for Biotechnology Information’s (NCBI) GenBank. We 181 

compared the nucleotide sequences of the primers and probes of the assays used in this 182 

study against the aligned sequences for concordance using Geneious Prime® v2023.1.1. We 183 

retrieved an additional 1,560 complete genomes from GenBank with collection dates from 184 

January 1st, 2022 through April 7th, 2023. The primers and probes of the assays were then 185 

compared across the new alignment which included a total of 1,484 sequences after 186 

sequence quality checks. Lineages were assigned using Nextcalde [21], according to Happi 187 

et al. [22]. 188 

 189 

Statistical methods 190 

Statistical analyses were performed using R v4.2.2 (2022-10-31) and data visualizations were 191 

produced using GraphPad Prism v9.4.1. We used a logistic regression model to see if there 192 

was a difference in detection as well as a one-way ANOVA to determine whether there was a 193 

difference in mean Ct values across assays. 194 

 195 
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To evaluate the impact of temperature over time, a linear model was used. An interaction 196 

term was used to evaluate the effect of time and temperature by sample (time*temperature). 197 

The ΔCt value represents the change in the Ct value from saliva under each condition 198 

(categorical). The reference group for time was zero, and the reference group for temperature 199 

was room temperature (~19°C). Samples where no mpox virus DNA was detected were set to 200 

Ct = 45.00. P values of less than 0.05 were considered significant.  201 

 202 

 203 

RESULTS 204 

PCR assay performance 205 

The limit of detection (LOD), determined using the synthetic mpox virus DNA (ATCC VR-206 

3270SD) was 3 copies/µl for the Mirimus MPOX RT-PCR assay and 1 copy/µl for both CDC 207 

assays. The Logix Smart™ Mpox (2-Gene) RUO assay did not detect the synthetic DNA used 208 

so the LOD could not be determined. When testing DNA extracted from saliva collected in 209 

Spectrum SDNA-1000 collection devices, all assays performed comparably at detection 210 

(p>0.05). Mean Ct values generated did not differ across the assays (p=0.59).  211 

 212 

Extraction-free workflows for testing saliva for the detection of mpox virus 213 

Detection of mpox virus in saliva was comparable across all three extraction-free workflows 214 

(Supplementary Figure 1). Due to limited sample size, it was not possible to statistically 215 

quantify the differences in performance of the workflows. 216 

 217 

Stability of detection of mpox virus in saliva 218 

The detection of mpox virus remained relatively stable in raw saliva for 24-48 hours, with 219 

degradation notable at 72 hours (Figure 1). As compared to time zero, we observed an 220 

increase of 2.14 Ct, 2.55 Ct, and 4.72 Ct, at 24, 48, and 72 hours, respectively for Co-221 

Diagnostic’s T3 target and an increase of 2.70 Ct, 3.05 Ct, and 4.99 Ct, respectively for the 222 

T4 target. When fitting the linear model with the interaction term, we found that at 40°C, 223 

temperature makes degradation worse over time. We observed similar results for the samples 224 

that were diluted 1:100 in negative saliva and tested with the Mirimus MPOX RT-PCR assay 225 

(see Supplementary Figure 2).  When testing the stability of detection of naked mpox DNA 226 

spiked directly into raw saliva at room temperature, as compared to time zero, we observed a 227 

mean increase of <2 Ct at 24 hours and 4.2 Ct at 72 hours (see Supplementary Table 4 for 228 
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data). 229 

 230 

Figure 1. Stability of mpox virus detection in raw (unsupplemented) saliva after prolonged 231 

storage at different temperatures. Mpox-positive saliva samples were diluted 1:10 into raw, mpox-232 

negative saliva. Prepared saliva lysates were tested by PCR using the Co-Diagnostics Logix Smart™ 233 

Mpox (2-Gene) RUO assay. The “T3” target cycle threshold (Ct) values are shown as solid lines, the 234 

“T4” target Ct values are shown as dotted lines. Results suggest that the detection of mpox virus 235 

remains relatively stable for approximately 24–48 hours across all storage conditions, with reduced 236 

stability in raw saliva at 40°C. While the low viral load in sample 5 resulted in its lack of detection at 24 237 

and 48 hours of incubation at 40°C, the T4 target was detected at 72 hours, likely due to stochastic 238 

fluctuations at such low levels. 239 

 240 

Detection of mpox virus in raw saliva also remained stable following the 56-hour incubation 241 

through temperatures and time periods simulating summer and winter shipping conditions 242 

(Figure 2), suggesting that saliva samples collected for testing for mpox may be sent through 243 

postal systems while maintaining sensitivity.  244 
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 245 

Figure 2. Detection of mpox virus in raw (unsupplemented) saliva remained stable after cycling 246 

through temperatures representing shipping conditions encountered in summer and winter. 247 

Three mpox-positive saliva samples were diluted 1:5 into raw mpox-negative saliva and (A) cycled 248 

through simulated summer and winter shipping profiles, recommended by the US Food and Drug 249 

Administration for the validation of remote sample collection. Following, saliva lysates were prepared 250 

following workflow one then tested by PCR using the Co-Diagnostics Logic Smart™ Mpox (2-Gene) 251 

RUO assay, CDC Monkeypox virus Generic Real-Time PCR assay, CDC Non-variola Orthopoxvirus 252 

Generic Real-Time PCR assay, and Mirimus MPOX RT-PCR assay. (B) Resulting cycle threshold (Ct) 253 
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values were compared to the initial sample testing (T=0) and demonstrated stable detection of mpox, 254 

following sample incubation. Panel A created with biorender.com. 255 

 256 

Amplicon sequencing from saliva samples 257 

We sequenced whole mpox virus genomes from ten saliva samples according to the 258 

amplicon-based sequencing protocol. We were able to sequence over 95% of the genome 259 

from seven of the ten samples (see Supplementary Table 3; GenBank Accession Numbers 260 

PP977060-PP977067). All of the samples sequenced clustered within clade IIb, falling within 261 

lineage B1. Three of the sequences were identified in sub lineages B1.2.1, B.1.4 and B.1.17. 262 

 263 

After aligning the seven consensus sequences to the reference genome “NC_063383”, we 264 

visually examined the alignment of the forward primers, reverse primers, and probes across 265 

the different assays. We found two different mismatches with the CDC’s Monkeypox virus 266 

Generic RT-PCR Assay. The sequences had a single nucleotide substitution in the forward 267 

and reverse primers. 268 

 269 

Importantly, the reference sequence collected in Nigeria in 2018, only had a mismatch in the 270 

forward primer; there were no nucleotide substitutions in the reverse primer or the probe. All 271 

primers and probes of the other assays were concordant with the generated sequence as well 272 

as the reference sequence. The discordant sequences and the primers/probes can be seen in 273 

Table 3. Furthermore, alignment with genomes retrieved from Genbank, confirmed that 274 

indeed the primers for the CDC’s Monkeypox virus Generic Real-Time PCR Test had several 275 

mismatches across the 1,484 genomes. Neither the Clade IIa Assay nor the CDC’s Non-276 

variola Orthopoxvirus Generic Real-Time PCR Test primer and probe sets were affected.  277 

 278 

These findings mostly agree with the results reported by Wu et al. [23]. In our study, 100% of 279 

the 1,484 sequences had the A6G substitution in the forward primer, while 99.5% (n=1,476) 280 

sequences included in our alignment had the G17A substitution in the reverse primer. 281 

Additionally, we observed 3 sequences with a G16A substitution in the reverse primer – all of 282 

which were from the United States.  283 

 284 

Table 3. CDC Monkeypox virus Generic Real-Time PCR Test primer concordance with 285 

1,483 sequences aligned to reference sequence ‘NC_063383’ 286 
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Nucleotide Type Nucleotide Sequence Number Observed 

Mpox Sequence 5’-GGA AAG TGT AAA GAC AAC GAA TAC AG-3’ 

1,484 (100%) 

Forward Primer 5’-GGA AAA TGT AAA GAC AAC GAA TAC AG-3’ 

   

Mpox Sequence 5’-GCT ATC ACA TAA TCT GAA AGC GTA-3’ 

1,476 (99.5%) 

Reverse Primer 5’-GCT ATC ACA TAA TCT GGA AGC GTA-3’ 

   

Mpox Sequence 5’-GCT ATC ACA TAA TCT AAA AGC GTA-3’ 

3 (0.2%) 

Reverse Primer 5’-GCT ATC ACA TAA TCT GGA AGC GTA-3’ 

*Nucleotides underlined and bolded represent substitutions in the mpox sequence pulled from NCBI’s 287 

Nucleotide database and the corresponding mismatch in the PCR primer.  288 

 289 

 290 

DISCUSSION 291 

Numerous studies since the 2022 outbreak of mpox have investigated the detection of mpox 292 

virus in saliva [5–9,12,24], reporting its high concordance with lesion swabs [8,24] and higher 293 

viral load (as approximated by Ct values) in saliva in comparison to other respiratory samples 294 

[9], and sometimes also lesion swabs [6,7]. With a geographically diverse network of clinical 295 

laboratories connected through the SalivaDirect FDA Emergency Use Authorization PCR test 296 

[25], we recognized its potential to greatly bolster the response to the US mpox outbreak. 297 

Leveraging previously published and commercially available assays to support the rapid 298 

adaptation of our streamlined PCR test for SARS-CoV-2 [26], we confirmed the comparable 299 

performance of five different PCR assays and incorporated them into our extraction-free 300 

protocol. Extraction-free workflows further reduce costs by minimizing laboratory overhead for 301 

sample processing, requiring less equipment and reagents, while facilitating timely results 302 

[9,26–28]. In countries where supply-chain infrastructure for test kit materials, reagents, and 303 

laboratory equipment may be strained, having a flexible platform may reduce barriers to 304 

testing while offering flexibility for fitting into existing laboratory regulations and/or processes.  305 
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 306 

To further support access to testing, we considered it essential to evaluate the stability of 307 

mpox detection in raw (unsupplemented) saliva to facilitate cold-chain-free options for both 308 

low-cost and remote and/or discrete sample collection, which holds potential as a means for 309 

frequent, follow-up testing in exposed individuals, before the appearance of lesions. 310 

Expanding upon the findings of Yinda et al., demonstrating stability of mpox virus spiked into 311 

saliva over the course of 20 days [29], our study demonstrates the stable detection of mpox 312 

virus DNA in raw saliva for 24-48 hours and under simulated seasonal shipping conditions. 313 

This suggests that, similar to recommendations made for variola virus in 1957 [30], samples 314 

transported in this window may not require stabilizing media, minimizing test-kit costs as only 315 

a collection tube is necessary; cold-chain transport of specimens is only necessary in settings 316 

where temperatures near 40°C. It is important to note that as the samples were diluted into 317 

mpox-negative saliva, the composition of the pooled negative saliva may have disrupted the 318 

integrity of the original sample, thereby negatively-impacting the stability of mpox virus DNA. 319 

Despite this, these findings support a possible low-cost solution for at-home sample collection 320 

which can provide a more discrete option for groups facing stigma.  321 

 322 

Genomic sequencing of pathogens contributes to the understanding and monitoring of 323 

outbreaks and transmission chains. The ability to sequence from saliva further negates the 324 

requirement of swab-based samples which are typically considered necessary for this. 325 

Importantly, the multiple substitutions that we observed in the primers of the CDC’s assay 326 

highlight the ongoing need for routine genomic surveillance of emerging pathogens to ensure 327 

adequate diagnostic performance in the face of virus evolution. The mismatches identified by 328 

us and different mismatches reported by others [23,31] reaffirms the necessity of multiplexed 329 

assays and mpox-specific targets for reliable diagnosis. 330 

 331 

We recognize that the small sample size remains a limitation of our preliminary investigation 332 

and that it emphasizes the need for prospective collection of multiple sample types during 333 

outbreaks of emerging pathogens to identify best diagnostic practices. While ≤5 clinical 334 

samples have been tested in this work, diluting these in negative saliva increased the number 335 
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of contrived samples that we could validate across potential storage conditions and across 336 

different workflows and PCR assays. Consistent results across these settings is promising 337 

and as such, despite these limitations, the results of this study contribute to the expanding 338 

body of evidence that supports both extraction-free [9,27] and saliva-based methods for the 339 

detection of mpox virus.  340 

 341 

Saliva is increasingly being accepted as a clinical sample type across the globe [32,33] and 342 

should be considered as a potential tool to aid in the ongoing global need for the timely 343 

diagnosis and surveillance of pathogens such as mpox virus. Our open-source PCR test 344 

demonstrates how low-cost options could be utilized to support this, particularly when 345 

implemented within a testing framework that can support a rapid and flexible outbreak 346 

response. However, further research is needed to assess the temporal dynamics of mpox 347 

virus in saliva, which will elucidate the window at which we can expect patients to become 348 

positive and/or infectious through saliva. As such, questions pertaining to asymptomatic 349 

transmission/prolonged viral shedding also remain and identifying these cases is important for 350 

halting ongoing human-to-human transmission. Combined, this understanding can aid us in 351 

prediction of when disease may be at its worst based on viral load. Therefore, we echo 352 

Coppens et al. for studies that prospectively screen close-contacts of confirmed cases to 353 

answer these questions [24]. The ongoing need for diagnostics development and sustainable 354 

surveillance methods is accentuated by case reports of reinfection, break-through infection 355 

following vaccination, and infection of those who have both prior infection and full vaccination 356 

[34–36].  357 

 358 
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