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 56 

Abstract. Wastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the 57 

past three years due to its ability to provide a comprehensive measurement of disease 58 

prevalence independent of clinical testing. The development and simultaneous application of the59 

field blurred the boundary between measuring biomarkers for research activities and for pursuit 60 

of public health goals, both areas with well-established ethical frameworks. Currently, WBT 61 

practitioners do not employ a standardized ethical review process (or associated data 62 

management safeguards), introducing the potential for adverse outcomes for WBT 63 

professionals and community members. To address this deficiency, an interdisciplinary group 64 

developed a framework for a structured ethical review of WBT. The workshop employed a 65 

consensus approach to create this framework as a set of 11-questions derived from primarily 66 

public health guidance because of the common exemption of wastewater samples to human 67 

subject research considerations. This study retrospectively applied the set of questions to peer-68 

reviewed published reports on SARS-CoV-2 monitoring campaigns covering the emergent 69 

phase of the pandemic from March 2020 to February 2022 (n=53). Overall, 43% of the 70 

responses to the questions were unable to be assessed because of lack of reported information.71 
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It is therefore hypothesized that a systematic framework would at a minimum improve the 72 

communication of key ethical considerations for the application of WBT. Consistent application 73 

of a standardized ethical review will also assist in developing an engaged practice of critically 74 

applying and updating approaches and techniques to reflect the concerns held by both those 75 

practicing and being monitored by WBT supported campaigns.  76 

 77 

Synopsis. Development of a structured ethical review facilitates retrospective analysis of 78 

published studies and drafted scenarios in the context of wastewater-based testing. 79 

 80 

Introduction: The Need for a Structured Ethical Review. Wastewater-based testing (WBT) 81 

describes the sampling of wastewater to support initiatives such as public health, scientific 82 

research, law enforcement, and corporate surveillance. This flexibility of WBT originates from 83 

the ability to collect wastewater samples in near real-time, at the population-level, and for a 84 

variety of analytical targets, including pathogens that cause infectious diseases. Discussing the 85 

technique of WBT often progresses rapidly to describing an application rather than exploring the 86 

concept in application-free terms1. For example, WBT has been used successfully to monitor 87 

enteric and respiratory pathogens, such as poliovirus and coronaviruses2,3. Integrating WBT into 88 

public health surveillance is potentially less invasive, more efficient, and more inclusive than 89 

clinical testing. Inclusivity is an inherent property of the aggregated nature of wastewater, which 90 

contains target infection bioindicators (e.g., viral RNA) excreted by community members into a 91 

municipal sewer network and can capture symptomatic, asymptomatic, and pre-symptomatic 92 

carriers of infectious pathogens regardless of an individual’s access to healthcare4. WBT can 93 

also provide an early warning of pathogen presence within a given community, as well as detect 94 

and track circulating and novel genomic variants (e.g., for SARS-CoV-2)5–7. As such, the use of 95 
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WBT presents as a reliable, cost-effective, objective, and rapid public health tool that 96 

complements clinical testing methods that are increasingly being adopted8,9. 97 

 98 

This application-specific consideration of WBT may too easily borrow the well-established 99 

public health ethical and legal frameworks to the analysis of a flexible tool. For example, 100 

academic researchers who used WBT to monitor pathogens were exempt from, or did not seek, 101 

standardized research ethics oversight or review because of the composite nature of the 102 

collected wastewater10,11. Whereas public health departments rapidly incorporated wastewater 103 

sampling into the surveillance of SARS-CoV-212–14, WBT additionally supported the research 104 

activities of academics and services offered by commercial biotechnology firms. This 105 

constellation of state, private, and academic entities is common within the operation and 106 

development of public health surveillance, with all entities performing clinical sampling. 107 

However, not all sampling translates into surveillance in support of public health, and each entity 108 

has separate legal and ethical frameworks15. Therefore, even when considering the ethics of a 109 

specific application of the tool, it is important to distinguish between WBT used for public health 110 

surveillance, which follows well-established professional practice and WHO guidelines16, and 111 

with WBT used for non-public health purposes (e.g., scientific research, law enforcement) or by 112 

non-public health entities (e.g., private entities)17. This distinction between testing and 113 

surveillance supports the usage of WBT throughout the text rather than the more often reported 114 

wastewater-based surveillance (WBS). “Surveillance” is a term of art, and in the context of 115 

public health, describes a method of learning about health, which is different from research or 116 

other applications of WBT. “Testing” is the technology or tool that can be used for a number of 117 

processes, including research, public health surveillance, or other types of monitoring. 118 

 119 
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When considering WBT in a more application-free context, concerns arise around data 120 

utilization and civic governance1,15. Whether WBT is used for research, private monitoring, or 121 

public health surveillance, overarching ethical questions have yet to be fully explored. WBT 122 

might negatively affect privacy expectations and civil liberties at the community or even 123 

individual level18–20. Cases in which wastewater-derived results prompt a targeted response in a 124 

specific community could stigmatize or might, in principle, violate the privacy of the sampled 125 

community, deflating the unique feature of conducting WBT; anonymity21,22. Conversely, the 126 

population at-large has a right to benefit from publicly-funded advanced surveillance 127 

technologies and the right to information about particular outbreaks so that individuals can make 128 

informed decisions about their health15, which ultimately requires broad and transparent 129 

communication of WBT results23. Generally, the usage of WBT to monitor for diseases, toxins, 130 

and terrorists threats receive broad public support across the United States 24. Accordingly, 131 

special attention should be paid to contextualize WBT in terms of culture and community values, 132 

the intended result of the testing efforts, and the individuals connected to the sewer conveyance 133 

network, such that results can be communicated quickly, effectively, equitably, and ethically to 134 

maintain community buy-in25,26. A similar point is made by those who advocate for community-135 

based participatory research whenever academic or government investigators seek to learn 136 

more about groups of people in a particular or specific region or place. Notably, with specific 137 

sampling place primarily occurring in fixed, publicly-owned or operated infrastructure, unique 138 

considerations arise in comparison to other public health measures surrounding the civic 139 

governance of WBT, necessitating development of a comprehensive framework that captures 140 

this multi-profession collaboration15. 141 

 142 
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An ethical framework applied to WBT might limit challenges that arise in contexts 143 

characterized by persistent injustice or violations of human rights. In addition, clearly defined 144 

ethical practices and processes can reduce or prevent community harm from and resistance to 145 

WBT when used for public health surveillance or scientific research purposes. The importance 146 

of clear ethical guidelines was recognized by the WHO’s general framework for ethical public 147 

health surveillance systems16. Thus, WBT practitioners, which include a mix of scientific experts 148 

from highly diverse disciplines and public health authorities, are increasingly called to translate 149 

this general framework into practice27, to both protect the public and ensure a high level of 150 

support from the community with broad social acceptance and trust28–30. However, as 151 

demonstrated by lack of independent review and oversight of WBT for SARS-CoV-2 monitoring, 152 

translating these guidelines into professional practice remains unstandardized and in an early 153 

phase of adoption due to those initially conducting WBT having expertise and training outside of 154 

public health practice. Additionally, as WBT continues to expand into further applications that 155 

transcend multiple disciplines23, such as opioid detection, monitoring campaigns should be 156 

reassessed for each new application, community, and location31. Therefore, interpreting the 157 

existing public health frameworks set forth by the WHO and others15,30,32–34 and translating them 158 

into a concrete, actionable, and specific framework of questions, can assist wastewater 159 

practitioners, public health officials, policy makers, utilities, and the public in interpreting the 160 

suitability of WBT.  161 

 162 

This question-oriented framework can also encourage new entities engaging in the field 163 

to rapidly adopt best practices and can provide the tools to identify those applications that fail to 164 

align. Critically, the framework is provided as a set of questions to interrogate an application, not 165 

a set of finalized guidelines. This framework identifies concerns concretely and rapidly to enable 166 
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interdisciplinary teams to engage well-established professional practices in collaboration. 167 

Additionally, this framework highlights areas that require further review rather than providing a 168 

strict protocol given that ethical issues are often easily raised, yet require contextualized 169 

analysis and continued engagement by all involved to address successfully. Finally, this 170 

standardized set of questions might also promote an ethical research culture, if adopted and 171 

upheld as an ongoing practice, and support the reputation and trust of the research field, 172 

ensuring equitable and sustainable foundations for WBT systems and community 173 

engagement35. For these reasons, we present a structured ethical review framework designed 174 

as a worksheet to assist in ensuring the successful, long-term, and wide-ranging implementation 175 

of WBT. 176 

 177 

Methods: Design of a Structured Ethical Review. Participants contributing to the 178 

development of the structured ethical review were recruited through a public announcement at 179 

the Water Environment Federation’s Public Health and Water Conference & Wastewater 180 

Disease Surveillance Summit on March 23, 2022, as well as active social media 181 

announcements and word-of-mouth referrals. From this effort, 29 active participants were 182 

involved in the formulation of this study. Participants included representatives from a range of 183 

WBT activities, including academic researchers, public health and wastewater practitioners, and 184 

private entities working in WBT. The workshops drew upon two previously published articles 185 

describing ethical considerations of surveillance to develop the framework for a structured 186 

ethical review of the existing COVID-19 WBT literature, with the concepts of structured reviews 187 

being well-established in the creation of Institutional Review Board (IRB) processes36. The first 188 

selected article, written by Gary Marx (1997), emphasizes what the author calls “the new 189 

surveillance”37. Marx (1997) poses 29 questions in three categories (the means, the data 190 
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collection context, and uses) to assess the ethics of surveillance, which the workshop then 191 

adapted to better suit WBT. The second article, by Hrudey et al. (2021), explicitly focused on 192 

ethical guidelines through 17 questions applied to SARS-CoV-2 wastewater surveillance based 193 

on a comprehensive literature review and previous WHO recommendations32. Hrudey et al. 194 

concluded the existing public health ethics literature fails to provide robust guidance for WBT 195 

practitioners. 196 

 197 

To apply and add to these previous works, the participants developed the structured 198 

ethical review framework using a workshop approach. Prior to the workshop, each participant 199 

reviewed these two articles on ethics of public health surveillance32,37 and drafted concise 200 

descriptions for three levels of ethical sufficiency for each of the categories posed by Marx 201 

(1997) and Hrudey et al. (2021) applied to WBT activities. The three levels of ethical sufficiency 202 

were as follows: 0 - minimal review required (no ethical concerns); 1 - review suggested (limited 203 

ethical concerns); and 2 - review strongly suggested (broad ethical concerns). These levels 204 

were selected to prioritize ethical reviews and communication efforts of those designing and 205 

operating surveillance programs. Thereafter, each participant independently filled their brief 206 

written descriptions within a shared document for each previously identified category of ethical 207 

consideration identified in the two articles. During the virtual workshop, participants reviewed the 208 

responses and identified the guidelines and questions that warranted further discussion; the 209 

output thus identified consensus descriptions of ethical sufficiency rankings. After the workshop, 210 

each participant adopted a category and prepared a final draft description for the three levels of 211 

ethical sufficiency into a table (Supplemental Table 1). All co-authors then reviewed the table, 212 

and revisions were made until a consensus final draft was reached, with duplicate categories 213 

merged, but all others preserved from Marx (1997) and Hrudey et al. (2021). The final, fully 214 
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consolidated framework comprises 37 categories of ethical consideration for WBT, with three 215 

ordinal ranking descriptions within each category (Supplemental Table 1). These categories 216 

broadly represent key considerations in community engagement, equality, establishment of a 217 

new precedent, and data integrity. With the large size of the framework, the set was further 218 

refined, with the participants being asked to list ten essential questions to include. In total, 16 219 

participants provided a score, and those categories receiving over 9 votes or higher were 220 

included in the final framework (Table 1). In essence, the developed structured ethical review 221 

provides a set of questions that enables users to provide a score (higher the score the greater 222 

the ethical concern) when considering a WBT application.  223 

 224 

Inclusion Criteria for Published Studies Considered within the Application of the 225 

Structured Ethical Review. The initial collection of studies was obtained by searching for 226 

articles containing the keyword phrases "SARS-CoV-2" and "wastewater," yielding a total of 227 

5,632 articles as of February 2022. To focus on sampling strategies that potentially challenge 228 

individuals' assumptions of privacy, further filtering was performed to include studies reporting 229 

on near-building and/or within-sewer monitoring. This involved incorporating additional modifiers 230 

such as "campus," "nursing home not campus," "prison not campus," "hospital and wastewater-231 

based and building not campus," and "neighborhood not campus." Consequently, the modified 232 

search categories returned 1204, 240, 119, 201, and 313 articles, respectively. Studies were 233 

excluded if they did not mention monitoring within a sewer collection system at the 234 

neighborhood or building-level scale or if they were not yet published as peer-reviewed articles. 235 

This strategy was used to narrow the database into a representative and manageable sub-236 

selection of WBT related literature covering the early phase of the pandemic as a case study. 237 

The goal here was to emphasize the utility of the ethical framework applied to a coherent set of 238 
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WBT applications rather than defining the best practices for a given application. Therefore, this 239 

structured review approach could be applied in the future to private residential settings38 or at 240 

wastewater treatment plant scales39, but both areas were excluded from current consideration. 241 

A note on private settings: If one accepts the utility of a robust ethics analysis to improve 242 

practice and foster trustworthiness, it should not matter if an educational institution, for instance, 243 

is public or private. The analysis of human biological material and data will always raise ethical 244 

issues, and it is unacceptable to suggest that private institutions ought adhere to different 245 

scientific or ethical standards. 246 

 247 

After applying these filters, 25 near-building and 21 within-sewer SARS-CoV-2 WBT studies 248 

were identified for review. The inclusion of 7 additional articles published after the initial search 249 

that were previously in preprint status increased the number of studies included in this 250 

structured ethical review to 53 (56 publications were represented by these studies, with 3 having 251 

two publications describing the same monitoring campaign and were considered in concert). 252 

While published research articles inherently connote research use of WBT, the selected articles 253 

had potential direct applications to public health, facilitating their use in the evaluation of the 254 

structured ethical review framework. 255 

 256 

Papers were divided across participants for review, with overlapping assignments provided. 257 

Overall, 79 reviews were completed by answering all 37 questions based on the reviewers’ 258 

analysis of the presented text alone. Conflicting assignments were evaluated, but were left 259 

unchanged, resulting in an average score for those papers. The reviews were then consolidated 260 

into a summary data frame for broad comparisons between the responses to individual 261 

questions262 
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Table 1. Consolidated framework for a structured ethical review to assess potential adverse outcomes of WBT efforts. Specific categories 

originated from either Marx 1997 [*] or Hrudey et al., 2021 [†]. The top 11 categories based on the internal voting are presented here, the full framework 

is presented as Supplemental Table 1, available at DOI:10.17632/2xkfkcsxx8.1. 

Category 0 - Minimal Review Required 1 - Review Suggested 2 - Review Strongly Suggested 
Legitimacy: Are surveillance 
data collected only for a 
legitimate public health 
purpose?† 

Data support public health agents for 
public health measures 

Data support non-public health agents for 
public health measures 

Data support non-public health agents 
(or public health agents acting outside 
of public health) for non-public health 

purposes 

Unfair Disadvantage: Is the 
information used in such a 
way as to cause unwarranted 
harm or disadvantage to its 
subject?* 

WBT is implemented with clear scope, 
oversight, and decision-making procedures 

including procedures for response to 
wastewater data with policies for follow-up 

clinical testing applicable to full 
communities 

Unintentionally subjecting specific areas to 
the possibility of a disruptive intervention 

(lockdowns, quarantines, isolations of 
entire areas without any process for 

identifying and isolating relevant 
individuals; mandatory testing of 

individuals in response to wastewater data) 
whereas excluding others from the same 

level of surveillance scrutiny and response 

Intentionally subjecting specific areas to 
the possibility of a disruptive 

intervention (lockdowns, quarantines, 
isolations of entire areas without any 
process for identifying and isolating 

relevant individuals; mandatory testing 
of individuals in response to wastewater 

data) whereas excluding others from 
the same level of surveillance scrutiny 

and response 
Data Stewardship and 
Protection: Is the data 
properly maintained to protect 
those monitored?* 

Data managed per requirements of 
community monitored 

Data managed per requirements of funding 
agency Data management plan absent 

Creation of Unwanted 
Precedents: Is it likely to 
create precedents that will 
lead to its application in 
undesirable ways?* 

Analysis for individual identification 
prohibited; explorations outside of agreed-

upon community scope is explicitly 
prohibited 

No positional statement regarding 
individual identification; No discussion of 

future research is discussed 

Explicitly for identification of individuals 
or otherwise unethical applications 

Awareness: Are individuals 
informed they are being 
monitored and why?* 

Representative(s) of the monitoring 
campaign are in a cycle of continued 
community outreach and engagement 

during WBT and over the clearly defined 
reporting period providing contextualization 

of the scope and intent to minimize 
misrepresentation or misuse; those 

monitoring capture the questions from the 
community rather than the wastewater 

utility operators 

Duration, scope, and intent is 
communicated and disseminated in a 

passive manner without contextualization 
or engagement OR communicated to a 

single representative of the community; the 
wastewater utility operators respond to 
increased inquiries but have access to 

those collecting the data to direct inquiries 

No direct communication of the 
duration, scope, and intent to the 

monitored community members; the 
burden of communication falls solely on 

the third-party wastewater utility 
operators rather than the data collectors 
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External Data Sharing: Is 
the public health surveillance 
data shared with other public 
health agencies when 
addressing a public health 
need?† 

Collected WBT-supported public health 
data is shared freely with/between public 

health agencies when a public health need 
presents or persists 

Collected WBT-supported public health 
data only partially shared with/between 
public health agencies when a public 

health need presents or persists 

No data is shared when a public health 
need presents or persists 

Public Decision-Making: 
Was the decision to use WBT 
in surveillance arrived at 
through some public 
discussion and decision-
making process?* 

Surveillance program was designed in a 
public manner (e.g., review by elected 

officials and public through town halls for 
initial implementation and continued 

operation) with a good-faith effort to reach 
both those receptive or resistant to the 

objectives of public health 

Program does not receive formal public 
authorization but is broadly supported by 
the public (as informed by representative 

public surveys) 

Program does not receive formal public 
authorization and is not supported by 

the public (as informed by 
representative public surveys) 

Right of Inspection: Are 
people aware of the findings 
of WBT supported 
surveillance and how they 
were created?* 

Representative(s) of the monitoring 
campaign are in a cycle of continued 
community outreach and engagement 

during the sample collection and reporting 
period providing contextualization of the 

collected data to minimize 
misrepresentation or misuse (e.g., 

updating an annotated and agreed-upon 
internet-accessible dashboard; timely and 

routine public town-halls or open seminars; 
direct mailing to surveyed individuals) 

The collected data is communicated and 
disseminated in a passive manner without 

contextualization or engagement OR 
communicated to a single representative of 

the community 

No direct communication of the 
collected data to the monitored 

community members 

Equality-inequality: Is WBT 
broadly applied to all or only 
those able to resist?* 

Entire community is monitored (e.g., 
treatment plant; jail sampling that monitors 
the effluent of the whole jail including staff 

and inmates) 

Representative coverage is achieved (e.g., 
manhole sampling, but ensuring that 

demographics of surveilled communities 
are representative of the entire city; jail 

sampling that has sites for staff and 
inmates separately) 

Only protected-class communities are 
monitored (e.g., manhole sampling that 
surveils only low-GDP per capita areas; 
jail sampling that only surveils inmates) 

Community Values: Are the 
values and concerns of the 
communities taken into 
account in planning, 
implementing, and using data 
from surveillance?† 

Representative of the monitoring campaign 
are in a cycle of continued community 
outreach and engagement during the 
planning and implementing period to 

address the concerns and support the 
values of the community 

Representative of the monitoring campaign 
are engaged during the planning period 

only to address the concerns and support 
the values of the community 

No direct involvement of the monitored 
community members 

Consequence of Inaction: 
What are the consequences 
of taking no surveillance 
action?* 

Mortality, morbidity, or other adverse 
effects is imposed on community by lack of 

surveillance 

The surveillance data does not minimize 
adverse effects to the community 

The community benefits by not being 
surveyed 
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Results and Discussion: 266 

Reconsidering SARS-CoV-2: Application of the structured ethical review. The main 267 

goal of this study was to develop a framework to assist in identifying gaps in ethical 268 

considerations of WBT as a tool. This was accomplished by first developing and then 269 

demonstrating the framework by applying the structured ethical review framework to previously 270 

reported SARS-CoV-2 WBT studies (Figure 1). Application of the structured ethical review 271 

framework highlighted that throughout the published articles reviewed in this work, gaps in 272 

information were observed in both the manuscript and supplemental information (1247 of 2923 273 

answers provided (43%) indicated “Not Recorded in the Main Text”). This absence may be the 274 

result of the inclusion of studies predominantly reported by non-public health agents (e.g., 275 

academics, researchers). For example, when compared to clinical research in which detailed 276 

informed consent (i.e., voluntariness, information disclosure, decision-making capacity, and 277 

communication of results) is required40, few WBT studies articulated whether consent was 278 

obtained from the studied community, whether those results were communicated back to the 279 

community, and/or whether those results were used with clear public health objectives and 280 

outcomes. It is important to note that WBT can be applied as a public health surveillance tool 281 

that would then operate within existing legal and regulatory frameworks. Within these specific 282 

applications, consent for the collection and testing of wastewater samples may not be required 283 

from individuals when a pooled sample is being analyzed, as this is considered to be part of 284 

routine public health surveillance41. However, there may be legal and ethical considerations 285 

around the use of the WBT data collected, for example, in research applications, and these 286 

should be addressed by relevant authorities and other frameworks. Broadly, the absence of 287 

reported information for evaluating community engagement and data safeguards reflects the 288 

current lack of a standardized ethical framework for WBT campaigns.  289 
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 290 

This exemption from reporting and lack of oversight may also be due to a lack of clarity 291 

for the motivation of the WBT study. For example, these articles could have been originally 292 

motivated by a research interest with results that prompted a public health action. Conversely, 293 

authors may have retrospectively published results from a public health surveillance system. In 294 

the former case, authors may have assumed the research study was exempted from IRB 295 

approval given the composite nature of the sample, which is believed to prevent the ability to 296 

identify specific individuals in a given sewer catchment42. In certain cases, authors referenced 297 

IRB approvals for utilizing individual case data43, but in most cases, WBT sample data itself was 298 

determined to be exempt from IRB oversight. In select cases, ambiguity surrounded whether the 299 

IRBs themselves arrived at these determinations or the researchers, a key consideration given 300 

that these oversight bodies are responsible for conforming to federal regulations.  301 

 302 

However, the data collected from WBT were sometimes used for direct public health 303 

interventions, a usage of WBT that aligns with public health surveillance and that is distinct from 304 

research activities governed by IRB protocols. For example, other studies (mainly dormitory and 305 

hospital surveys) reported on positive SARS-CoV-2 detection in wastewater, triggering 306 

mandatory clinical or individualized testing from which infected individuals were identified 43–46 . 307 

In contrast, WBT of a cargo ship specifically explored border protection against infected 308 

seafarers as a potential public health intervention47, a more intervention-driven approach than 309 

that described as a complementary monitoring tool for airplanes48. Ultimately, the study did not 310 

support WBT in the cargo ship application, notably because individualized testing was already 311 

deployed. This highlights a key finding: the motivation for the use of WBT during the early phase 312 

of the pandemic was blurred between research and public health surveillance.  313 
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This dual nature of early monitoring campaigns complicates their interpretation. For 314 

example, if WBT was conducted as part of a public health surveillance effort, informing 315 

subsequent action where individuals were identified through individualized testing regimes (e.g., 316 

isolation), then IRB oversight would be unnecessary as this use of WBT would fall under ethical 317 

guidelines for public health surveillance. This determination that IRB is not required rests on 318 

WBT being used as a tool for public health surveillance conducted by a public health authority, 319 

which is explicitly excluded from the US IRB regulations (Subpart A of 45 CFR Part 46)49. 320 

However, if the wastewater data itself triggered direct public health outcomes without 321 

subsequent independent surveillance, such as clinical testing confirmation during the early 322 

phase of the pandemic, or if the subsequent clinical testing had the additional goal to produce 323 

generalizable knowledge, then IRB oversight is likely needed because both of these areas 324 

include research components during the development phase. This requirement results from 325 

either using non-clinical data, that at the time was relatively new to the public health field, for a 326 

direct health intervention; or using clinical data for a research purpose rather than public health 327 

surveillance (see Categories 4, 10, & 28 in Supplemental Table 1). Notably, none of the 53 328 

studies reviewed with the proposed structured ethical review were flagged by their institutions 329 

for IRB approval for the WBT portion alone, suggesting that IRB approval may have been 330 

granted to other types of ongoing research such as individualized saliva testing when needed 331 

and used in combination with these programs. In compliance with the IRB regulations, studies 332 

that pair WBT with public health surveillance should seek IRB review to address the research 333 

aspects of the work.  334 
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335 

Figure 1. The distribution of assigned flags (“minimal review required”, “review suggested”, “review 336 

strongly suggested”, “not available in the main text”, “not applicable”) for the top 11 categories in the 337 

structured ethical review, represented as a fraction percent of all publications analyzed (n=53) with 338 

multiple reviewers providing reports for select individual studies, resulting in more reviews than studies 339 

(n=79) 12,42–46,50–99. In total, 56 publications were represented by these studies, with 3 having two 340 

publications describing the same monitoring campaign and were considered in concert. The categories 341 

are sorted by ascending proportion of “minimal review required”. 342 

 343 

In contrast to the ambiguity surrounding IRB review reporting, the WBT community has 344 

already taken to reporting on other ethical areas including the scale of testing (e.g., wastewater 345 

treatment plants [WWTPs], building-level), the identifiability of populations represented, the 346 

presence/absence of validated QA/QC workflows, and the need for clear statements of goals 347 

supporting public health. However, gaps in presenting ethical considerations were found with 348 

respect to stakeholder participation in the development and deployment of WBT efforts as well 349 

as data and sample management. Only 5 of 53 studies clearly identified a data management 350 

plan, with no study combining an additional communication or engagement plan. Elements that 351 

were considered when screening for a communication or engagement plan included statements 352 

15 

 

ts 
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surrounding how or whether the public or public representatives were engaged in the 353 

development, deployment, or future applications of WBT; the surveilled parties knew their rights 354 

or were given the right to challenge, express grievances, or seek redress; and if the potential 355 

risks and/or benefits were outlined in detail to these populations or third parties. It is possible 356 

that some studies developed communication and engagement plans that were not explicitly 357 

reported in the published research, and we acknowledge this limitation in our review. Further, 358 

wastewater data security, handling, and subsequent use in and outside the scope of the project 359 

(including the fate of remaining samples) were largely neither acknowledged nor discussed. 360 

Details on data ownership, security, management plans, and dissemination were generally 361 

absent, but key elements were provided in select studies44,51,82,96,98. Several elements that 362 

require more explicit elaboration include how data were reported during the operation of the 363 

campaign, by what mechanism, at what frequency (weekly, bi-weekly, etc.), and how thresholds 364 

of concern were established in terms of viral titers.  365 

 366 

In the case of campus- or dormitory-wide testing at colleges and universities, authors 367 

provided more information for these programs when compared to studies for large sewersheds, 368 

for instance at the level of a WWTP. Specifically, these studies detailed follow-up procedures for 369 

wastewater samples that resulted in positive detection of the virus (e.g., lockdowns, contact 370 

tracing), stakeholder engagement, and data dissemination plans. Likely, this higher level of 371 

detail resulted from building-level monitoring programs intentionally designed to use WBT to 372 

assist clinical testing and quarantine procedures. However, of all papers reviewed, only a few 373 

noted a process for obtaining consent from the studied populations45,50,63,78,80,84,90,99. 374 

 375 

Learning from SARS-CoV-2: Sustaining Future Applications of WBS. The structured ethical 376 

review aims to provide a framework to assess new areas or targets of monitoring and to 377 
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document evolving ethical applications of WBT when uniting technical innovation, community 378 

engagement, and professional collaboration100. For instance, the unique characteristics of an 379 

orthopoxvirus outbreak, which differs in transmission classification and carries higher pre-380 

existing stigma, present additional ethical considerations within WBT101. Future applications will 381 

present new and unique challenges to the ethical application of WBT as a tool, promoting a 382 

continuous evaluation of the structured ethical review adopted here. Therefore, establishing, 383 

applying, and updating this structured ethical review over time will result in a transparent record 384 

of our understanding of the best ethical practices when applying WBT within and beyond public 385 

health surveillance.99 386 

  387 

Future WBT structured ethical reviews may need to consider human-specific, rather than 388 

just pathogen-specific, target biomolecules. Early within the development of this structured 389 

ethical review, it was established that the purview of recovering human genetic material was not 390 

the main focus of this tool given that considerations for targeted human monitoring are already 391 

developed in the biomedical research community and remain a bioethics concern beyond that of 392 

WBT102. However, with the technical capabilities of WBT advancing, the application of next-393 

generation sequencing tools to collect personally identifiable health information opens unique 394 

and potentially community-desired possibilities103. Although relatively few papers used 395 

sequencing techniques and, when applied, were exercised only for detecting variants of SARS-396 

CoV-2 in which human-specific DNA is masked from publicly-posted samples, there is an 397 

evident lack of guidelines when analyzing complete genetic data recovered from wastewater18. 398 

Notably, previous applications successfully applied more targeted approaches to screen for 399 

human mitochondrial sequences within wastewater as a population biomarker highlighting 400 

outside of sequencing technologies104. This necessitates a better understanding of the views 401 

and tolerances of those conducting targeted human-DNA testing, those using the data, and 402 
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persons whose samples are being tested105, potentially informing the evolution and revision of 403 

the categories within the structured ethical review.  404 

 405 

Importantly, this framework does not define which applications of WBT are ethically 406 

appropriate and which are not; it is simply a tool to guide the development and evolution of WBT 407 

campaigns by highlighting aspects which may require additional ethical review. In an ideal 408 

world, all WBT campaigns would receive ratings of "minimal review required" for all categories, 409 

but in practice this will almost certainly never be the case. Applying WBT requires trade-offs to 410 

maximize benefit and minimize harms. For example, waiting to implement WBT for a novel 411 

pathogen until all ethical concerns are fully resolved may hinder progress in public health 412 

surveillance to identify new outbreaks and intervene in their early stages. Different categories 413 

within the framework can also be in tension with one another, which is common for large 414 

frameworks and, thus, is expected. Additionally, the interpretation of each category will change 415 

accordingly as sampling campaigns are run by or analyzed through the viewpoint of 416 

researchers, governmental public health agencies, or private entities. 417 

 418 

The role and utility of ethics analysis in public health, research, and clinical practice is 419 

rarely to give approvals or disapprovals of inherently challenging issues and conflicts. It is, 420 

rather, to inform an already complex environment or problem by making clear salient values – 421 

some of which might be in conflict – and help practitioners weigh and apply these values. How, 422 

for instance, ought scientists balance a duty to protect privacy with an equally compelling right 423 

to benefit from science? The challenge is lensed when reasonable people disagree about an 424 

appropriate course of action. In such cases, the existence of an objective and transparent ethics 425 

process can guide both investigators and communities such that whatever action is decided, 426 
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there will be a mutual understanding of the cause. It is our view and recommendation that WBT 427 

and the communities it serves will improve with the adoption of structured ethics reviews. 428 

 429 

As WBT expands and new practitioners and researchers enter the field, this structured ethical 430 

review framework will provide education and guidance to promote best practices 106. Given the 431 

length of the full, structured ethical review in terms of the number of categories, further 432 

development surrounding the ease-of-use is required to ensure wide-scale adoption of the 433 

structured ethical review framework by the WBT community. This adaptive, iterative approach to 434 

improving the framework is critical for managing this technology in the future, to safeguard the 435 

well-being of those under surveillance, and communicate robust ethical guidelines to protect the 436 

intended applications. Therefore, we strongly recommend the implementation of the structured 437 

ethical review by all those involved in both ongoing and future WBT campaigns to promote 438 

activities supporting ethical best practices. 439 
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