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Abstract  
Polygenic Scores (PGSs) offer the ability to predict genetic risk for complex disease across 
the life course; a key benefit over short-term prediction models. To produce risk estimates 
relevant for clinical and public health decision making, it is important to account for any 
varying effects due to common risk factors such as age and sex. Here, we develop a novel 
framework to estimate for cumulative incidences over the life course and produce country-, 
age-, and sex-specific estimates of cumulative incidence stratified by PGS for 18 high-
burden diseases by integrating PGS associations from 7 studies in 4 countries 
(N=1,197,129) with disease incidences from the Global Burden of Disease. PGSs had a 
significant sex-specific effect for 5 diseases (asthma, hip osteoarthritis, gout, coronary heart 
disease, type 2 diabetes) with all but type 2 diabetes exhibiting a larger effect in men. PGS 
had a larger effect in younger individuals for 13 diseases, with the effects decreasing linearly 
with age. We showed for breast cancer that, relative to individuals in the bottom 20% of 
polygenic risk, the top 5% attain an absolute risk for screening eligibility 16.3 years earlier. 
For T2D, men and women in the top 1% reached the threshold aged 24.8 (95% CI: 22.5 – 
27.6) and 22.3 (95% CI: 20.0 – 25.3) respectively. Individuals in the bottom 1% of PGS did 
not reach the risk threshold by age 80. Our easily extendable framework increases the 
generalizability of results from biobank studies and the accuracy of absolute risk estimates 
by appropriately accounting age and sex-specific PGS effects. Our results highlight the 
potential of PGS as a screening tool which may assist in the early prevention of common 
disease. 
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Introduction 

 
Clinical calculators are often used to estimate disease risk in common diseases to facilitate 
early identification and primordial prevention. For example, QDiabetes (1) 
(https://qdiabetes.org/), and the Pooled Cohort Equations (PCE) estimate risk for type 2 
diabetes (T2D) and Atherosclerotic Cardiovascular Disease, respectively (2).  
 
Polygenic scores (PGSs) use combined information from a person's genome to estimate 
their genetic risk of developing a specific disease or trait (3). Most of the predictive ability of 
PGS is obtained by summing thousands of common genetic variants of small effect, but 
PGS can also incorporate rare genetic variants with large effect (4). There is extensive 
discussion about the clinical and public health value of PGSs (5–7) with varying value on 
short term prediction when integrated on top of existing clinical prediction models for 
cardiovascular diseases and prostate cancer (8–10). Other authors have highlighted how 
PGSs provide independent, and therefore complementary, information about disease risk 
compared to many key risk factors included in prediction models such as family history 
(7,11). PGSs have been shown to associate strongly with many diseases and stratify 
individuals based on their genetic risks (12,13). Further, their impact on global disease 
burden, as measured by disability adjusted life years (DALYs), is comparable to well-
established modifiable risk factors (14). 
  
Maybe the most attractive feature of PGSs is that they can be calculated at birth, allowing for 
risk estimation in younger individuals not typically targeted by current disease risk 
calculators (15,16). The static nature of PGS means risk can be computed over the lifetime 
using a single genetic test for many diseases simultaneously, making them a potentially 
cost-effective prediction tool (6). On the contrary, current clinical calculators provide the 
absolute risk of disease over a short time frame, typically the next 5 or 10 years and are only 
applicable within a limited age range (1,2), which may partially explain why such calculators 
typically fail to identify high risk individuals with early-onset disease causing the biggest 
burden to the society and for the affected individual (17). 
 
Thus, PGSs are a potentially useful tool in overcoming the limitations of short-term risk 
prediction and are well suited to provide lifetime absolute risk estimates. Such estimates 
must be comprehensively reviewed if they are to be used in personalized screening 
approaches. First, given countries may differ in terms of disease incidence and the 
discriminative ability of PGS, thus, we must understand how PGS generalizes across 
countries and health systems. A recent international study examining PGS association with 
14 diseases across 7 countries only focused on relative risk (18). Second, while there is 
some evidence of a larger genetic contribution to early-onset disease cases (19–21), a 
detailed understanding of how risk estimation of PGS varies by both age and sex and how 
this translates to estimates of cumulative incidence is required to improve accuracy. Third, 
most biobank studies are not representative of the general population (22), with only few 
studies having attempted to recalibrate the impact of PGS on disease prevalence (23). 
 
We address these three questions as part of the INTERnational consortium of integratiVE 
geNomics prEdiction (INTERVENE) (See Web Resources). We introduce a novel framework 
to allow for country-specific stratification opportunities for risk-based prevention and 
screening strategies. We demonstrate our method by combining incidences with polygenic 
risk associations across 7 studies in 4 countries (N=1,197,129) for 18 high-burden diseases  
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(24). We demonstrate that for many diseases, PGSs stratify individuals into distinct risk 
trajectories over the lifetime with large differences in cumulative incidence between groups.  
 
Our results also show that in many diseases the PGS effects are sex and age specific. To 
put our results into context and demonstrate the potential translational utility of our approach, 
we provide examples of how these results can be used for improving risk-based disease 
screening in different countries.  
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Methods  
Participating studies in INTERVENE 
Data from approximately 1.2 million participants of European ancestries were used across 7 
studies - UK Biobank (UKB) (25), FinnGen (26), Estonian Biobank (EstBB) (27), Trøndelag 
Health Study (HUNT) (28), Generation Scotland (GS) (29), Genomics England (GE) (30), 
and Mass General Brigham Biobank (MGB) (31). Each contributing study performed 
genotyping, imputation, variant quality control and ancestry assignment using their own 
methodology (Supplementary Methods). 
  
Disease selection 
Diseases were selected according to their global burden as defined by DALYs from the 
Global Burden of Disease (GBD) 2019 (24), and  the availability of GWAS summary 
statistics for the creation of PGS. Using these considerations, we selected 18 diseases 
contributing 17.87% of total global DALYs (Supplementary Table 1). These diseases 
contribute to 25.02% of total DALYs in high socio-demographic index countries, of which all 
studies included in this analysis are based. 
  
Phenotype harmonization  
To harmonize disease phenotypes across studies, we used definitions curated by a team of 
clinical experts in FinnGen (26) (Supplementary Table 2). The presence of any ICD-9 and 
ICD-10 codes included within the FinnGen phenotype were used to define cases across the 
remaining studies (Supplementary Table 2). Controls were defined as individuals without the 
relevant ICD codes for the disease.  
 

All data used to define disease phenotypes was registry based. Missingness within registry 
data may result from either incomplete follow-up or a diagnosis being received in a health 
care system not included within the registry data, i.e. primary care. For these reasons, it is 
difficult to quantify missingness for registry data, however, a comprehensive overview of 
each studies' registry information is provided in the supplementary methods.  
  
A key step in the estimation of cumulative incidence is in calculating the baseline hazard 
which requires reference statistics from a nationally representative sample. We used 
incidence, prevalence and mortality estimates from the GBD for this step. To quantify the 
degree of overlap between the phenotypes defined from GBD and our disease definitions, 
and therefore justify the baseline hazard for each disease, we computed the percentage 
overlap of ICD codes across the two definitions. The number of records for each ICD code 
was extracted from the UKB data showcase (https://biobank.ndph.ox.ac.uk/showcase/). 
Overlap was high, with 10 diseases having a 100% overlap, and 14 having above 95% 
overlap (Supplementary Table 3). We originally considered diseases with 70% phenotype 
overlap which included interstitial lung disease (ILD). However, the GBD baseline hazard 
estimates from GBD were highly heterogeneous and unrealistic for a generally rare disease.  
As such, it was decided that all phenotypes were suitable for baseline hazard estimation 
using GBD. While the overlap in ICD codes for Major Depressive Disorder was 100%, further 
inspection suggests a liberal definition is used by the GBD where individuals only need to 
have suffered either of the two cardinal symptoms of MDD (depressed mood or anhedonia) 
over a two week period (32). To reflect the fact this is not a clinical diagnosis, we use the 
term depression throughout the rest of the paper.    
 

Estimating polygenic scores (PGSs) 
For each phenotype, we searched for the summary statistics from the GWAS with the 
greatest sample size that was publicly available within GWAS Catalog (Supplementary Table 
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4). Biobank and trait combinations were only studied if independent from the GWAS 
contributing studies.To enhance analytical consistency and ensure variants were of high 
quality, we used single nucleotide polymorphisms (SNPs) in the intersection of HapMap 
phase 3 SNPs (33) and the 1000 Genomes (34) with a minor allele frequency greater than 
1% in at least one super population (M=1,330,820). MegaPRS — a collection of PGS tools 
which allow the expected heritability contributed by each SNP to vary — was chosen for 
SNP weight calculation (35) as a previous methods comparison paper has shown it to have 
equal or superior prediction across a range of phenotypes (36) (opain.github.io/GenoPred). 
We selected the BLD-LDAK heritability model as this is recommended by the authors and 
used a data driven approach to tool and hyperparameter selection (we allow the data to find 
the best tool/hyperparameters through specifying the ‘mega’ argument). Following weight 
calculation, PLINK (37,38) was used to generate PGS for participants in each study. PGS in 
analyses were standardized to have mean 0 and variance 1 for each study.  
  
Survival analysis models 
We performed ancestry-specific Cox Proportional-Hazards (PH) regression with age at 
disease onset as the timescale in each study. Follow-up started at birth and ended at the 
age of first record of a disease diagnosis (for individuals with the diseases), age at death for 
a cause other than the disease, age at last record available in the registries or electronic 
health records or age 80, whatever happened first. If the study was included in the base 
GWAS used for PGS calculation, the model was not tested with the exception of FinnGen 
and EstBB where relevant cohorts were excluded to remove sample overlap (Supplementary 
Table 4). In addition to the standardized PGS, the first 10 genetic principal components and 
study specific covariates used to control for technical artifacts (i.e. genotype batch, 
assessment center) were used as covariates.  
 

Sex and Age Stratification 
Four separate Cox-PH models were tested for each phenotype: 1) Using the full sample (no 
stratification), 2) Sex-stratified, 3) Age-stratified and 4) Age and sex-stratified). We first 
computed hazard ratios (HRs) per standard deviation within each study. We then performed 
a fixed-effects meta-analysis on the log HRs across all studies tested to understand the 
generalizability of any age or sex specific effects. Studies were only included within the 
meta-analysis if it was possible to estimate a log HR in every strata, i.e. all age or sex strata. 
  
To test for sex differences, an interaction term of PGS with sex was added to the model. In 
addition, Cox-PH models were repeated in each sex and HRs compared for any significant 
differences (Supplementary Methods). 
 

To test for age-specific effects, we stratified each disease into four intervals, calculated 
according to the mean age at onset quartiles across FinnGen, HUNT, UKB and EstBB 
(Supplementary Table 5). We then performed separate Cox models in each interval using a 
method previously described in (21). Briefly, disease onset was only considered within the 
interval of a given quartile and participants were considered censored at the end of the 
interval if they had not died of a separate cause. If the participant had the disease in a prior 
interval, they were excluded from any follow-up intervals. 
 
When deciding upon the optimal model:  

a) Sex-specific effects were chosen if: 
1. The meta-analyzed interaction effect (PGS*Sex) was significant  

(p < 2.8x10-3 , details below)  
 
      b) Age-specific effects were chosen if: 

1. There was a significant heterogeneity across the four quartiles, estimated 
using a Cochran’s Q test (39).  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.12.23291186doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.12.23291186
http://creativecommons.org/licenses/by-nc/4.0/


 8

 
      c) Age and sex-specific effects were chosen if: 

1. Separate age and sex specific effects were found in both tests a and b.  
2. Age-specific effects were found in a single sex where not previously found.  
3. Age-specific effects were found to differ significantly across sexes. 

 
To test if the age-specific effects were significantly different between men and women, we 
compared the effect sizes (Betamen=Betawomen, p-value < 0.05) for the weighted linear 
regression fit for log(HR) on age (Supplementary Methods).  
 

In all instances, we use p < 2.8x10-3 as our significance threshold, which represents a 
Bonferroni correction of 18 tests (number of phenotypes). This is with the exception of 
testing age-specific effects across sexes where a nominal p-value threshold is used (p<0.05) 
due to the limited data available between the age quartiles and HR. 
  
Cumulative incidence estimation 
To calculate cumulative incidence - defined as the cumulative probability of disease from 
birth up to age 80 accounting for the competing risk of death from other causes - country and 
sex-specific estimates of age-specific (5-year age groups) incidence, prevalence and 
mortality were extracted for each disease from the GBD 2019 (24). 
  
Cumulative incidence was estimated using the method described in (40). Briefly, for each 
sex and age group, five year bins in the case of GBD, the disease incidence hazard for age 
group [m, m+4] was calculated as: 
  
                                hazard[m,m+4] = incidence[m,m+4] / 1 - prevalence[m,m+4]                              [1] 

  
where incidence and prevalence values represent the number of new cases per year and the 
point prevalence assigned for the specific age group [m, m+4], m={0,5,10,15,…75}. The 
hazard for the age group therefore remains constant for all values within a given age group. 
 

The hazard, in conjunction with the mortality rate due to other causes (overall mortality - 
cause specific mortality), was then used to calculate the probability of survival up to age k: 
  

             survivalk+5 = ����∑ ����	
��	
��,���� � �
�
����,������
����,�,��,…,
��                                        [2] 

  
In equation 2, m increments in steps of 5 to correspond to the age groups specified above. 
The combined mortality and hazard were multiplied by 5 to account for the fact that the 
hazard and mortality reported values per year yet the age group covers 5 years. Survival is 
equal to 1 at age 0. 
 

Similarly, the probability of a given disease from age m to age m+4  was calculated as: 
  

                                                      riskk = 1 - e-5*hazard[m,m+4]           
                                                                                        [3] 

  
In equation 3, subscript k corresponds to the upper bound of the age group [m, m+4]. 
Cumulative incidence was then calculated as the cumulative sum of survival at a given age 
multiplied by the probability of the disease at that age. For example, lifetime cumulative 
incidence is the cumulative sum until age 80: 
  
                           Lifetime cumulative incidence = ∑ �������	� 
  �����

��
���                              [4] 

  
Cumulative incidence was calculated separately for each country (Estonia, UK, United 
States of America (USA), Norway and Finland) to ensure each study was calibrated to its 
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population. As GE, GS and the UKB are all based in the UK, if association testing had been 
computed in more than one study, the HRs were meta-analyzed prior to computing 
cumulative incidence. As it was possible to estimate cumulative incidence at the state level, 
we calibrated the estimation to Massachusetts for MGB instead of using aggregated 
statistics for the USA. 
  
To calculate cumulative incidence by PGS strata, it is necessary to group individuals 
according to their position in the PGS distribution. The default grouping was <20%, 20-40%, 
40-60% (reference), 60-80%, 80-90%, 90-95%, >95%. Using these groupings, Cox-PH 
models were repeated in the full sample, and the sex, age, age and sex stratifications for 
each study. 
 

Cumulative incidence for a given PGS group was calculated using the incidence estimates 
for the total population taken from the GBD and the HR from the relevant Cox-PH models. 
This method has been previously described in (41). Briefly, total incidence for a given age is 
equal to the weighted average of incidences for each PGS group. Baseline incidence 
(incidence rates for PGS group 40-60%) was computed as: 
  


� �
��

�� �∑ � 
��

      [5] 

  
Where I0 is the baseline incidence, I is the age-specific total incidence across the population, 
n is the population size at a given age interval, ni the population size for the i-th PGS group 
and HRi is the HR for the ith PGS group. 
  
The incidence attributable to an i-th PGS group was then estimated by: 
  

                
! � 
� 
 ��!                                         [6] 
  
Incidences were then converted to probabilities of experiencing the disease using equations 
1 and 3. Cumulative incidence for each PGS group was calculated using equations 1 
through 4 with mortality due to other causes assumed to be equal across PGS groups. 
  
To quantify the degree of uncertainty in the cumulative incidence estimation, we randomly 
sampled from the distribution of the error for each estimated parameter for both baseline and 
cox models and recalculated the cumulative incidence 1000 times. 95% confidence intervals 
were calculated by taking the 2.5 and 97.5 percentiles of the results. 
  
To incorporate age-specific effects into the estimation of cumulative incidence, it was 
necessary to estimate HRs across the age span (0 to 80). For each disease with age-
specific effects, a weighted linear regression was fit to the log HR estimates from the four 
age intervals with each estimate placed at the median age at onset for that interval. 
Predicted HRs from this regression were then incorporated into the cumulative incidence 
estimation. Ages outside of the range of the four HRs were assumed constant to the HR 
closest in age (Supplementary Figure 1). 
 

Translating estimates of cumulative incidence to other countries 
To evaluate the impact of HR heterogeneity on the estimates of cumulative incidence, we 
meta-analyzed HRs for each PGS percentile group and re-evaluated cumulative incidence in 
each country using the country-specific baseline hazard. We then compared the cumulative 
incidence estimates for the study specific HRs to the meta-analyzed HRs.  
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Sensitivity Analyses 
 

The impact of relatedness on PGS association - full cohort vs unrelated subset 
For EstBB and FinnGen, Plink v2 (37) and KING (42) were used to identify all related 
individuals up to degree 3 respectively. Individuals were then excluded as to remove 
relatedness from the sample while retaining the maximal sample size. HRs resulting from the 
full sample were then compared to the unrelated subset. 
 

Robustness of registry-based disease definitions - primary care vs secondary care 
Many diseases are first diagnosed in a primary care setting. To review the impact of not 
including this data, we created four disease definitions using Read v2 and CTV3 codes from 
the primary care data in the UKB (Supplementary Table 6). To increase consistency of our 
definitions to prior research, we used phenotype definitions from prior studies within the HDR 
UK Phenotype Library (https://phenotypes.healthdatagateway.org/). HRs calculated using 
the full sample were then and compared to associations from our main definitions which 
used secondary care data only.  
 

The impact of the start of follow-up  
To evaluate the impact of using age as the timescale in the analysis, we tested two different 
follow-up times within the UKB. Firstly, we tested using age at recruitment as the start of 
follow-up, equivalent to only including incident cases. Secondly, we tested age at registry 
linkage. This was calculated by assuming the birth country remained the country at which 
the registry was first linked. If the individual was born in Wales the date of registry linkage 
was 1st January 1998, in Scotland the date was set as 1st January 1981 and if born 
anywhere else, the date was set as 1st January 1997 (the date in which English registries 
were linked). All other aspects of the main analysis were the same with the exception that 
year of birth was added as a covariate.  
 

Ethics Statement 
Patients and control subjects in FinnGen provided informed consent for biobank research, 
based on the Finnish Biobank Act. Alternatively, separate research cohorts, collected prior 
the Finnish Biobank Act came into effect (in September 2013) and start of FinnGen (August 
2017), were collected based on study-specific consents and later transferred to the Finnish 
biobanks after approval by Fimea (Finnish Medicines Agency), the National Supervisory 
Authority for Welfare and Health. Recruitment protocols followed the biobank protocols 
approved by Fimea. The Coordinating Ethics Committee of the Hospital District of Helsinki 
and Uusimaa (HUS) statement number for the FinnGen study is Nr HUS/990/2017. 

The FinnGen study is approved by Finnish Institute for Health and Welfare (permit numbers: 
THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, THL/341/6.02.00/2018, 
THL/2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019 and 
THL/1524/5.05.00/2020), Digital and population data service agency (permit numbers: 
VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/2019-3), the Social Insurance Institution 
(permit numbers: KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 
98/522/2019, KELA 134/522/2019, KELA 138/522/2019, KELA 2/522/2020, KELA 
16/522/2020), Findata permit numbers THL/2364/14.02/2020, THL/4055/14.06.00/2020, 
THL/3433/14.06.00/2020, THL/4432/14.06/2020, THL/5189/14.06/2020, 
THL/5894/14.06.00/2020, THL/6619/14.06.00/2020, THL/209/14.06.00/2021, 
THL/688/14.06.00/2021, THL/1284/14.06.00/2021, THL/1965/14.06.00/2021, 
THL/5546/14.02.00/2020, THL/2658/14.06.00/2021, THL/4235/14.06.00/2021, Statistics 
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Finland (permit numbers: TK-53-1041-17 and TK/143/07.03.00/2020 (earlier TK-53-90-20) 
TK/1735/07.03.00/2021, TK/3112/07.03.00/2021) and Finnish Registry for Kidney Diseases 
permission/extract from the meeting minutes on 4th July 2019. 

The Biobank Access Decisions for FinnGen samples and data utilized in FinnGen Data 
Freeze 10  include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, 
BB_2018_67, BB2018_71, BB2019_7, BB2019_8, BB2019_26, BB2020_1, BB2021_65, 
Finnish Red Cross Blood Service Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, 
HUS/248/2020, HUS/150/2022 § 12, §13, §14, §15, §16, §17, §18, and §23, Auria Biobank 
AB17-5154 and amendment #1 (August 17 2020) and amendments BB_2021-0140, 
BB_2021-0156 (August 26 2021, Feb 2 2022), BB_2021-0169, BB_2021-0179, BB_2021-
0161,  AB20-5926 and amendment #1 (April 23 2020)and it´s modification (Sep 22 2021), 
Biobank Borealis of Northern Finland_2017_1013, 2021_5010, 2021_5018, 2021_5015, 
2021_5023, 2021_5017, 2022_6001,  Biobank of Eastern Finland 1186/2018 and 
amendment 22 § /2020, 53§/2021, 13§/2022, 14§/2022, 15§/2022, Finnish Clinical Biobank 
Tampere MH0004 and amendments (21.02.2020 & 06.10.2020), §8/2021, §9/2022, 
§10/2022, §12/2022, §20/2022, §21/2022, §22/2022, §23/2022, Central Finland Biobank 1-
2017, and Terveystalo Biobank STB 2018001 and amendment 25th Aug 2020, Finnish 
Hematological Registry and Clinical Biobank decision 18th June 2021, Arctic biobank P0844: 
ARC_2021_1001. 

Ethics approval for the UK Biobank study was obtained from the North West Centre for 
Research Ethics Committee (11/NW/0382). UK Biobank data used in this study were 
obtained under approved application 78537. 

The genotyping in Trøndelag Health Study and work presented in here was approved by the 
Regional Committee for Ethics in Medical Research, Central Norway (2014/144, 2018/1622, 
2018/411492). All participants signed informed consent for participation and the use of data 
in research. 

 

Ethical approval for the GS:SFHS study was obtained from the Tayside Committee on 
Medical Research Ethics (on behalf of the National Health Service) 

The activities of the EstBB are regulated by the Human Genes Research Act, which was 
adopted in 2000 specifically for the operations of the EstBB. Individual level data analysis in 
the EstBB was carried out under ethical approval 1.1-12/624 from the Estonian Committee 
on Bioethics and Human Research (Estonian Ministry of Social Affairs), using data according 
to  release application S22, document number 6-7/GI/16259 from the Estonian Biobank. 

 

The informed consent process for the Genomics England 100,000 Genomes Project has 
been approved by the National Research Ethics Service Research Ethics Committee for 
East of England—Cambridge South Research Ethics Committee. 
 
The analysis using Mass General Brigham Biobank is approved under IRB protocol 
2022P001736. 
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Results 
Descriptive statistics 
Contributing biobank size ranged from 7,018 participants (after filtering to GP and hospital 
data consented individuals) in GS to 447,332 participants in UKB. GE had the youngest 
median age of recruitment with 26.3 years (28 Interquartile Range (IQR)) and GS had the 
oldest median age of recruitment with 57 years (17.6 IQR, Table 1). FinnGen had the 
longest follow-up with 62 years (19 IQR) and MGB had the shortest follow-up with 10 years 
(13 IQR). EstBB had the largest percent of female participants (66%) and HUNT had the 
least (53%).  
 

Of the 18 phenotypes of interest, cancer was generally the most common phenotype 
(prevalence range 9-47%) except for EstBB which had a 26% prevalence of depression and 
a 9% prevalence of cancer. The least common phenotype was type 1 diabetes (T1D) in 
EstBB, MGB, and UKB, melanoma in FinnGen and HUNT, and rheumatoid arthritis in GS 
and GE, all at less than 1% prevalence. (Supplementary Table 7) Across phenotype and 
biobanks, the oldest median age of onset was prostate cancer in EstBB and GS, lung cancer 
in FinnGen, and MGB, atrial fibrillation in GE and HUNT, and gout in UKB (Supplementary 
Table 7). Appendicitis had the earliest age of onset for all biobanks (range=23.7-55.7 years) 
except for FinnGen and UKB, which had the youngest age of onset for T1D at 12.9 years 
(19.2 IQR) and 55.7 years (16.13 IQR) respectively. 

   
Association between PGS and 18 diseases 
All PGSs were significantly associated with 18 respective diseases with a HR for 1 standard 
deviation in the PGS ranging from 1.06 (95% CI: 1.05 - 1.07) for appendicitis to 2.18 (95% 
CI: 2.13 - 2.23) for T1D. We observed significant heterogeneity, as tested by Cochran’s Q 
test, in estimates of relative risk across studies, partially driven by the large sample size 
which allowed us to detect small, yet significant differences (Supplementary Figure 2; 
Supplementary Table 8). Two examples of large study heterogeneity were observed for 
coronary heart disease (CHD), which PGS had HRs per SD ranging from 1.13 (95% CI: 1.07 
- 1.19) in GS to 1.41 (95% CI: 1.40 - 1.43) in FinnGen and T1D with HRs per SD ranging 
from 1.41 (95% CI: 1.17 - 1.69) in MGB to 2.37 (95% CI: 2.31 - 2.44) in FinnGen.  
 

Sex, age-specific effects 
We identified significant interactions between disease-specific PGS and sex for 5 diseases 
(p<2.8x10-3; Supplementary Table 9). PGS had a larger effect for CHD, gout, hip 
osteoarthritis, and asthma in men whereas for type 2 diabetes (T2D) the effect was larger in 
women (Figure 1a; Supplementary Table 8). The change in PGS effect with age was 
particularly prominent. In total, significant heterogeneity across age quartiles were detected 
in 13 of 18 phenotypes (Cochran's Q P-value < 2.8x10-3 for all cancers, appendicitis, asthma, 
atrial fibrillation, CHD, epilepsy, gout, depression, knee osteoarthritis, prostate cancer, 
rheumatoid arthritis, T1D and T2D) (Figure 1b; Supplementary Table 10). The decreasing 
effect of PGS was approximately linear with age (Supplementary Figure 3) and relatively 
consistent across studies (Supplementary Figure 2c). The differences in age effects was 
large for T1D where the PGS effect per standard deviation was 2.57 (95% CI: 2.47 - 2.68) in 
the youngest quartile (age < 12.6) and 1.66 (95% CI: 1.58 - 1.74) in the oldest quartile (age 
> 33.3).  
 

The large sample size allowed us to further examine the combined effect of both age and 
sex on PGS associations. One notable example was the association between PGS and CHD 
which decreased with age only in men, but not in women (Phet in men=1.05x10-44; Phet in 
women=0.04) (Supplementary Figures 4 and 5; Supplementary Tables 8 and 11). 
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Further examining the association between PGS and 18 diseases by PGS quantiles (Figure 
2) we identified that for some diseases, age-specific effects were larger among individuals 
belonging to the tails of the PGS distribution. For example, individuals in top 5% of a PGS for 
prostate cancer vs those in the 40%-60% reference group had significantly higher relative 
risk for prostate when the disease was diagnosed at younger age (age < 62.6) HR=5.01 
(95% CI: 4.65 - 5.39) compared to oldest ages (age > 73.9) HR=3.27 (95% CI: 2.97 - 3.60).  
 

Country-specific cumulative incidence estimation stratified by PGS 
For each disease, we derived country-specific estimates of the cumulative incidence by PGS 
quantiles, accounting for age and sex-specific effects and calibrating the baseline risk using 
GBD. Supplementary Table 12 highlights the final models to be employed in the estimation 
of cumulative incidence.  
 

Variation in cumulative incidence was evident by PGS quantiles, country and sex with the 
main driver of the difference between country and sex being difference in baseline disease 
risk (Figure 3; Supplementary Figure 6; Supplementary Table 13). For example, in 
Massachusetts, the cumulative incidence at age 80 for CHD was significantly greater in men 
in the top 5% of PGS compared to the bottom 20% quantile (27.2% [95%CI: 23.8% - 31.2%] 
vs 18.9% [95%CI: 16.7% - 21.2%]). In Estonia, absolute differences between the top 5% and 
bottom 20% PGS quantiles were larger (72.9% [95%CI: 66.6% - 77.8%] vs 47.5% [95%CI: 
41.6% - 53.4%]) due to overall higher incidence. In women, the absolute difference for the 
same PGS quantiles was lower than in men due to a decreased baseline risk 
(Massachusetts: 17.7% [95%CI: 15.3% - 20.2%] vs 11.3% [95%CI: 10.0% - 12.7%]); 
Estonia: 54.3% [95%CI: 47.2% - 60.5%] vs 43.6% [95%CI: 37.5% - 48.8%]). Similarly, for 
prostate cancer in the UK, the cumulative incidence was greater in men in the top 5% of 
PGS compared to the bottom 20% quantile (27.5% [95%CI: 23.4% - 31.3%] vs 3.7% 
[95%CI: 3.0% - 4.4%]). In Norway, the cumulative incidence was greater for the same PGS 
quantiles (35.4% [95%CI: 28.3% - 42.4%] vs 5.4% [95%CI: 4.0% - 7.2%]).  
 

PGSs and disease screening  
Our GBD calibrated country specific cumulative incidence estimates allowed us to illustrate 
the potential utility of risk based stratified screening for two diseases with existing screening 
recommendations: T2D and breast cancer. As mentioned earlier we found that the tails of 
the PGS distribution are particularly impacted by age-specific effects (Figure 2). This has 
direct relevance for screening strategies given clinical decisions regarding treatment will 
more likely occur in these groups. We, therefore, further explored the improvement on 
calibration that  results from  accounting for age- and sex-specific effects.  
 

The American Diabetes Association recommends universal screening for T2D at age 45 with 
3 year check-ups if the results of the screening are normal (43,44). We therefore estimated 
the country-specific cumulative incidence at age 45 prior to PGS stratification and used this 
as a clinical threshold (Supplementary Figure 7). Thresholds in cumulative incidence at 45 
varied substantially across countries; ranging from 5.6% (Estonia) to 13.0% (UK) in men and 
from 4.7% (Norway) to 8.9% (UK) in women (Supplementary Table 14). 
 

We estimated at which age the risk thresholds would have been reached as a function of 
PGS. Across studies, individuals in the bottom 20% of PGS would reach the risk threshold at 
an average age of 63.1 (95% CI: 58.8 - 67.3) whereas individuals in the top 5% would reach 
the same risk threshold at an average of 29.3 (95% CI: 26.2 - 32.9); a difference of 33.8 
years (Supplementary Figures 6 and 8; Supplementary Table 15).  
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If age and sex-specific PGS effects were not accounted for in the calculation of the 
cumulative incidence, the ages at which the risk threshold was attained would be, on 
average, 2.8 years earlier in the bottom 20% and 1.8 years later in the top 5%.  
 

For breast cancer, in many countries the initial screening is recommended to women at age 
50 (45–50). In the countries examined by our study, the average cumulative incidence at age 
50 ranged from 1.47% (Norway) to 2.05% (UK) (Supplementary Figure 9, Supplementary 
Table 16).  
 

Women in the bottom 20% of PGS reached the risk threshold for breast cancer screening, 
on average, at age 58.7 (95% CI: 55.8 - 62.3) whereas women in the top 5% reached it at an 
average age of 42.9 (95% CI: 41.6 - 44.9); a mean difference of 15.8 years (Supplementary 
Figures 6 and 10; Supplementary Table 17).  
 

To further illustrate the effects of the cumulative incidence differences at the tails of the PRS 
on potential risk based screening, we used the largest biobank study FinnGen to estimate 
the top/bottom 1% PRS cumulative incidences and calculated the ages at which the 
cumulative incidences were at the same level as in average person in the Finnish population 
at the start of the ADA screening for T2D (45 years) and national screening program for 
breast cancer (50 years). For T2D, Men and women in the top 1% reached the threshold 
aged 24.8 (95% CI: 22.5 – 27.6) and 22.3 (95% CI: 20.0 – 25.3) respectively. Individuals in 
the bottom 1% of PGS did not reach the risk threshold by age 80 (Figure 4a). For breast 
cancer women in the top 1% of PGS reached the threshold aged 42.3 (95% CI: 41 - 44.3) 
whereas women in the bottom 1% of PGS reached the threshold aged 66.3 (95% CI: 61.3 - 
72.4); a difference of 24 years (Figure 4b).  
 

Translating to additional countries 
In practice, most countries are unlikely to have studies with sufficient power to obtain robust 
associations between PGS and diseases. A possible solution is to use a pooled estimate 
from the meta-analysis across studies, however, heterogeneity in the HR across countries 
could limit the tools’ utility. Despite such heterogeneity, it appears meta-analyzed HRs are a 
good substitute. Using T2D and CHD as our examples, we first created a pooled estimate of 
the HR’s through meta-analyzing all estimates and recalculated cumulative incidence by 
combining these HRs with country-specific baseline hazards. In general, country-specific 
cumulative incidences using the meta-analyzed HRs were within the confidence intervals of 
our original estimates of cumulative incidence (Supplementary Table 18); indicating meta-
analyzed HRs are a good substitute in the absence of country-specific data. Where 
differences did exist cumulative incidence was elevated when using meta-analyzed HRs. For 
type 2 diabetes, cumulative incidence was increased in the tails of the PGS distribution (top 
5% and bottom 20%) in Massachusetts, as well as for Norwegians in the bottom 20% only 
(Supplementary Figure 11a). Similarly for CHD, cumulative incidence was elevated in 
Estonian women and men from Massachusetts in the top 5% of polygenic risk 
(Supplementary Figure 11b).  
 

Sensitivity analyses 
First we determined that inclusion of related individuals did not impact the association 
between PGSs and diseases (Supplementary Figure 12). Second, we evaluated the 
robustness of our disease definitions based on primary care data from the UKB. Of the four 
phenotypes tested in the UKB (rheumatoid arthritis, epilepsy, gout, T1D), disease definitions 
using primary care data resulted in reduced HRs relative to the secondary care phenotypes. 
However, this difference was removed when adding in the criterion for each individual to 
have at least two codes (Supplementary Figure 13) - a common practice within primary care 
phenotyping to reduce misclassification (51). Combining primary and secondary care data 
tended to produce an association closer to the primary care only phenotype. Third, survival 
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bias, potential induced by considering cases before study enrolment, does not seem to 
impact our results. Among six phenotypes considered in the UKB (gout, rheumatoid arthritis, 
prostate cancer, breast cancer, T1D, epilepsy), only prostate cancer PGS had a reduced 
relative risk when considering follow-up at baseline - equivalent of testing incident cases only 
- rather than birth (Supplementary Figure 14; Supplementary Table 19). 
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Discussion 

In this study we use data on 1.2 million study participants from 7 biobank studies to provide 
a broad overview on the impact of PGS on cumulative incidence of 18 diseases. We find 
evidence of considerable heterogeneity in the effect of PGS by both age and sex. We 
integrate such variation to reflect more accurate estimations of cumulative risk over the life 
course and highlight how PGS stratifies individuals and can impact risk-based screening 
practices for breast cancer and type 2 diabetes.  
 

Our findings allow us to draw several conclusions. First, the heterogeneity in PGS effects 
across age shows that while our genetic profiles and PGS do not change with age, their 
impact on disease risk changes with age. A decreasing effect of PGS with age has been 
shown previously for some diseases (20,21,52) and our results confirm and expand those 
findings. In some diseases, environmental effects become more prevalent and variable with 
age (21), in effect reducing the heritability which represents the upper-bound of prediction 
from PGS. Our findings mirror those found in high-susceptibility genes, for example BRCA1 
and BRCA2 mutations have been found to be associated with an earlier age at onset for 
breast cancer (53). Failing to account for the age-specific effects of PGS would 
underestimate disease risk in younger individuals. 
 

Second, disease incidence is known to vary with sex for many diseases and this is mirrored 
by the sex differences in PGS effects (54–56). While there is some evidence of sex-specific 
effects at the genetic variant level (57–59), it is limited, possibly owing to the greater power 
requirements for an interaction effect. When combining thousands of genetic variants in a 
PGS, we show significant sex-specific associations for 5 diseases. Among these diseases, 
CHD and T2D have some previous evidence to support sex-specific PGS associations 
(60,61). There are many possible explanations for this differential effect. Different biological 
causal mechanisms could exist by sex. For example, lipids known to influence risk for CHD 
and T2D have been shown to vary by sex and age (62). Furthermore, the GWAS used to 
estimate the PGS may have an imbalance in the male:female ratio or sex-differential 
participation bias can induce differences in the phenotypic composition of males and females 
recruited in the study (64). Finally, diagnostic bias may mean one sex needs to have a 
higher disease liability before receiving a diagnosis. Understanding the root cause of these 
differences is important and can ultimately only be solved through the routine introduction of 
sex-specific GWAS.  
 

Third, we found that while PGS tends to have a larger effect on  diseases at younger ages, 
this effect might differ between males and females. For CHD, we observed a large PGS-age 
interaction effect only in males. Age at onset in CHD varies more in males than in females 
(24,65) and the risk factor profiles are known to change differently over age in males and 
females. Our results show that cumulative genetic effects captured by PGS are contributing 
to differences in age-related risks and may also be partly mediated by changes in risk factor 
profiles. In addition to CHD, we saw similar effects for gout which also has earlier age at 
onset for males (40,66). Ultimately, each disease will require its own assessment for age- 
and sex-specific effects. This study provides such a method for selecting the PGS estimate 
which balances power and accuracy in a systematic fashion, while also accounting for the 
importance of a harmonized phenotype across studies.   
 

Arguably the best application of our country specific disease incidence and PGS estimates 
across large-scale biobanks is the development of country specific risk calculators that are 
based on lifetime risk of diseases which may be used to determine optimal ages for 
screening. Our framework is flexible in that it can integrate both country-specific and pooled 
PGS associations, depending on the requirement for specificity or generalizability 
respectively. This approach has multiple important advantages relative to the short-term 
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prediction of most current models. Lifetime risk can be estimated early in life and overcomes 
the well documented challenge of short-term risk calculators for diseases not being useful in 
early life and therefore unable to enable primordial prevention approaches (17). As we 
illustrate with T2D and Breast Cancer, PGS provides lifetime risk trajectories that can enable 
stratified screening approaches. When available, other risk factors can easily be added 
when designing prediction models and screening approaches. Our approach also allows for 
developing country-specific risk calculators by utilizing baseline risk estimates derived from 
GBD, producing more accurate estimates for screening and overcoming the ascertainment 
biases inherent in many biobanks. We here demonstrate the risk estimation framework using 
18 diseases, but risks can in principle be calculated for hundreds of diseases over the 
lifecourse at little additional expense (6). 
 

Our study should be considered in light of the following limitations. First, the PGS used in 
this study do not consider the risk due to rare genetic variation (67). While this may reduce 
the accuracy of our risk estimates, at a population level, common genetic variation will be 
more predictive of the variation in complex disease which we are particularly well-powered to 
test in this study. As more sequencing studies become available, rare variants will also be 
included in the genome-wide risk estimation (4). Second, the use of harmonized phenotypes 
can ignore the country-specific nuances of ICD coding due to billing strategies. We 
deliberately focused on harmonization of the analysis to reduce bias due to technical 
variation, a rare feature in projects involving multiple studies. Third, our PGS relative risk are 
applicable to individuals of European ancestries only. As more studies with non-European 
individuals become available, similar estimates can be derived for a range of ancestries and 
admixtures. Fourth, some of the studies included are non-representative of the population 
due to sample recruitment strategies (volunteer- or hospital-based). While this may bias the 
cumulative risk estimation, a key strength of this study is the use of GBD to reduce the 
impact of selection bias in the baseline hazard which will bring our estimates closer to the 
true cumulative incidence.  
 

In conclusion, we demonstrate the heterogeneity in polygenic score estimates between 
males and females and across lifespan in many diseases. While accounting for this 
heterogeneity, we developed a uniform framework to allow for estimation of life-time risk of 
diseases, stratified by individual’s genetic profiles and provide country-specific estimates. 
This information, which is already available for major modifiable risk factors (68,69), but was 
not yet comprehensively available for genetic scores, will allow health policy makers to better 
design screening tools with the goal to assist in the early prevention of common disease. 
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Figure 1. Model selection for each phenotype, stratified by ancestry. a) Meta-Analyzed 
hazard ratios per standard deviation stratified by sex. * indicates a significant interaction 
between PGS and Sex after Bonferroni correction for multiple testing. b) Meta-Analyzed 
hazard ratios per standard deviation stratified by age.  
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Figure 2. Meta-analyzed hazard ratios stratified by age and sex for Type 2 Diabetes, 
Coronary Heart Disease, Prostate Cancer and Breast Cancer. 
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Figure 3. Country and sex-specific cumulative incidence estimates for the tails of the PGS 
distribution accounting for uncertainty. a) Prostate Cancer. b) Coronary Heart Disease. 
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Figure 4. Sex-specific cumulative incidence estimates for Type 2 Diabetes and Breast 
Cancer in Finland. The red dashed line in each figure represents a country-specific clinically 
defined risk threshold for screening. a) Type 2 Diabetes cumulative incidence. b) Breast 
Cancer cumulative incidence.  
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Study 
Sample 

size  
Age of recruitment (yrs) 

median (IQR)  
 Maximum follow-up time across 

traits (yrs) median (IQR) 
% 

Female 
Ascertainment 

strategy 

Estonia Biobank 199 868 43.5 (25.5) 17.7 (0)* 65.5 Population 

FinnGen 412 090 55.8 (26.7) 62 (19) 55.9 
Population & 

Hospital 

Genomics England 29 427 26.3 (28) 29 (0) 59 Hospital 

Generation Scotland 7 018 57 (17.6) 39.8 (0) 56.4 Population 

HUNT 69 715 37 (21.1) 25 (18) 52.9 Population 

Mass General 
Brigham Biobank 39 036 51 (22) 10 (13) 55.1 Hospital 

UK Biobank 447 332 58 (12) 24 (0) 54.2 Population 

 

Table 1. Descriptive statistics by study. Abbreviations: yrs - years, IQR - Interquartile Range 
*Estonian Biobank uses as baseline the start of National Health Insurance Fund data from 2003. 
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