
Deep Learning for Transesophageal Echocardiography View Classification 1 
  2 

  3 

  4 

Kirsten Steffner1, MD; Matthew Christensen2; George Gill3, MD; Michael Bowdish3, MD; Justin 5 

Rhee2; Abirami Kumaresan3,4, MD; Bryan He5, PhD; James Zou4, PhD; David Ouyang2, MD. 6 

            7 

1.  Department of Anesthesiology, Perioperative and Pain Medicine, Stanford 8 

University 9 

2.  Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center 10 

3.  Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical 11 

Center 12 

4.  Department of Anesthesiology, Cedars-Sinai Medical Center 13 

5.  Department of Computer Science, Stanford University 14 

6.  Department of Biomedical Data Science, Stanford University 15 

 16 

  17 

  18 

Contact: ksteffner@stanford.edu, 300 Pasteur Drive, Room H3580, Stanford, California 94305-19 

5640 20 

  21 

Total Word Count (including Title Page, Abstract, Text, References, Tables and Figures 22 

Legends): 3,977 23 

  24 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.11.23290759doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.06.11.23290759


Abstract 25 

  26 

Transesophageal echocardiography (TEE) imaging is a vital monitoring and diagnostic tool used 27 

during all major cardiac surgeries, guiding perioperative diagnoses, surgical decision-making, 28 

and hemodynamic evaluation in real-time. A key limitation to the automated evaluation of TEE 29 

data is the complexity and unstructured nature of the images, which demonstrate significant 30 

heterogeneity across varied views in the evaluation of different cardiac structures. In this study, 31 

we describe the first machine learning model for TEE view classification. We trained a 32 

convolutional neural network (CNN) to predict standardized TEE views using labeled 33 

intraoperative and intraprocedural TEE videos from Cedars-Sinai Medical Center (CSMC). We 34 

externally validated our model on intraoperative TEE videos from Stanford University Medical 35 

Center (SUMC). Accuracy of our model was high across all labeled views. The highest 36 

performance was achieved for the Trans-Gastric Left Ventricular Short Axis View (area under 37 

the receiver operating curve [AUC] = 0.971 at CSMC, 0.957 at SUMC), the Mid-Esophageal 38 

Long Axis View (AUC = 0.954 at CSMC, 0.905 at SUMC),  the Mid-Esophageal Aortic Valve 39 

Short Axis View (AUC = 0.946 at CSMC, 0.898 at SUMC), and the Mid-Esophageal 4-Chamber 40 

View (AUC = 0.939 at CSMC, 0.902 at SUMC). Ultimately, we demonstrate that our unique 41 

deep learning model can accurately classify standardized TEE views, which will facilitate further 42 

downstream analyses for intraoperative TEE imaging. 43 
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Introduction 45 
  46 

Cardiovascular disease is a leading cause of death and disability worldwide and has been one of 47 

the top ten most important drivers of increasing global disease burden in the last three decades.1 48 

Echocardiography is the most commonly used imaging modality in the assessment of cardiac 49 

structure, function, and disease.2,3 Despite the growth seen in the application of artificial 50 

intelligence (AI) to transthoracic echocardiography (TTE)4–7, the application of AI and machine 51 

learning to transesophageal echocardiography (TEE) remains relatively unexplored. Although 52 

more invasive, TEE imaging often offers higher resolution images and is particularly valuable as 53 

a monitoring and diagnostic tool in the management of cardiac surgery patients and patients 54 

undergoing transcatheter procedures for structural heart disease.2,8,9 As the standard of care, 55 

intraoperative TEE imaging is performed during all major cardiac surgeries, especially those 56 

requiring an open sternotomy and cardiopulmonary bypass (CPB), to help make perioperative 57 

diagnoses, guide surgical decision-making, and evaluate hemodynamic states in real-time. 58 

  59 

Advances in AI for medical imaging demonstrate that machine learning models can be trained to 60 

classify human disease states10, identify phenotypic data11–13, and predict clinical outcomes with 61 

accuracy that outperforms clinical experts and more traditional clinical prediction models.13–17 62 

The early, landmark literature in AI for medical imaging focused on two-dimensional, static 63 

images such as chest x-rays and pathology images. More recently, deep learning techniques have 64 

been applied to two- and three- dimensional images over time, such as echocardiography 65 

videos.5,11,18,19 66 

 67 

Given the critically important role that TEE imaging plays in the evaluation of complex 68 

cardiovascular disease states and in the perioperative management of high-risk cardiac surgery 69 

patients, there is great potential value to be extracted from TEE images with advanced deep 70 

learning methodologies. The first step in the interpretation of any echocardiography video is to 71 

classify the view, to orient the observer to the anatomy and potential pathology contained within 72 

the image. Therefore, in this study we tested whether it was possible to train a convolutional 73 

neural network (CNN) to accurately classify eight standardized TEE views using labeled 74 

intraoperative and intraprocedural TEE images. 75 
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 76 

 77 

Methods 78 

  79 

Cohort Selection and Data Processing 80 

  81 

We obtained TEE image data for 2,144 randomly selected patients who underwent an 82 

intraoperative or intraprocedural TEE exam at Cedars-Sinai Medical Center (CSMC) between 83 

the years of 2016 and 2021. This resulted in 3,103 TEE videos, including intraoperative 84 

echocardiography images from open (via sternotomy) cardiothoracic surgical operations and 85 

intraprocedural echocardiography images from transcatheter procedures for structural heart 86 

disease. We also obtained TEE image data from randomly selected adult (age 18 years and older) 87 

patients who underwent an intraoperative TEE exam during open cardiothoracic surgery at 88 

Stanford University Medical Center (SUMC), resulting in an additional 465 TEE videos for an 89 

external test set. The Institutional Review Board at Cedars-Sinai Medical Center and the 90 

Institutional Review Board at Stanford University Medical Center both granted ethical approval 91 

for this study. 92 

 93 

Guidelines established by the American Society of Echocardiography and the Society of 94 

Cardiovascular Anesthesiologists identify twenty-eight different TEE views necessary to 95 

complete a comprehensive intraoperative multi-plane TEE exam.20 In actual clinical practice, 96 

individual patient factors, anatomic variations and pathology, and time constraints can preclude 97 

the acquisition of all twenty-eight views. For our multi-category deep learning view 98 

classification model, we chose the eight most consistently acquired TEE views in the 99 

intraoperative assessment of cardiac surgery patients, including: the Mid-Esophageal (ME) 2-100 

Chamber View, ME 4-Chamber View, ME Aortic Valve (AV) Short Axis (SAX) View, ME 101 

Bicaval View, ME Left Atrial Appendage View, ME Long Axis View, Trans-Gastric (TG) LV 102 

SAX View, and Aortic View. Four of our eight chosen views (ME 2-Chamber, ME 4-Chamber, 103 

ME AV SAX, ME Long Axis) represent pooled categories that include two standardized views 104 

that capture overlapping structures. We also chose to generalize two categories (the TG LV SAX 105 

and the Aortic Views), in order to increase the sample sizes of these classes.  Ultrasound image 106 
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data was converted from Digital Imaging and Communications in Medicine (DICOM) format 107 

data to AVI videos prior to machine learning analysis. All images and their associated metadata 108 

were de-identified prior to labeling, model training, and analysis. 109 

  110 

AI Model Design and Testing 111 

 112 

We trained a CNN with residual connections and spatiotemporal convolutions using the R2+1D 113 

architecture21 to classify TEE views. Model weights were randomly initialized. Models were 114 

trained to minimize the cross entropy between the predicted view and the actual labeled view. 115 

We used an Adam optimizer22, a learning rate of 0.001, and a batch size of 44. We employed 116 

early stopping to cease model training after no further improvement on the validation set 117 

occurred. Our final model trained for nine epochs. The model was trained on 32-frame sub-clips 118 

of videos in the training set, with a temporal stride of two, yielding a final model input length of 119 

16 frames. The starting frame of these sub-clips within their parent clips were randomized during 120 

training as a form of data augmentation. All model training was done using the Python library 121 

PyTorch. Our code is available online at https://github.com/echonet/tee-view-classifier.  122 

 123 

All TEE videos were labeled by a single board-certified echocardiographer. An active learning 124 

approach was used to reduce the number of human annotations required. A classifier was 125 

initially trained on 500 randomly selected labeled TEE videos. With the partially trained model, 126 

inference was performed on unlabeled TEE videos, which were then categorized into buckets 127 

based on predicted view. In the next round of video labeling, the echocardiographer focused on 128 

the uncommon views and poorly performing classifications, and the model was subsequently 129 

retrained based on the additional labeled TEE videos. This iterative active learning approach was 130 

performed for five rounds until model performance was adequate. Only the training and 131 

validation sets were constructed with this active learning approach. The videos in both the 132 

internal and external test sets were independent and never seen during training. 133 

 134 

Statistical Analysis 135 

  136 
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An internal hold-out test dataset from CSMC which was never seen during model training was 137 

used to assess model performance. An external test set from SUMC was also used for additional 138 

validation and was never seen during model training.  Model performance was assessed via 139 

AUROC. Two-sided 95% confidence intervals using 1,000 bootstrapped samples were computed 140 

for each calculation. Unsupervised t-Distributed Stochastic Neighbor Embedding (t-SNE) was 141 

used for clustering analysis23. Statistical analysis was performed in Python.  142 

 143 

 144 

Results 145 

  146 

We trained a CNN to classify eight standardized TEE views. Our training and validation sets 147 

contained 2,600 unique videos (split 4:1), representing 2,036 patients. The model was tested on 148 

503 randomly selected videos from CSMC and 465 randomly selected videos from SUMC, none 149 

of which were seen during model training. Characteristics of our training, validation, and test 150 

patients are shown in Table 1. Our datasets included a broad spectrum of anatomic variation, 151 

clinical pathology, and imaging indications representing the cardiac open surgical and 152 

transcatheter procedural populations seen at CSMC and SUMC (Table 2). The images also 153 

included a wide range of technical variation, including differences in spatial and temporal 154 

resolution, field of view depth and sector width, gain, image quality, and use of color flow 155 

Doppler (Figure 1). 156 

 157 

Our view classification model achieved an overall micro-averaged area under the receiver 158 

operating curve (AUC) of 0.919 on a hold-out CSMC test set of TEE videos (Figure 2). Our 159 

model showed particularly good performance for the Trans-Gastric Left Ventricular Short Axis 160 

View (AUC = 0.971), the Mid-Esophageal Long Axis View (AUC = 0.954),  the Mid-161 

Esophageal Aortic Valve Short Axis View (AUC = 0.946), and the Mid-Esophageal 4-Chamber 162 

View (AUC = 0.939).  163 

 164 

The model performance also generalized well externally, achieving a micro-averaged AUC of 165 

0.872 when tested on 465 never-before-seen TEE videos from SUMC. Our model had similar 166 

performance for the Trans-Gastric Left Ventricular Short Axis View (AUC = 0.957), the Mid-167 
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Esophageal Long Axis View (AUC = 0.905),  the Mid-Esophageal Aortic Valve Short Axis 168 

View (AUC = 0.898), and the Mid-Esophageal 4-Chamber View (AUC = 0.902) in the SUMC 169 

dataset.  170 

 171 

Clustering analysis suggests our AI model can identify a meaningful embedding space 172 

representing the various TEE views from heterogeneous video input that generalizes across two 173 

institutions (Figure 3). Model performance was similar in standard black-and-white 2D B-Mode 174 

TEE videos (micro-averaged AUC = 0.902) and videos incorporating color flow Doppler 175 

information (micro-averaged AUC = 0.877) (Figure 4), the analyses for which were performed 176 

on a combination of the internal and external test videos due to the overall low prevalence of 177 

color flow Doppler videos in our datasets. 178 

  179 

 180 

Conclusions 181 

 182 

Our deep learning model was able to classify the most commonly used intraoperative and 183 

intraprocedural TEE views with high accuracy across a wide range of clinical and 184 

echocardiographic characteristics. Our videos included patients undergoing many different types 185 

of open cardiac surgery and transcatheter procedures, representing a broad spectrum of anatomic 186 

pathology and differences in practice patterns across two institutions. The presence or absence of 187 

medical devices in our images (prosthetic valves, procedural wires, pacemakers, MitraClips) was 188 

highly variable among our datasets. Images also varied with respect to resolution, sizing and 189 

focus of the field of view, and the use of color flow Doppler. The model performance was 190 

consistent across the range of findings in both held-out internal and external test datasets, 191 

demonstrating the generalizability of our view classifier in real-world clinical contexts. 192 

 193 

Our study represents the first application of a machine learning strategy to TEE videos. Prior AI-194 

driven echocardiography studies focused primarily on TTE videos. It has been demonstrated that 195 

machine learning algorithms can be trained to identify standard TTE views from labeled 196 

datasets.18,19,24 Subsequent studies were able to take advantage of the standard clinical workflow 197 

for transthoracic imaging, which incorporates anatomic tracings and quantitative measurements, 198 
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in order to streamline segmentation and classification tasks.4,7 It has also been shown that 199 

machine learning algorithms trained on TTE videos are able to recognize cardiac structures, 200 

approximate cardiac function, make accurate diagnoses, identify phenotypic information that is 201 

otherwise not easily recognized by a human observer, and predict clinical outcomes.6,7,10,11,25 202 

Without an automated preprocessing and view classification pipeline for TEE, the ability to 203 

perform downstream deep learning tasks for TEE remained challenging.  204 

 205 

The greatest barrier to applying AI to intraoperative and intraprocedural TEE imaging is the 206 

relatively unstructured nature of TEE data. TEE data is inherently variable because the 207 

environment in the cardiac surgery operating rooms is highly dynamic, which results in the 208 

acquisition of varying image sequences, non-standard views, and missing views. Moreover, 209 

intraoperative TEE exams are subject to significant clinical variation within a single study and 210 

across studies (changes in cardiac loading conditions, on- versus off-CPB, changes secondary to 211 

surgical manipulation, pre- versus post-surgical intervention, pharmacologic interventions, 212 

external cardiac pacing). However, given the significant role that TEE plays in the management 213 

of complex cardiac pathology and high-risk surgical patients, attempting to extract additional 214 

value from TEE images via deep learning strategies is worthy of exploration. The present study 215 

represents the first deep learning-based TEE view classification model trained on TEE videos. 216 

 217 

The development of a view classification model for TEE images will extend the application of 218 

deep learning strategies to intraoperative echocardiography imaging. Previous work has already 219 

shown that intraoperative TEE imaging actively informs surgical decision-making26,27 and is 220 

associated with improved clinical outcomes after cardiac surgery.28,29 The development of AI-221 

driven models based on intraoperative TEE images has the potential to further enhance the value 222 

of echocardiography in the perioperative and periprocedural period by improving the ability to 223 

diagnose cardiac surgical diseases and complications, diagnose the underlying etiology of varied 224 

hemodynamic states, and predict clinical outcomes in the immediate and long-term postoperative 225 

periods. 226 

 227 

In summary, we show that an intraoperative and intraprocedural TEE-based deep learning model 228 

can accurately identify standardized TEE views, the first step in the AI interpretation of TEE 229 
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images. Our study represents an important first step towards the automated evaluation of 230 

intraoperative imaging and the leveraging of deep learning strategies for the advancement of 231 

patient care. 232 

 233 

  234 
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Figures and Tables 235 

 236 
 237 

    238 
          ME 2-Chamber              ME 4-Chamber       ME AV SAX         ME Bicaval 239 

     240 
  ME LAA  ME Long Axis        TG LV SAX  Aortic 241 
 242 
 243 
Figure 1. Sample training images used for the deep-learning view classification task. Above images 244 
are 2-dimensional still frames sampled from the video data used in model training. Eight standard TEE 245 
views were chosen, including: the ME 2-Chamber View, ME 4-Chamber View, ME AV SAX View, ME 246 
Bicaval View, ME LAA View, ME Long Axis View, TG LV SAX View, and Aortic View. TEE = 247 
transesophageal echocardiography; ME = mid-esophageal; AV = aortic valve; SAX = short axis; LAA = 248 
left atrial appendage; TG = trans-gastric; LV = left ventricular. 249 
 250 
 251 
 252 
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 253 

 254 
 255 
Figure 2. View classification model performance on internal (CSMC) hold-out test set and external 256 
(SUMC) test set. (a) AUC’s for each view class, demonstrating high accuracy (with AUC’s ranging from 257 
0.816 – 0.957). No AUC was able to be calculated for the ME Left Atrial Appendage View in the 258 
randomly selected SUMC test set due to low sampling. (b) Confusion matrices showing model 259 
performance, with views labeled by a board-certified echocardiographer along the vertical axis and views 260 
predicted by the deep learning model on the horizontal axis. Numerical values in the matrices represent 261 
the number of images with the indicated ground-truth and model-predicted labels. Color intensity on the 262 
heatmap represents model accuracy. AUC = area under the receiver operating curve; CSMC = Cedars 263 
Sinai Medical Center; SUMC = Stanford University Medical Center; ME = mid-esophageal; AV = aortic 264 
valve; SAX = short axis; TG = trans-gastric; LV = left ventricular. 265 
 266 
 267 
 268 
 269 

m 
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 270 

271 
 272 

Figure 3. Clustering analysis showing the model’s ability to distinguish among standard TEE views.273 
t-SNE clustering analysis of input images demonstrates that meaningful representations of standard TEE274 
views are clustered appropriately together. In other words, images are sorted into groups that reflect275 
standard TEE classes. Embedding representation is consistent across CSMC and SUMC, suggesting276 
robustness and generalizability of the approach. TEE = transesophageal echocardiography; t-SNE = t-277 
Distributed Stochastic Neighbor Embedding; CSMC = Cedars Sinai Medical Center; SUMC =278 
Stanford University Medical Center.  279 
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 280 
Figure 4. Micro-averaged receiver operating characteristic curves for model predictions in subsets281 
containing all color flow Doppler videos versus no color flow Doppler videos. This evaluation was282 
performed using a combination of the internal and external test sets due to the low prevalence of color283 
flow Doppler videos in our data sets. 284 
 285 
 286 
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 Total Train Validation Internal Test 

Number of videos 3,103 2,076 524 503 

Age 67.8 (±15.4) 67.9 (±15.4) 68.3 (±15.7) 66.9 (±15.2) 

White, n (%) 2,223 (71.6%) 1,496 (72.1%) 365 (69.7%) 362 (72.0%) 

Black, n (%) 317 (10.2%) 224 (10.8%) 62 (11.8%) 31 (6.2%) 

Other/Unknown, n (%) 271 (8.7%) 177 (8.5%) 41 (7.8%) 53 (10.5%) 

Asian, n (%) 242 (7.8%) 152 (7.3%) 40 (7.6%) 50 (9.9%) 

Pacific Islander, n (%) 35 (1.1%) 18 (0.9%) 14 (2.7%) 3 (0.6%) 

Native American, n (%) 12 (0.4%) 6 (0.3%) 2 (0.4%) 4 (0.8%) 

Hispanic ethnicity, n (%) 395 (12.7%) 255 (12.3%) 68 (13.0%) 72 (14.3%) 

Female gender, n (%) 1,120 (36.1%) 757 (36.5%) 194 (37.0%) 169 (33.6%) 

Atrial fibrillation, n (%) 1,146 (36.9%) 773 (37.2%) 194 (37.0%) 179 (35.6%) 

Heart failure, n (%) 1,504 (48.5%) 1,009 (48.6%) 263 (50.2%) 232 (46.1%) 

Hypertension, n (%) 1,681 (54.2%) 1,142 (55.0%) 267 (51.0%) 272 (54.1%) 

Diabetes mellitus, n (%) 702 (22.6%) 483 (23.3%) 112 (21.4%) 107 (21.3%) 

Ischemic stroke, n (%) 365 (11.8%) 255 (12.3%) 53 (10.1%) 57 (11.3%) 

Transient ischemic attack, n 
(%) 194 (6.3%) 137 (6.6%) 31 (5.9%) 26 (5.2%) 

Pulmonary embolism, n (%) 90 (2.9%) 63 (3.0%) 21 (4.0%) 6 (1.2%) 

Myocardial infarction, n (%) 339 (10.9%) 214 (10.3%) 55 (10.5%) 70 (13.9%) 

Peripheral artery disease, n (%) 540 (17.4%) 376 (18.1%) 83 (15.8%) 81 (16.1%) 

Vascular disease, n (%) 814 (26.2%) 551 (26.5%) 126 (24.0%) 137 (27.2%) 

Coronary artery disease, n (%) 1,152 (37.1%) 769 (37.0%) 192 (36.6%) 191 (38.0%) 

Chronic kidney disease, n (%) 745 (24.0%) 495 (23.8%) 140 (26.7%) 110 (21.9%) 

Liver disease, n (%) 159 (5.1%) 110 (5.3%) 24 (4.6%) 25 (5.0%) 

Chronic obstructive pulmonary 
disease, n (%) 200 (6.4%) 139 (6.7%) 27 (5.2%) 34 (6.8%) 

Prior smoker, n (%) 181 (5.8%) 119 (5.7%) 35 (6.7%) 27 (5.4%) 

 301 

Table 1. Clinical characteristics represented in the training, validation, and internal test data sets. 302 
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 304 

 305 

  Total Train Validation Internal Test 

Number of videos 3,103 2,076 524 503 

CABG (%) 194 (6.3) 124 (6.0) 31 (5.9) 39 (7.8) 

Valve procedure (%) 321 (10.3) 215 (10.4) 42 (8.0) 64 (12.7) 

Aortic procedure (%) 42 (1.4) 30 (1.4) 3 (0.6) 9 (1.8) 

Combination of CABG, valve, 
and/or aortic procedure 

218 (7.0) 140 (6.7) 35 (6.7) 43 (8.5) 

Other open cardiac procedure 
(%) 

317 (10.2) 215 (10.4) 56 (10.7) 46 (9.1) 

Mechanical circulatory support 
(%) 

52 (1.7) 30 (1.4) 13 (2.5) 9 (1.8) 

Transcatheter procedure (%) 1959 (63.1) 1322 (63.7) 344 (65.6) 293 (58.3) 

  306 

Table 2. Surgery or procedure types represented in our training, validation, and internal test data 307 
sets. CABG = Coronary Artery Bypass Graft. 308 

 309 
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