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Abstract—Skin and subcutaneous diseases rank high among the leading contributors to the global burden of nonfatal diseases,
impacting a considerable portion of the population. Nonetheless, the field of dermatology diagnosis faces three significant hurdles.
Firstly, there is a shortage of dermatologists accessible to diagnose patients, particularly in rural regions. Secondly, accurately
interpreting skin disease images poses a considerable challenge. Lastly, generating patient-friendly diagnostic reports is usually a
time-consuming and labor-intensive task for dermatologists. To tackle these challenges, we present SkinGPT-4, which is the world’s
first interactive dermatology diagnostic system powered by an advanced visual large language model. SkinGPT-4 leverages a
fine-tuned version of MiniGPT-4, trained on an extensive collection of skin disease images (comprising 52,929 publicly available and
proprietary images) along with clinical concepts and doctors’ notes. We designed a two-step training process to allow SkinGPT-4 to
express medical features in skin disease images with natural language and make accurate diagnoses of the types of skin diseases.
With SkinGPT-4, users could upload their own skin photos for diagnosis, and the system could autonomously evaluate the images,
identifies the characteristics and categories of the skin conditions, performs in-depth analysis, and provides interactive treatment
recommendations. Meanwhile, SkinGPT-4’s local deployment capability and commitment to user privacy also render it an appealing
choice for patients in search of a dependable and precise diagnosis of their skin ailments. To demonstrate the robustness of SkinGPT-4,
we conducted quantitative evaluations on 150 real-life cases, which were independently reviewed by certified dermatologists, and
showed that SkinGPT-4 could provide accurate diagnoses of skin diseases. Though SkinGPT-4 is not a substitute for doctors, it could
enhance users’ comprehension of their medical conditions, facilitate improve communication between patients and doctors, expedite
the diagnostic process for dermatologists, and potentially promote human-centred care and healthcare equity in underdeveloped areas.

Index Terms—Dermatology, Deep learning, Large language model

✦

1 INTRODUCTION

Skin and subcutaneous diseases rank as the fourth major
cause of nonfatal disease burden worldwide, affecting a
considerable proportion of individuals, with a prevalence
ranging from 30% to 70% across all ages and regions [1].
However, dermatologists are consistently in short supply,
particularly in rural areas, and consultation costs are on
the rise [2], [3], [4]. As a result, the responsibility of di-
agnosis often falls on non-specialists such as primary care
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physicians, nurse practitioners, and physician assistants,
which may have limited knowledge and training [5] and
low accuracy on diagnosis [6], [7]. The use of store-and-
forward teledermatology has become dramatically popular
in order to expand the range of services available to medical
professionals [8], which involves transmitting digital images
of the affected skin area (usually taken using a digital
camera or smartphone) [9] and other relevant medical in-
formation from users to dermatologists. Then, the derma-
tologist reviews the case remotely and advises on diagnosis,
workup, treatment, and follow-up recommendations [10],
[11]. Nonetheless, the field of dermatology diagnosis faces
three significant hurdles [12]. Firstly, there is a shortage
of dermatologists accessible to diagnose patients, partic-
ularly in rural regions. Secondly, accurately interpreting
skin disease images poses a considerable challenge. Lastly,
generating patient-friendly diagnostic reports is usually a
time-consuming and labor-intensive task for dermatologists
[4], [13].

Advancements in technology have led to the develop-
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ment of various tools and techniques to aid dermatolo-
gists in their diagnosis [13], [14], [15]. For example, the
development of artificial intelligence tools to aid in the
diagnosis of skin disorders from images has been made
possible by recent advancements in deep learning [16], [17],
such as skin cancer classification [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], dermatopathology [28], [29], [30],
predicting novel risk factors or epidemiology [31], [32],
identifying onychomycosis [33], quantifying alopecia areata
[34], classify skin lesions from mpox virus infection [35], and
so on [4]. Among these, most studies have predominantly
concentrated on identifying skin lesions through dermo-
scopic images [36], [37], [38]. However, dermatoscopy is
often not readily available outside of dermatology clinics.
Some studies have explored the use of clinical photographs
of skin cancer [18], onychomycosis [33], and skin lesions on
educational websites [39]. Nevertheless, those methods are
tailored for particular diagnostic objectives as classification
tasks and their approach still requires further analysis by
dermatologists to issue reports and make clinical decisions.
Those methods are unable to automatically generate de-
tailed reports in natural language and allow interactive
dialogues with patients. At present, there are no such di-
agnostic systems available for users to self-diagnose skin
conditions by submitting images that can automatically and
interactively analyze and generate easy-to-understand text
reports.

Over the past few months, the field of large language
models (LLMs) has seen significant advancements [40], [41],
offering remarkable language comprehension abilities and
the potential to perform complex linguistic tasks. One of
the most anticipated models is GPT-4 [42], which is a large-
scale multimodal model that has demonstrated exceptional
capabilities, such as generating accurate and detailed im-
age descriptions, providing explanations for atypical visual
occurrences, constructing websites based on handwritten
textual descriptions, and even acting as family doctors [43].
Despite these remarkable advancements, some features of
GPT-4 are still not accessible to the public and are closed-
source. Users need to pay and use some features through
API. As an accessible alternative, ChatGPT, which is also
developed by OpenAI, has demonstrated the potential to as-
sist in disease diagnosis through conversation with patients
[44], [45], [46], [46], [47], [48], [49]. By leveraging its ad-
vanced natural language processing capabilities, ChatGPT
could interpret symptoms and medical history provided
by patients and make suggestions for potential diagnoses
or referrals to appropriate dermatological specialists [50].
However, ChatGPT currently only allows text input and
does not support direct image input for diagnosis, which
limits its availability for dermatological diagnosis.

The idea of providing skin images directly for auto-
matic dermatological diagnosis and generating text reports
is exciting because it could greatly help solve the three
aforementioned challenges in the field of dermatology di-
agnosis. However, there exists no method to accomplish
this at present. But in related areas, ChatCAD [51] is one
of the most advanced approaches that designed various
networks to take X-rays, CT scans, and MRIs images to
generate diverse outputs, which are then transformed into
text descriptions. These descriptions are combined as in-
puts to ChatGPT to generate a condensed report and of-
fer interactive explanations and medical recommendations
based on the given image. However, their proposed vision-
text models were limited to certain tasks. Meanwhile, for
ChatCAD, users need to use ChatGPT’s API to upload text
descriptions, which could raise data privacy issues [41], [52],
[53] as both medical images and text descriptions contain a
lot of patients’ private information [54], [55], [56], [57]. To
address those issues, MiniGPT-4 [58] is the first open-source
method that allows users to deploy locally to interface
images with state-of-the-art LLMs and interact using natural
language without the need to fine-tune both pre-trained
large models but only a small alignment layer. MiniGPT-
4 aims to combine the power of a large language model
with visual information obtained from a pre-trained vision
encoder. To achieve this, the model uses Vicuna [59] as its
language decoder, which is built on top of LLaMA [60] and
is capable of performing complex linguistic tasks. To process
visual information, the same visual encoder used in BLIP-2
[61] is employed, which consists of a ViT [62] backbone com-
bined with a pre-trained Q-Former. Both the language and
vision models are open-source. To bridge the gap between
the visual encoder and the language model, MiniGPT-4
utilizes a linear projection layer. However, MiniGPT-4 is
trained on the combined dataset of Conceptual Caption [63],
SBU [64], and LAION [65], which are irrelevant to medical
images, especially dermatological images. Therefore, it is
still challenging to directly apply MiniGPT-4 to specific
domains such as formal dermatology diagnosis.

Here, we propose SkinGPT-4, the world’s first derma-
tology diagnostic system powered by an advanced vision-
based large language model (Figure 1). SkinGPT-4 leverages
a fine-tuned version of MiniGPT-4, trained on an extensive
collection of skin disease images (comprising 52,929 publicly
available and proprietary images) along with clinical con-
cepts and doctors’ notes. We designed a two-step training
process to develop SkinGPT-4 as shown in Figure 2. In
the initial step, SkinGPT-4 aligns visual and textual clinical
concepts, enabling it to recognize medical features within
skin disease images and express those medical features
with natural language. In the subsequent step, SkinGPT-
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Fig. 1. Illustration of SkinGPT-4. SkinGPT-4 incorporates a fine-tuned version of MiniGPT-4 on a vast collection (52,929) of both public and in-
house skin disease images, accompanied by clinical concepts and doctors’ notes. With SkinGPT-4, users could upload their own skin photos for
diagnosis, and SkinGPT-4 could autonomously determine the characteristics and categories of skin conditions, perform analysis, provide treatment
recommendations, and allow interactive diagnosis. On the right is an example of interactive diagnosis.

4 learns to accurately diagnoses the specific types of skin
diseases. This comprehensive training methodology ensures
the system’s proficiency in analyzing and classifying various
skin conditions. With SkinGPT-4, users have the ability to
upload their own skin photos for diagnosis. The system
autonomously evaluates the images, identifies the charac-
teristics and categories of the skin conditions, performs
in-depth analysis, and provides interactive treatment rec-
ommendations (Figure 3). Moreover, SkinGPT-4’s localized
deployment capability and a strong commitment to user
privacy make it a trustworthy and precise diagnostic tool for
patients seeking reliable assessments of their skin ailments.
Meanwhile, we showed that SkinGPT-4 could empower
patients to gain a clearer understanding of their symptoms,
diagnosis, and treatment plans, which could help patients
engage in more effective and economical consultations with
dermatologists. With SkinGPT-4, patients can have more
informed conversations with their doctors, leading to better
treatment outcomes and a higher level of satisfaction. To
demonstrate the robustness of SkinGPT-4, we conducted
quantitative evaluations on 150 real-life cases, which were
independently reviewed by certified dermatologists (Figure
4 and Supplementary information). The results showed
that SkinGPT-4 consistently provided accurate diagnoses of

skin diseases. It is important to note that while SkinGPT-
4 is not a substitute for medical professionals, it greatly
enhances users’ understanding of their medical conditions,
facilitates improved communication between patients and
doctors, expedites the diagnostic process for dermatologists,
and has the potential to advance human-centred care and
healthcare equity, particularly in underdeveloped regions
[66]. In summary, SkinGPT-4 represents a significant leap
forward in the field of dermatology diagnosis in the era of
large language models.

2 RESULTS

2.1 The Overall Design of SkinGPT-4

SkinGPT-4 is an interactive system designed to provide a
natural language-based diagnosis of skin disease images
as shown in Figure 1. The process commences when the
user uploads a skin image, which undergoes encoding by
the Vision Transformer (VIT) and Q-Transformer models
to comprehend its contents. The VIT model partitions the
image into smaller patches and extracts vital features like
edges, textures, and shapes. After that, the Q-Transformer
model generates an embedding of the image based on the
features identified by the VIT model, which is done by using

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.10.23291127doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.10.23291127
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

Fig. 2. Illustration of our datasets for two-step training of SkinGPT-4. The notes below each image indicate clinical concepts and types of skin
diseases. In addition, we have detailed descriptions from the certified dermatologists for images in the step 2 dataset. To avoid causing discomfort,
we used a translucent grey box to obscure the displayed skin disease images.

a transformer-based architecture that allows the model to
consider the context of the image. The alignment layer
facilitates the synchronization of visual information and
natural language, and the Vicuna component generates the
text-based diagnosis. SkinGPT-4 is fine-tuned on MiniGPT-4
using large skin disease images along with clinical concepts
and doctors’ notes to allow for interactive dermatological
diagnosis. The system could provide an interactive and
user-friendly way to help users self-diagnose skin diseases.

2.2 Interactive, Informative and Understandable Der-
matology Diagnosis of SkinGPT-4

SkinGPT-4 brings forth a multitude of advantages for
both patients and dermatologists. One notable benefit

lies in its utilization of comprehensive and trustworthy
medical knowledge specifically tailored to skin diseases.
This empowers SkinGPT-4 to deliver interactive diag-
noses, explanations, and recommendations for skin diseases
(Supplementary Video), which presents a challenge for
MiniGPT-4. Unlike MiniGPT-4, which lacks training with
pertinent medical knowledge and domain-specific adapta-
tion, SkinGPT-4 overcomes this limitation, enhancing its
proficiency in the dermatological domain. To demonstrate
the advantage of SkinGPT-4 over MiniGPT-4, we presented
two real-life examples of interactive diagnosis as shown in
Figure 3. In Figure 3a, an image is presented of an elderly
with actinic keratosis on her face. In Figure 3b, an image is
provided of a patient with eczema fingertips.
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Fig. 3. Diagnosis generated by SkinGPT-4, SkinGPT-4 (step 1 only), SkinGPT-4 (step 2 only), MiniGPT-4 and Dermatologists. a. A case of actinic
keratosis. b. A case of eczema fingertips.

For the actinic keratosis case (Figure 3a), MiniGPT-4
identified features like small and red bumps, and incorrectly
diagnosed the skin disease as acne, while SkinGPT-4 iden-
tified features like plaque, nodules, pustules, and scarring,
and diagnosed the skin disease as actinic keratosis, which is
a common skin condition caused by prolonged exposure to
the sun’s ultraviolet (UV) rays [67]. During the interactive
dialogue, SkinGPT-4 also suggested the cause of the skin
disease to be sun exposure, which was also verified as

correct by the certified dermatologist. For the example of
eczema fingertips case (Figure 3b), MiniGPT-4 identified
some features like cracks and skin flakes, missed the type
of the skin disease, and diagnosed the cause of the skin
disease to be dry weather and excessive hand washing. In
comparison, SkinGPT-4 identified either the features of the
skin disease as dry itchy and flaky skin, and diagnosed the
type of the skin disease to be eczema fingertips, which was
also verified by certified dermatologists.
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Fig. 4. Clinical evaluation of SkinGPT-4 by certified offline and online dermatologists. a. Questionnaire-based assessment of SkinGPT-4 by offline
dermatologists. b. Response time of SkinGPT-4 compared to consulting dermatologists online.

In summary, the absence of dermatological knowledge
and domain-specific adaptation poses a significant chal-
lenge for MiniGPT-4 in achieving accurate dermatological
diagnoses. Contrastingly, SkinGPT-4 successfully and ac-
curately identified the characteristics of the skin diseases
displayed in the images. It not only suggested potential
disease types but also provided recommendations for poten-
tial treatments. This further highlights that domain-specific
adaption is crucial for SkinGPT-4 to work for the dermato-
logical diagnosis.

2.3 SkinGPT-4 Masters Medical Features to Improve Di-
agnosis with the Two-step Training

To further illustrate the capability of SkinGPT-4 in enhanc-
ing dermatological diagnosis through learning medical fea-
tures in skin disease images, we conducted ablation studies,
as depicted in Figure 3 by training SkinGPT-4 using either
solely the step 1 dataset or solely the step 2 dataset. As
specified in Method and illustrated in Figure 2, we designed
a two-step training process for SkinGPT-4. Initially, we
utilized the step 1 dataset to familiarize SkinGPT-4 with
the medical features present in dermatological images and
allow SkinGPT-4 to express medical features in skin disease
images with natural language. Subsequently, we employed
the step 2 dataset to train SkinGPT-4 to achieve a more
precise diagnosis of disease types.

In the instance of actinic keratosis (Figure 3a), which
is a hard case, SkinGPT-4 trained solely on the step 1
dataset demonstrated its proficiency in identifying pertinent
medical features such as plaque, crust, erythema, and umbil-
icated. These precise and comprehensive morphological de-
scriptions accurately captured the characteristics of the skin
disease depicted in the image. However, when SkinGPT-4
was exclusively trained on the step 1 dataset, it erroneously

diagnosed the skin condition as a viral infection, indicating
the importance of incorporating the step 2 dataset for more
accurate disease identification. In contrast, when trained
solely on the step 2 dataset, SkinGPT-4 failed to capture the
accurate morphological descriptions of the skin diseases and
instead incorrectly diagnosed it as the result of excessive
sebum production. It highlights the necessity of incorpo-
rating the step 1 dataset to effectively recognize and com-
prehend the specific medical features essential for precise
dermatological diagnoses. In comparison, SkinGPT-4 with
our two-step training simultaneously identified the medical
features, such as plaque, nodules, pustules and scarring, and
diagnosed the skin disease as actinic keratosis. For simple
cases such as the eczema fingertips shown in Figure 3b,
SkinGPT-4 could also provide more detailed descriptions of
the skin disease image, encompass the medical features and
accurately identify the type of skin disease. In conclusion,
the two-step training process we have implemented allows
SkinGPT-4 to effectively comprehend and master medical
features in dermatological images, thereby significantly en-
hancing the accuracy of diagnoses, which is particularly
crucial for hard cases where precise identification of medical
features is paramount to accurately determining the type of
disease.

2.4 Clinical Evaluation of SkinGPT-4 by Certified Der-
matologists

To evaluate the reliability and robustness of SkinGPT-4, we
conducted a comprehensive study involving a large number
of real-life cases (150) and compared its diagnoses with
those of certified dermatologists. The results, presented in
Table 2 and Supplementary information, demonstrated that
SkinGPT-4 consistently provided accurate diagnoses that
were in agreement with those of the certified dermatologists
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as shown in Figure 4, as well as in all cases detailed in the
Supplementary information.

Among the 150 cases, a significant percentage of
SkinGPT-4’s diagnoses (78.76%) were evaluated as correct
or relevant by certified dermatologists. This evaluation en-
compassed both strongly agree (73.13%) and agree (5.63%).
Additionally, SkinGPT-4’s responses regarding the causes
of the disease and potential treatments were considered
informative (80.63%) and useful (83.13%) by the doctors.
Furthermore, SkinGPT-4 proved to be a valuable tool for
doctors in the diagnosis process (85%) and for patients in
gaining a better understanding of their diseases (81.25%).
The capability of SkinGPT-4 to support local deployment,
ensuring user privacy, garnered high agreement (91.88%),
further enhancing the willingness to utilize SkinGPT-4
(75%).

Overall, the study demonstrated that SkinGPT-4 delivers
reliable diagnoses, aids doctors in the diagnostic process, fa-
cilitates patient understanding, and prioritizes user privacy,
making it a valuable asset in the field of dermatology.

2.5 SkinGPT-4 Acts as a 24/7 On-call Family Doctor

In comparison to online consultations with dermatologists,
which often entail waiting minutes for a response, SkinGPT-
4 offers several advantages. Firstly, it is available 24/7,
ensuring constant access to medical advice. Additionally,
SkinGPT-4 provides faster response times, typically within
seconds, as depicted in Figure 4b, which makes it a swift
and convenient option for patients requiring immediate
diagnoses outside of regular office hours.

Moreover, SkinGPT-4’s ability to offer preliminary di-
agnoses empowers patients to make informed decisions
about seeking in-person medical attention. This feature can
help reduce unnecessary visits to the doctor’s office, saving
patients both time and money. The potential to improve
healthcare access is particularly significant in rural areas or
regions experiencing a scarcity of dermatologists. In such
areas, patients often face lengthy waiting times or must
travel considerable distances to see a dermatologist [68]. By
leveraging SkinGPT-4, patients can swiftly and conveniently
receive preliminary diagnoses, potentially diminishing the
need for in-person visits and alleviating the strain on health-
care systems in these underserved regions.

3 METHODS

3.1 Dataset

Our datasets include two public datasets and our private
in-house dataset, where the first public dataset was used for
the step 1 training, and the second public dataset and our
in-house dataset were used for the step 2 training.

TABLE 1
Characteristics of Step 1 Dataset. It is possible for a single image to

have multiple medical concepts at the same time. The total number of
samples is 3886.

Clinical Concepts Number of Samples

Erythema 2139
Plaque 1966
Papule 1169

Brown(Hyperpigmentation) 759
Scale 686
Crust 497

White(Hypopigmentation) 257
Yellow 245
Erosion 200
Nodule 189
Ulcer 154

Friable 153
Patch 149

Dome-shaped 146
Exudate 144

Scar 123
Pustule 103

Telangiectasia 100
Black 90

Purple 85
Atrophy 69

Bulla 64
Umbilicated 49

Vesicle 46
Warty/Papillomatous 46

Excoriation 46
Exophytic/Fungating 42

Xerosis 35
Induration 33

Fissure 32
Sclerosis 27

Pedunculated 26
Lichenification 25

Comedo 24
Wheal 21

Flat topped 18
Translucent 16

Macule 13
Salmon 10

Purpura/Petechiae 10
Acuminate 8

Cyst 6
Blue 5

Abscess 5
Poikiloderma 5

Burrow 5
Gray 5

Pigmented 5

The first public dataset named SKINCON [69] is the
first medical dataset densely annotated by domain experts
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TABLE 2
Characteristics of Step 2 Dataset and Clinical Evaluation Dataset.

Major Classes of Skin Disease
Number of Samples

in Step 2 Dataset
Number of Samples

in Clinical Evaluation Dataset

Acne and Rosacea 840 10
Malignant Lesions (Actinic Keratosis, Basal Cell Carcinoma, etc.) 8166 10

Dermatitis (Atopic Dermatitis, Eczema, Exanthems, Drug Eruptions, Contact Dermatitis, etc.) 5262 10
Bullous Disease 448 10

Bacterial Infections (Cellulitis, Impetigo, etc.) 228 10
Light Diseases (vitiligo, sun damaged skin, etc.) 568 10

Connective Tissue diseases (Lupus, etc.) 420 10
Benign Tumors (Seborrheic Keratoses, etc.) 1916 10

Melanoma Skin Cancer, Nevi, Moles 23373 10
Fungal Infections (Nail Fungus, Tinea Ringworm, Candidiasis, etc.) 2340 10

Psoriasis and Lichen Planus 3460 10
Infestations and Bites (Scabies, Lyme Disease, etc.) 431 10

Urticaria Hives 212 10
Vascular Tumors 735 10

Herpes 405 10
Others 239 /

Total 49043 150

to provide annotations useful across multiple disease pro-
cesses. SKINCON is a skin disease dataset densely anno-
tated by dermatologists and it includes 3230 images from
the Fitzpatrick 17k skin disease dataset densely annotated
with 48 clinical concepts as shown in Table 1, 22 of which
have at least 50 images representing the concept, and 656
skin disease images from the Diverse Dermatology Images
dataset. The 48 clinical concepts proposed by SKINCON
include Vesicle, Papule, Macule, Plaque, Abscess, Pustule,
Bulla, Patch, Nodule, Ulcer, Crust, Erosion, Excoriation, At-
rophy, Exudate, Purpura/Petechiae, Fissure, Induration, Xe-
rosis, Telangiectasia, Scale, Scar, Friable, Sclerosis, Peduncu-
lated, Exophytic/Fungating, Warty/Papillomatous, Dome-
shaped, Flat-topped, Brown (Hyperpigmentation), Translu-
cent, White (Hypopigmentation), Purple, Yellow, Black, Ery-
thema, Comedo, Lichenification, Blue, Umbilicated, Poik-
iloderma, Salmon, Wheal, Acuminate, Burrow, Gray, Pig-
mented, and Cyst.

The second public dataset named the Dermnet contains
18,856 images, which are further classified into 15 classes
by our board-certified dermatologists, including Acne and
Rosacea, Malignant Lesions (Actinic Keratosis, Basal Cell
Carcinoma, etc.), Dermatitis (Atopic Dermatitis, Eczema,
Exanthems, Drug Eruptions, Contact Dermatitis, etc.), Bul-
lous Disease, Bacterial Infections (Cellulitis, Impetigo, etc.),
Light Diseases (vitiligo, sun damaged skin, etc.), Connective
Tissue diseases (Lupus, etc.), Benign Tumors (Seborrheic
Keratoses, etc.), Melanoma Skin Cancer (Nevi, Moles, etc.),
Fungal Infections (Nail Fungus, Tinea Ringworm, Candidi-
asis, etc.), Psoriasis and Lichen Planus, Infestations and
Bites (Scabies, Lyme Disease, etc.), Urticaria Hives, Vascular

Tumors, Herpes, and others.
Our private in-house dataset contains 30,187 pairs of skin

disease images and corresponding doctors’ descriptions.
The complete dataset for step 2 training comprises in total
of 49,043 pairs of images and textual descriptions as shown
in Table 2.

3.2 The two-step training of SkinGPT-4

SkinGPT-4 was trained using a vast of skin disease images
along with clinical concepts and doctors’ notes (Figure 1).
In the first step, we fine-tuned the pre-trained MiniGPT-4
model using the step 1 training dataset. This dataset consists
of paired skin disease images along with corresponding
descriptions of clinical concepts. By training SkinGPT-4 on
this dataset, we enabled the model to grasp the nuances of
clinical concepts specific to skin diseases.

In the second step, we further refined the model by
fine-tuning it using the step 2 dataset, which comprises
additional skin images and refined doctors’ notes. This
iterative training process facilitated the accurate diagnosis of
various skin diseases, as SkinGPT-4 incorporated the refined
medical insights from the doctors’ notes.

By following this two-step fine-tuning approach,
SkinGPT-4 attained an enhanced understanding of clinical
concepts related to skin diseases and acquired the profi-
ciency to generate accurate diagnoses.

3.3 Model Training and Resources

During the training of both steps, the max number of
epochs was fixed to 20, the iteration of each epoch was
set to 5000, the warmup step was set to 5000, batch size
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was set to 2, the learning rate was set to 1e-4, and max
text length was set to 160. The entire fine-tuning process
required approximately 9 hours to complete and utilized
two NVIDIA V100 (32GB) GPUs. During inference, only one
NVIDIA V100 (32GB) GPU was necessary. SkinGPT-4 was
developed using Python 3.7, PyTorch 1.9.1, and CUDA 11.4.
For a comprehensive list of dependencies, please refer to our
code availability documentation. The training and inference
procedures were conducted on a workstation equipped with
252 GB RAM, 112 CPU cores, and two NVIDIA V100 GPUs,
which provided the computational resources necessary for
efficient model training and inference.

3.4 Clinical Evaluation of SkinGPT-4

To assess the reliability and effectiveness of SkinGPT-4, we
assembled a dataset comprising 150 real-life cases of various
skin diseases as shown in Table 2. Interactive diagnosis ses-
sions were conducted with SkinGPT-4, utilizing four specific
prompts:

1. Could you describe the skin disease in this image for
me?

2. Please provide a paragraph listing additional features
you observed in the image.

3. Based on the previous information, please provide a
detailed explanation of the cause of this skin disease.

4. What treatment and medication should be recom-
mended for this case?

To conduct the clinical evaluation, certified dermatolo-
gists were provided with the same set of four questions
and were required to make diagnoses based on the given
skin disease images. Meanwhile, the dermatologists also
evaluated the reports generated by SkinGPT-4 and assigned
scores (strongly agree, agree, neutral, disagree, and strongly
disagree) to each item in the evaluation form (Figure 4a),
including the following questions:

1. SkinGPT-4’s diagnosis is correct or relevant.
2. SkinGPT-4’s description is informative.
3. SkinGPT-4’s suggestions are useful.
4. SkinGPT-4 can help doctors with diagnosis.
5. SkinGPT-4 can help patients to understand their dis-

ease better.
6. If SkinGPT-4 can be deployed locally, it protects pa-

tients’ privacy.
7. Willingness to use SkinGPT-4.
In particular, for questions 3 and 5, we further collected

the opinions of users of SkinGPT-4, who usually do not have
strong background knowledge in dermatology, to show that
SkinGPT-4 is friendly to the general users. Those results
allowed for a comprehensive evaluation of SkinGPT-4’s per-
formance in relation to certified dermatologists and patients.

4 CONCLUSION AND DISCUSSION

Our study showcases the promising potential of utilizing
visual inputs in LLMs to enhance dermatological diagnosis.
With the upcoming release of more advanced LLMs like
GPT-4, the accuracy and quality of diagnoses could be fur-
ther improved. However, it is essential to address potential
privacy concerns associated with using LLMs like ChatGPT
and GPT-4 as an API, as it requires users to upload their
private data. In contrast, SkinGPT-4 offers a solution to
this privacy issue. By allowing users to deploy the model
locally, the concerns regarding data privacy are effectively
resolved. Users have the autonomy to use SkinGPT-4 within
the confines of their own system, ensuring the security and
confidentiality of their personal information.

During the course of a patient’s consultation with a
dermatologist, the doctor often asks additional questions to
gather crucial information that aids in arriving at a precise
diagnosis. In contrast, SkinGPT-4 relies on the information
provided by users to assist in the diagnostic process. Ad-
ditionally, doctors often engage in empathetic interactions
with patients, as the emotional connection could contribute
to the diagnostic process. Due to these factors, it remains
challenging for SkinGPT-4 to fully replace dermatologists at
present. However, SkinGPT-4 still holds significant value as
a tool for both patients and dermatologists. It can greatly
expedite the diagnostic process and enhance the overall
service delivery. By leveraging its capabilities, SkinGPT-4
empowers patients to obtain preliminary insights into their
skin conditions and aids dermatologists in providing more
efficient care. While it may not fully substitute for the ex-
pertise and empathetic nature of dermatologists, SkinGPT-4
serves as a valuable complementary resource in the field of
dermatological diagnosis.

As LLMs-based applications like SkinGPT-4 continue
to evolve and improve with the acquisition of even more
reliable medical training data, the potential for signifi-
cant advancements in online medical services is enormous.
SkinGPT-4 could play a critical role in improving access to
healthcare and enhancing the quality of medical services for
patients worldwide. We will continue our research in this
field to further develop and refine this technology.
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