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Abstract

We detect seizures in newborn infants using a novel method derived
from triple correlation, which integrates spatial and temporal structure
in neonatal electroencephalograms (EEGs). Triple correlation natively
encompasses analogues to a variety of lower-order approaches (auto-
correlation, cross-correlation) in addition to introducing higher-order sig-
nals, so we hypothesized that our approach would both effectively detect
and differentiate notoriously difficult-to-detect and heterogeneous neona-
tal seizures. Indeed, our method in its simplest form performs comparably
well to a current standard of care, amplitude-integrated EEG (aEEG),
and by some measures outperforms aEEG, suggesting at a minimum
that a combination of triple correlation and aEEG could produce a more
effective first-line bedside detector. Moreover, we find that the triple cor-
relation seizure-signal varies between patients, with 1) differences in dom-
inance of either within or between channel correlations and 2) differing
levels of higher order structure. We hope that our approach will provide
a fertile field for future work in distinguishing and detecting seizures.
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2 Neonatal Seizure Detection

1 Introduction

Newborn infants have the highest risk of seizures among all age groups,
seizures that both often have severe consequences and cannot always be visu-
ally detected (Glass et al, 2016; Padiyar et al, 2020): only EEG monitoring can
detect a majority of these seizures (Glass et al, 2013). Unfortunately, the gold
standard, continuous video EEG (cEEG) monitoring, is highly resource inten-
sive, requiring specialized clinicians to evaluate high-frequency data around
the clock (Kubota et al, 2018). To improve efficiency, clinicians often use trans-
formed and time-compressed EEG signals to improve the visual salience of
seizures, which allows them to read through recordings more quickly (Glass
et al, 2013). However, even with more efficient review, ongoing real-time moni-
toring is still unrealistic for the vast majority of neonatal care. While catching
the seizure in review at the end of the day is helpful, the quicker the detection
the better the outcomes (Gotman, 1985; Gotman et al, 1997). Ultimately, we
would like a detector that could alert clinicians in real-time to the possibility
of a seizure.

Such a detector might naturally be constructed using the same trans-
formation that enables clinicians to more efficiently review recordings: an
improvement in visual salience should correspond to an improvement in numer-
ical distinguishability. In neonatal intensive care units (NICUs), the standard
transformed signal is amplitude-integrated EEG (aEEG) (Glass et al, 2013).
An aEEG signal includes two traces subsampling a rectified and low-pass-
filtered EEG to include only two points in a large time window (e.g. 15
seconds): one at an upper percentile, one at a lower percentile (e.g. 95th and
9th) (Zhang and Ding, 2013; Rakshasbhuvankar et al, 2015; Chen et al, 2019).
Since this subsamples a typical 256Hz EEG over 2000x, with aEEG clinicians
can quickly review several hours of recordings to identify time windows with
trends suspicious for seizure activity. Additionally, neonatologists lacking the
specialized training required to read cEEG can parse aEEG bedside Glass et al
(2013). One particular trend indicative of seizure is an increase in the lower
trace, which is a trend in theory easily detectable by simple thresholding (Glass
et al, 2013).

In this paper, we implement a simple detector with a signal derived from
triple correlation. We have shown elsewhere that triple correlation completely
characterizes any neural recording (Deshpande et al, 2023), so it should reflect
any difference between seizure and non-seizure epochs. We show that a simple,
theory-inspired summary of triple correlation leads to detection on par with
the aEEG lower margin. Moreover, unlike the aEEG’s single axis of change,
triple correlation reflects the heterogeneity of neonatal seizures.
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Fig. 1 Example pre-processed EEG snippets in confusion matrix with artifacts.
Snippets in the top row had salient TriCorr signals that were detected as seizures by most
thresholds (see Fig. 3 for signal traces). Snippets in the bottom row did not have salient Tri-
Corr signals. First-column snippets include a reviewer-consensus seizure (marked by upper
bar). Middle-column snippets include a neurologist-annotated artifact (marked by upper
bar). Third-column snippets include no expert-defined event, confirmed post-hoc by our neu-
rologist (JH). The upper bar in the upper-right snippet indicates the erroneous detection.
Green outlines indicate the detector matched the reviewer consensus, red indicates detector
error. The blue bar below each recording indicates 60s.

2 Methods

2.1 Open-source EEG recordings

We used neonatal EEG recordings from an open-source dataset (Stevenson
et al, 2019). These clinical recordings were sampled at 256 Hz and include
evaluations by three expert reviewers for seizures. There were 79 patients in the
dataset, with 343 seizures (defined by reviewer consensus) across 39 patients
(seizing patient mean seizure count was 8.8 ± 11.9 std). The total duration
of the recordings was 402,825s, of which 39,259s was marked as seizing (mean
seizure duration 1,006s ± 1,392s std).

We ran our analyses both on the entire dataset, and on a subset with
artifacts manually removed. Because of the time-consuming nature of expert
artifact annotation, we only evaluated a subset of the recordings for artifacts.
To choose that subset, we visually inspected all patients’ reviewer consen-
sus plots (see Fig. 2) and selected eight patients as having both 1) good
reviewer consensus, as indicated by a lack of epochs with only one or two
of the three reviewers indicating a seizure, and 2) a good balance of seizure
and non-seizure epochs. We then additionally took the first fifteen record-
ings by the dataset’s numbering, so that we evaluated a mix of “clean” and
randomly-chosen recordings. A trained neurologist (JH) then annotated arti-
facts within these recordings. We discarded one patient (patient 21) from this
subset because the vast majority of the recording was artifactual (92%).
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There were 22 patients in the artifact-annotated dataset, with 134 seizures
(defined by reviewer consensus) across 16 patients (mean seizure count was 8.4
± 11.9 std). Total duration of the artifact-annotated recordings was 121,533s,
of which 2,898s were marked as seizing (mean seizure duration 929s ± 842s
std).

We excluded the respiratory and ECG channels from all analyses because
they are not EEG signals. We additionally excluded Fz and Cz from all analyses
due to channel-specific whole-recording artifacts in many patients.

2.2 Code

The below analyses were conducted with Julia v1.7.3 (Bezanson et al,
2017). All code is available on Github at grahamas/NeonateTriCorr. Filtering
used the package JuliaDSP/DSP.jl. Statistical tests used JuliaStats/Hypothe-
sisTests.jl. ROC analysis used davidavdav/ROCAnalysis.jl.

2.3 EEG preprocessing

Prior to analysis, we preprocessed the EEG recordings. We first de-meaned
per-channel; then bandstop filtered between 45 and 55 Hz with a sixth-order
Butterworth (to account for European mains frequency of 50 Hz); then band-
pass filtered between 0.1 Hz and 70 Hz with a second-order Butterworth; and
finally divided by standard deviation, per-channel.

2.4 Amplitude-integrated EEG (aEEG)

To calculate the aEEG, we followed the example of Zhang and Ding (2013).
Starting from the pre-processed EEG, we bandpass filtered between 2 and 20Hz
using an FIR with a 50th order Hamming window, diverging from Zhang and
Ding (2013) but in line with Werther et al (2017); Quigg and Leiner (2009).
Next we computed the envelope by lowpassing below 0.32 Hz (corresponding
to an RC circuit with a 500ms time constant, as in Zhang and Ding (2013))
with a 5th order Butterworth. Then, we divided the recording into sequential
segments of length 15 seconds. Within each of these segments, we calculated
the “margins”: the value at the 9th and 93rd percentiles, the lower and upper
margins respectively. These margins constitute the aEEG trace. To construct
our detector, we used only the lower margin, since a common feature of seizures
is an increase in the lower margin (Glass et al, 2013). In contrast to prior work,
we opted to include all channels rather than pick a single channel.

2.5 Triple correlation over time

We calculated the triple correlation as in Deshpande et al (2023), in one sec-
ond snippets with lags in the ranges of -8:8 spatial and -25:25 temporal bins,
using periodic spatial boundary conditions and data-padded temporal bound-
ary conditions. With 17 EEG channels, a lag of 8 spatial bins encompasses
the entire spatial domain. With a sampling frequency of 256 Hz, the temporal
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Fig. 2 TriCorr and aEEG signals used in simple detector. left aEEG lower margins
(9th percentile) for each EEG channel, for patients 7 (top) and 62 (bottom) right TriCorr
contributions for each motif class within sequential 1s EEG snippets. The uncolored trace
shows the number of reviewers indicating a seizure occured in each second, out of a possible
three reviewers. Blue shading indicates reviewer consensus, plus one minute on either side.
Red shading indicates minutes including seconds that were artifact-annotated by our expert
reviewer
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lags encompass approximately -98:98ms. We summarized the triple correlation
by its fourteen motif classes, which partition the space of triplet motifs into
qualitatively distinct classes embodying different computational patterns, e.g.
synchrony, feedback, divergence, etc.

2.6 Distribution comparisons

We used an approximate two-sample Kolmogorov-Smirnov (KS) test to com-
pare seizure and non-seizure snippets’ signals (TriCorr or aEEG), excluding
non-seizure snippets within 60 seconds of seizure onset or offset. The KS test
tests the null hypothesis that two samples could have been drawn from the
same unknown distribution. Thus, significant p-values indicate that the seizure
and non-seizure signals likely had differing statistical distributions.

2.7 Detector construction

For both aEEG and triple correlation (TriCorr) we obtained multi-channel
signals: in the case of aEEG, these are the seventeen EEG channels, and in
the case of TriCorr, these are the fourteen motif classes. Within these chan-
nels, we z-scored either within or across patients: we subtracted either the
across-patient or within-patient channel mean and divided by the all-patient
or within-patient standard deviation. Then we computed the rolling temporal
mean in 60s windows. These channels are depicted in Fig. 2.

In the case of TriCorr, we then took the absolute value of these signals,
since seizures could be reflected by either positive or negative deviations from
the mean. In contrast, aEEG lower margin only reflects seizures through
increases. We created a single timeseries by taking the maximum value across
all channels.

To account for complications due to differing resolutions of TriCorr and
aEEG (1s vs 15s snippets, respectively), we applied our detector per-minute:
we divided the signals into 60s intervals and regarded any suprathreshold signal
within an interval as a detection for the whole interval, and otherwise marked
no detection for the interval. An interval was regarded as a seizure interval if
all three reviewers marked a seizure within one minute of the start or end of
the interval.

We depict examples of both aEEG and TriCorr detector signals in Figure
3.

2.8 Detector metrics

To evaluate the efficacy of our detectors, we constructed ROC curves using
davidavdav/ROCAnalysis.jl. These ROC curves are depicted in Fig. 4 with
clinically-relevant versions of the true positive rate (TPR) and false positive
rate (FPR). Rather than a per-interval TPR, we reported a per-seizure TPR,
which indicates the proportion of seizures correctly detected. For FPR, we
reported the false positives per hour (FP/Hr), which is simply the FPR multi-
plied by the number of non-seizure hours. Note that AUCs are reported for the
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Fig. 3 Example detector traces in confusion matrix with artifacts. Each trace is
a 1000s long snippet including the example indicated by the row and column labels. These
1000s snippets encompass the same examples as in Fig. 1. We did not use a particular
threshold to choose these examples. A true positives: a long seizure (blue highlight) with
two high-amplitude detections by both TriCorr (blue line) and aEEG (red line). B artifact-
induced false positive: three artifacts (red highlight), with the first producing salient signals
in both TriCorr and aEEG. C a false positive in the TriCorr signal, though not so definitively
in the aEEG. D false negative: a seizure not detected by either signal. E true negative
(correct artifact rejection): the latter three artifacts are not marked as detections by either
TriCorr or aEEG. However, the first artifact encompasses a seizure that is correctly detected
by both TriCorr and aEEG, and so does not fall properly into any of these six categories. F
a true negative with only a brief correctly rejected artifact.

identically-shaped ROC but with a per-interval FPR axis rather than FP/Hr,
so that the AUC is between 0 and 1.

We calculated the clinician FP/Hour rate by marking detections when
any reviewer indicated a seizure and comparing this to the reviewer-consensus
“ground truth.”
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Fig. 4 Detector ROC curves. These curves compare the success of detectors when
defining success per-seizure, top row, or per-patient, bottom row, and when z-scoring the
detector signals across all patients, left, or within each patient, right. In all cases the failure
rate is defined as false positive minutes per hour.

3 Results

3.1 Triple correlation detects individual seizures
comparably well to clinical standard

A signal based on triple correlation leads to similar per-seizure detection
performance compared to one based on aEEG, the current clinical standard.

Neither is obviously better. The ROC curves are quite similar (Fig. 4), with
the only substantial deviation being in the case where we z-score the signals
across all patients for detecting individual seizures (Fig. 4B). In that case, the
TriCorr detector has a higher AUC than the aEEG. This suggests TriCorr
could be a better naive detector, i.e. that it would require less tailoring to the
individual patient’s signal statistics.

Comparing traces in individual patients, in some patients the aEEG signal
is cleaner, in others the triple correlation signal. Nor is it clear that the “ground
truth” is any better: trained clinicians routinely disagree with each other. In
our data, the trained clinicians had a false positive rate of 6 FP/Hr when
treating single reviewers as the detection signal and reviewer consensus as the
ground truth.
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Target Standardization Signal AUC TPR (5.7 FP/Hr) FP/Hr (80% TPR)
patient across aEEG 0.94 0.82 5.5
patient across tricorr 0.92 0.79 6.3
patient within aEEG 0.96 0.92 2.9
patient within tricorr 0.98 1.0 2.1
seizure across aEEG 0.76 0.48 27.0
seizure across tricorr 0.84 0.58 16.0
seizure within aEEG 0.83 0.6 15.0
seizure within tricorr 0.81 0.52 21.0

Table 1 Statistics for the ROC curves shown in Figure 4. Target indicates
whether the positives were per-patient or per-seizure; standardization indicates whether
the signals were z-scored across or within patients. Signal indicates aEEG vs TriCorr. AUC
is area under the ROC curve. TPR indicates the true positive rate (either per-patient or
per-seizure) at FP/Hr = 5.7, which was chosen because that is the false positive rate of
single-reviewer annotation. FP/Hr indicates the rate of false positives for a detector with
80% sensitivity.

3.2 Triple correlation can detect seizing patients
comparably well to expert reviewers

For per-patient detection, at perfect sensitivity the TriCorr detector can have
the same specificity as the expert reviewers (Fig. 4C; Table 1), in the most
ideal case where we have an estimate for the distributions of motif-class contri-
butions for each patient. Given that this level of uncertainty is inherent in our
“ground truth,” this performance is the best performance we could expect. In
comparison, even in this ideal case aEEG does not achieve perfect sensitivity
without more than five times the reviewers’ FP/hour. The aEEG’s sensitivity
at the same 5.7 FP/Hr specificity is 92% (see Table 1).

3.3 Triple correlation distinguishes heterogeneity

Triple correlation reveals structural variations between patients’ seizure
responses, where aEEG only offers a monolithic signal. Our analysis reflects
that neonatal seizures can involve either an increase or a decrease in triple cor-
relation, and usually this change is consistent within a patient, i.e. each patient
has a particular type of seizure. Our algorithm then reduces this complexity
to ask if signals indicating any of these types of seizures are present. However,
heterogeneity in seizure signal is visually apparent before this reduction Fig. 2.

Of the 39 patients with seizures, 13 had significant distribution differences
with increases in triple correlation ictal vs interictally, 11 had decreases, 3 had
heterogeneous effects among motif classes, and 11 had no significant difference
in motif class contributions between ictal and interictal snippets, as determined
by a Kolmogorov-Smirnov test.

4 Discussion

Triple correlation provides a rich field of potential signals. Here we used only
the simplest and even so matched and perhaps exceeded aEEG, a signal trans-
formation in wide clinical use. Even better, our approach distinguishes among
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the heterogeneous neonatal seizures, even here where we have reduced TriCorr
to its grossest components (motif classes). In its fullness, triple correlation pro-
vides a plethora of building blocks with which to construct signals with the
potential to differentiate between seizures. Perhaps we will one day be able to
relate these differences to known differences in etiology and treatment.

The expressiveness of TriCorr signals could also help more immediately,
at the bedside where aEEG is currently used. Commonly aEEG is used as a
front-line bedside tool by neonatologists rather than neurologists because it
offers a straightforward signal that doesn’t require years of training the way
that cEEG does. However, that simplicity comes at a tradeoff when some
nuanced differences in signals have different diagnostic outcomes. For example,
one critical predictor of neonatal outcomes is the EEG background, which can
be read from the aEEG margins over an extended time. However, abnormal
background voltage involves a decreased lower margin, which stands in contrast
to seizure detection, where an increased margin indicates a seizure. This can
lead long seizures to be mistakenly interpreted as normal background EEG,
with concommitant incorrect treatment, and hence poor outcomes (Glass et al,
2013). With the expressiveness of TriCorr, we hypothesize seizure and normal
background would be separable.

The further reaching advantage of TriCorr is that it specifically expresses
features that are more covert than those expressed by aEEG. aEEG makes
overt the general trends of the maxima and minima of the EEG, less some
noise. In contrast, TriCorr overtly represents the third-order structure. While
an expert could in theory read such structure from the EEG, it would be with
extensive training and experience, not unlike that of the trained epileptologist.
TriCorr creates the potential to explicitly represent that structure to a more
generally trained audience, such as a nurse or neonatologist, for whom noticing
a seizure is but one of many tasks.

This brings us to the final caveat of this study: we do not claim this will
replace the need for neurologists trained in the art of reading cEEG. We can
only argue that this prepares the way for more reliable and timely alarm to
bring cases to the attention of the neurologist for definitive diagnosis. We do,
additionally, hope that TriCorr will augment the neurologist’s reading, but this
study does not begin to provide evidence for such a claim, merely the hope.
Indeed, it is hard to see how such evidence could be acquired definitively, given
that the ground truth must always be the expert reviewers themselves.
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