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Abstract:  10 

Identifying individuals at high risk of chronic diseases via easily measured biomarkers could 
improve public health efforts to prevent avoidable illness and death. Here we present nuclear 
magnetic resonance blood metabolomics from half a million samples from three national 
biobanks. We built metabolomic risk scores that identify a high-risk group for each of 12 
diseases that cause the most morbidity in high-income countries and show consistent cross-15 
biobank replication of the relative risk of disease for these groups. We show that these 
metabolomic risk scores are more strongly associated with future disease onset than polygenic 
scores for most of these diseases. In a subset of 18,000 individuals with metabolomic biomarkers 
measured at two time points we show that people whose scores change have dramatically 
different future risk of disease, suggesting that repeat measurements capture the benefits of 20 
lifestyle change. We show cross-biobank calibration of our scores. Since metabolomics can be 
measured from a standard blood sample, we propose such tests can be feasibly implemented 
today in preventative health programs. 

 
One-Sentence Summary:  25 
Biomarkers from half a million blood samples identifies people at increased risk of chronic 
diseases and can be used for early detection today.  
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Life expectancy is increasing faster than healthy life expectancy, leading to individuals in high-
income countries to live more years restricted by chronic diseases (1, 2). Healthcare systems face 
a cost crisis as they try to provide an increasingly wide range of transformative but expensive 
treatments to the older, sicker populations they care for (3). Better prevention, to complement 
new treatments, is essential to provide healthier lives and to financially sustain healthcare 5 
systems. The established approach to preventative health is: (i) identify affordable interventions 
without side effects that can reduce future disease incidence, (ii) develop risk prediction 
algorithms to identify the right individuals to target, and (iii) implement the risk prediction as 
widely as possible. For example, the NHS Health Check (4) is available to adults in the UK 
every five years, and uses lifestyle factors, family and clinical history, blood pressure, and a 10 
cholesterol test to identify individuals at high risk of cardiovascular disease who should adjust 
their lifestyle or begin taking cholesterol-lowering or blood pressure reducing medicine (5).  

Risk stratification can be improved for cardiovascular disease and applied to a much wider range 
of diseases via ‘omic’ data types that have become mainstays of medical research but are not yet 
incorporated into healthcare. Most focus has been on polygenic scores (PGS) (6, 7), which can 15 
identify individuals at elevated risk for multiple diseases (8) only need one measurement, and 
offer complementary information to traditional risk factors (9, 10). Implementation of PGS has 
been limited by both resistance to broader clinical use of genetic information, and practical 
challenges to measuring a DNA sample and inserting the relevant information to health records. 
Metabolomic risk models, based on biomarkers measured in blood samples, for example via 20 
nuclear magnetic resonance spectroscopy (11–13), have also been shown to predict many 
common diseases (14, 15) including cardiovascular events, type 2 diabetes (16), and all-cause 
mortality (17). The metabolomic measurement needed for these scores can be generated from a 
standard blood sample, and includes many biomarkers already familiar in clinical practice, such 
as cholesterol, glucose, and creatinine. Furthermore, since the metabolomic risk scores may 25 
change in response to lifestyle and treatment (in contrast to PGS), they can be used both to 
identify high-risk individuals and to track changes in their risk profile. A few studies have 
suggested complementary value for genetics and metabolomics in cardiovascular disease and 
type 2 diabetes (18, 19), but the combined use of these omics-based risk predictors has not yet 
been evaluated at scale. 30 

Here, we generated nuclear magnetic resonance metabolomic data in half a million samples from 
individuals with years of follow-up data on clinical outcomes to train and test risk prediction of 
the twelve leading causes of disability-adjusted life years (DALYs) in high-income countries. 
We investigate the relative prediction of metabolomic scores and PGS in different diseases and 
time scales, assess the value of multiple metabolomic time points, and discuss how such risk 35 
predictions could plausibly be used in real-world public health settings. 

 
Metabolomic risk prediction across top sources of morbidity 

Building risk models 
We collaborated with the UK Biobank, Estonian Biobank, and Finnish THL Biobank to measure 40 
metabolomic biomarkers via nuclear magnetic resonance spectroscopy in blood samples 
provided at the time of enrolment from 477,706 individuals with linked comprehensive clinical 
data (Table 1, Table S1). All three biobanks contain adults from Northern European countries, 
with varying ascertainment, recruitment years, age ranges, and procedures for extracting 
outcomes from electronic health records (Methods, Figure S1).  45 
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We analysed 12 diseases causing the most morbidity in the WHO European region (excluding 
falls and back pain, Fig. 1, Table S2), causing more than one third of all disability adjusted life 
years. We trained cox proportional hazards models to predict incidence of each of these diseases 
in a random half of UK Biobank (128,288 individuals). We included age and sex in all models as 
fixed covariates and allowed the model to select (via LASSO with five-fold cross-validation) 5 
from among 36 metabolomic biomarkers that have been validated in Europe for use in an in vitro 
diagnostic medical device (Methods). We evaluated the performance of these models in the 
remaining 50% of UK Biobank, as well as the Estonian and Finnish THL biobanks. As we 
quantify the biomarkers in absolute concentration units (e.g. mmol/l), we can evaluated directly 
using the score weights estimated in the UK Biobank in the other two datasets, without 10 
normalizing the biomarkers within each study separately. This is distinct from common practice 
in other omics analyses, where within cohort normalization is essential (20, 21). Figure S2 
shows that we obtain highly similar results with these normalization steps, but we here present 
results without this step to better mimic predicting a new individual’s risk without additional 
information (e.g. batch corrections, or cohort means and variances). 15 

 

Risk model performance 
We stratified the three test sets into one percent bins of the risk score distribution and meta-
analyzed the four-year incidence rates for each disease (Fig. 1A). The risk of disease increased 
with increasing levels of the metabolomic score across all the diseases studied here. As has been 20 
observed previously (8, 14), these curves follow a quantile-logistic function, which rises super-
exponentially in the tails, making it possible to identify subsets of individuals that are at 
meaningfully increased risk. This effect is especially dramatic for the scores that most strongly 
predict disease, including type 2 diabetes and liver disease.  

Thus, we hereafter consider the performance of the models using a simplified but plausible 25 
preventative public health scenario by comparing the relative four-year risk of incident disease in 
the 10% of individuals with the highest metabolomic risk scores (“high-risk group”, red shaded 
area, Fig. 1A) to the remaining population. Again, to avoid needing within-cohort comparison 
data, we used the top decile boundary from our training data to define this group in each of our 
test sets. The high-risk groups in each biobank had consistently increased risk across diseases 30 
(Fig. 1B): only depression and alcoholic liver disease showed significant meta-analysis 
heterogeneity (Cochran’s Q test, p < 0.004 to account for multiple testing). A meta-analysis of 
the three test sets included hazard ratios of ~10 for two types of liver disease and diabetes, ~4 for 
COPD and lung cancer, and ~3 for myocardial infarction, vascular dementia and stroke, and was 
statistically significant (p < 0.004) for all diseases except Alzheimer’s disease (Table S3). The 35 
pattern of association is similar when considered in standard deviation units, Fig. S2. 
Furthermore, the UK Biobank test set had the highest point estimate of effect size in only 5 of 12 
diseases, demonstrating that the scores are capturing risk factors that are common to multiple 
countries and eras in time, rather than overfitting to properties specific to the UK Biobank. 
Population-wide discrimination, as measured by area under the receiver-operating characteristic 40 
curve (AUC), shows consistent, though modest, improvement when adding metabolomic scores 
on top of age and sex (Table S3). While often considered the primary metric of risk model 
performance, it can be difficult to interpret both absolute AUC and changes between models. 
Age is a strong risk factor for all these diseases (and a dominating one for some, like dementias), 
so it is difficult to improve population-wide classification compared to age alone, especially as 45 
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the three biobanks studied here have widely varying age ranges, and the Estonian Biobank in 
particular includes many individuals too young to be at meaningful risk of these diseases.  

 
Combined metabolomic and genetic risk prediction 

Comparative performance of metabolomics and genetics 5 

The observation that a single molecular assay (i.e. metabolomics) can identify individuals at high 
risk of a wide range of diseases mirrors the concept of polygenic scores (PGS), which have 
received widespread attention as an opportunity for personalized preventative medicine (8, 22, 
23). We therefore compared the performance of the metabolomic and polygenic scores. We 
obtained polygenic scores from the PGS Catalog (Table S2) that were built using GWAS data 10 
that did not include the UK Biobank, to avoid overfitting. We trained models in half the UK 
Biobank (now with 10-year follow-up to increase power) always including age and sex, and 
using Lasso to select from: (i) only the external PGS, (ii) among the metabolomic biomarkers (as 
above), or (iii) among both the PGS and the metabolomic biomarkers.  

PGS were available for 9 of the 12 diseases we considered, and, as expected, the top 10% high-15 
risk groups were at significantly higher risk than the remaining 90% (Fig. 2A). However, in all 
diseases except Alzheimer’s disease and colorectal cancer, the hazard ratio of being in the 
genetic high-risk group was less than the metabolomic high risk group. In most cases the best 
performing model included both genetic and metabolomic information, suggesting that these two 
data types capture at least partially complementary information; a formal interaction test between 20 
metabolomic and genetic scores found a significant effect only for type 2 diabetes (Table S4). 
For six diseases we could also calculate PGS in the Estonian Biobank, which replicated the 
results in the UK Biobank (Fig S3).  
We stratified individuals in the genetic high-risk group by whether they were also in the 
metabolomic high-risk group, or not (Fig. 2B). Individuals in both high risk groups are indeed at 25 
very elevated risk, but genetically predisposed individuals not in the high metabolomic risk 
group have risk similar to (or in some cases less than) those not in the genetically predisposed 
group. This effect is likely due to a combination of factors: current PGS do not actually capture 
most of the genetic risk for these diseases, and that unexplained heritability, combined with 
lifestyle and environmental history is partially reflect in the metabolomic score. The 30 
metabolomic and genetic scores also have different patterns of correlation between different 
diseases (Fig S4). As has been previously shown, the PGS tend to be largely uncorrelated (23), 
whereas the metabolomic scores are nearly all correlated with each other, reflecting how they 
capture “multi-morbidity” (14, 17). Combining the two types of information can yield both 
improved discrimination and greater specificity of risk stratification. 35 

While the three biobanks are dominated by individuals of European ancestry, we did compare 
the transferability of the metabolomic scores and PGS for five endpoints with at least 35 events 
in multiple ancestries in the UK Biobank (Fig. S5). The metabolomic scores remained 
significantly predictive across disease-ancestry combinations, though often with weaker effect 
size estimates than in the European ancestry group. As has been previously shown, the effect 40 
sizes of PGS were also attenuated in non-European ancestries, and because they do not predict as 
well to begin with in Europeans, the estimate was not statistically significant in 11 of 14 non-
European comparisons. This suggests that metabolomic scores may presently have more value in 
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non-European ancestries than PGS, but additional, more diverse datasets will be essential to 
produce risk scores that are as widely useful as possible. 

The longer 10 years of follow-up in the UK Biobank also allowed us to compare short-term and 
long-term prediction from these scores. As expected, since PGS risk is fixed throughout life, 
PGS hazard ratios remained constant over time (Fig. 2C). The relationship between metabolomic 5 
risk and time to event varied by disease: the type 2 diabetes, lung cancer and alcoholic liver 
disease scores provide stronger stratification of near-term risk. For most diseases, however, the 
metabolomic risk scores were stable over time, similar to PGS. In all cases the better overall 
score was consistently better across 10 years.  
 10 

Metabolomic prediction from multiple timepoints 
We generated metabolomic profiles at a second time point from blood samples donated by 
13,817 UK Biobank participants who returned for a repeat visit approximately five years after 
they initially enrolled in the study. The correlations of the scores range from 0.45 for 
Alzheimer’s disease to 0.72 for myocardial infarction and diabetes, which fall in the middle of 15 
the range of correlations for individual biomarkers (e.g. amino acids ~ 0.2, HDL cholesterol ~ 
0.8) (Table S5, Fig. S6). This level of stability reinforces the observation above that the scores 
provide information about disease risk 10 years into the future, but since the correlation is not 
perfect it also implies that multiple measurements will provide more complete information for 
risk prediction. 20 

For six diseases (myocardial infarction, ischemic stroke, diabetes, COPD, depression, and 
colorectal cancer) at least 100 events occurred within 10 years of the repeat visit, so we fitted a 
joint risk model with baseline and follow-up metabolomic score measurements. For myocardial 
infarction (pbaseline = 6.7x10-3, pfollow-up = 6.7x10-7), diabetes (pb = 3.4x10-12, pf = 6.8x10-34) and 
COPD (pb = 5.7x10-6, pf = 8.3x10-10) both time points were significantly associated with 10-year 25 
risk; for the other three diseases the hazard ratio point estimates were all consistently positive but 
were not significant due to weaker prediction from the scores and smaller sample size. This 
suggests that our scores are not forgetful: both a person’s currently assessed metabolomic risk, 
and information about how long they have lived in a state of elevated risk, contribute information 
about risk of future disease onset after the second time point. 30 

To further explore this idea, we considered individuals in the top 10% high risk groups for 
myocardial infarction, diabetes, or COPD at the first time point, and compared the subset of that 
group who remained in the high-risk group at the follow-up time point to those who had left it. 
For diabetes and COPD, changing risk strata showed a dramatic reduction in future risk (3.1-fold 
and 2.4-fold, p=3x10-6 and 0.002, respectively), after adjusting for baseline risk (Fig. 3). We 35 
replicated this analysis in 5,202 individuals from the Estonian Biobank for whom we had 
similarly profiled a second sample from approximately five years after the first. We observed the 
same effect for type 2 diabetes, which was the only disease for which we had sufficient cases to 
test it (HR=4.5, p=0.002).  
While we do not know what caused individual metabolomic scores to change between time 40 
points, we can assess what differences in lifestyle factors are associated with changes in 
metabolomic risk scores. For example, obese individuals who stayed in the high-risk group for 
diabetes gained an average 0.21 units of BMI, but those who switched from high to low risk, lost 
an average of 0.60 units of BMI (difference of 0.81, p = 3x10-14). Of self-reported smokers who 
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were in the high-risk COPD group at the first time point, 65% of those who continued smoking 
remained at high risk, compared to just 40% of those who reported quitting between the two time 
points (p=0.004). There were also associations to several other lifestyle variables, including 
amount of exercise, alcohol consumption, and dietary habits. However, these collectively 
explained only a few percent of the observed metabolomic score changes, demonstrating that the 5 
scores integrate a much wider range of information than questionnaires.  

 
Real-world multi-omic prediction 

Clinical characteristics of individuals with high metabolomic risk 
We next sought to understand how ‘omic prediction scores relate to the kinds of information that 10 
are likely available in existing preventative healthcare settings, such as visits to primary care or 
national health check programs. First, we compared our high-risk groups to the remainder of the 
population using the Frailty Index (24, 25) as a surrogate for a primary care physician’s overall 
impression of the health of an individual. As expected, the high-risk group have slightly higher 
frailty index values (Fig. S7, Table S6). However, the difference cannot routinely identify 15 
individuals in the high-risk groups. Second, we considered the relative performance of a simple 
risk model using commonly available clinical data in preventative health: blood pressure, total 
and HDL cholesterol, BMI, and smoking status. The ‘omic predictions indeed outperform these, 
and a model where the cholesterol test component of the standard clinical data is replaced with 
‘omic data performs dramatically better  (Fig. 4A). Lung cancer is a special case, since it is so 20 
closely tied to smoking status (and being a smoker essentially determines membership in the 
high-risk group). When considering the performance of the scores only in smokers, the omics 
score has a hazard ratio of 2.8, compared to 1.2 for the clinical score. 
Calibration across studies from different countries 

Finally, real-world use of any risk prediction model requires both discrimination and calibration 25 
(26). We therefore tested the calibration of our metabolomic scores by plotting observed event 
rates against predicted absolute event rates per decile in all three biobanks (Fig. 4B). We 
estimated calibration slopes and intercepts by fitting a logistic regression model of observed risk 
on predicted risk, without any study-specific processing or normalization, mimicking real-world 
usage (Methods). For the main calibration analysis, we included diseases with >200 events over 30 
3 years, as recommended by earlier studies (27, 28). Calibration results for the remaining 
diseases are shown in Figure S8.   

Overall, the metabolomic risk scores demonstrated good calibration. In UK Biobank test set the 
calibration slopes ranged from 0.94 to 1.17 across diseases, as expected since the models were 
trained in the other half of this biobank. In the independent Estonian Biobank, the calibration 35 
slopes ranged from 0.78 to 1.15, except for depression at 0.47. This difference is likely a result of 
diagnostic differences in depression in different countries, as well as how those diagnoses are 
encoded in electronic records. In THL Biobank the slopes were 1.03 (ischemic stroke), 1.20 
(myocardial infarction) and 1.21 (diabetes), possibly reflecting different rates of these diseases in 
the earlier recruitment waves of these cohorts. 40 
 
Discussion 

Here we have shown that metabolomic risk scores can identify a small group of individuals at 
meaningfully increased risk (here we considered the highest risk decile, but different cut points 
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will be appropriate for different diseases). Indeed, focusing on a defined high-risk group, without 
considering the relative stratification across the entire population (e.g. via AUC) is how many 
existing preventative health initiatives are designed: if an individual’s absolute risk is above a 
certain threshold, a pre-defined action is recommended. We have shown that the high-risk groups 
have consistently increased risks in biobanks from three countries which have varying sample 5 
types (plasma vs. serum), study designs, and fasting protocols. The calibration results, while 
imperfect, are comparable to widely used tools like the pooled cohort equations for 
cardiovascular risk when compared, for example between the US and Canada (29).  

We believe that personalized prevention using genetics, which has generated substantial 
excitement as a sea-change in medicine, should be paired wherever possible with metabolomic 10 
risk scores, as the prediction is better than currently available PGS for 10 of 12 diseases 
examined here. When good predictors from both data types exist, such as for myocardial 
infarction and diabetes, the data are complementary, and together provide an optimum 
combination of predictive accuracy and specificity for individuals interested in reducing their 
risk of specific diseases, rather than just multi-morbidity, which may seem less actionable.  15 

Communicating polygenic risk to both healthcare practitioners and individuals is also 
challenging (30), and individuals presented with information that they have high polygenic risk 
for a disease may conclude their “bad genes” mean they are destined to develop the disease. 
Metabolomics offers a two-fold solution: first by clearly showing that an individual’s lifestyle to 
date strongly affects their risk of disease, enabling a positive message, and second, by studying 20 
>18,000 individuals in this dataset with two metabolomic measurements five years apart we can 
show that the scores have an attractive balance of stability and responsiveness to lifestyle.  

Can these approaches be incorporated into public health practice? While some new technologies, 
like proteomics (31), provide even more powerful risk stratification, their implementation faces 
challenges because they do not yet provide absolute quantifications. Metabolomic risk scores 25 
using NMR data, by contrast, can be paired with familiar individual biomarker levels (e.g. 
cholesterol and glucose). Metabolomic scores are stable for multiple years of follow-up, and can 
readily fit into 2- or 5-year public health check plans, especially when generated using blood 
samples that are already part of routine clinical sample flows (e.g. by replacing a cholesterol test 
with a full metabolomic measurement at only marginally increased cost). And, considering 30 
cardiovascular diseases, lung diseases, liver diseases and diabetes, where the high-risk group has 
at least 3-fold increase in risk, and where interventions already exist, 28% of individuals in the 
UK Biobank are in the high-risk group for at least one disease (likely an underestimate of 
population levels, due to healthy volunteer bias). This combination of achievable implementation 
and widespread potential impact suggests that it is now possible to use multi-omic prediction in 35 
clinical practice. 
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Fig. 1. Performance of metabolomic risk scores for future disease onset in three national 
biobanks. (A) Observed incidence of the 12 diseases stratified into one percent bins of the 
metabolomic score. The observed incidence is shown as a sample size weighted mean of the 4-
year incidence in the three biobank cohorts (n=349,418). Red shading shows the top 10% of the 5 
metabolomic score (adjusted for age and sex). Horizontal dashed line shows the population 
prevalence. Metabolomic scores are adjusted for age and sex. (B) Hazard ratios of metabolomic 
scores comparing the highest risk decile to the remaining 90% of the study population for 12 
diseases. Horizontal error bars denote 95% confidence intervals.  
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Fig. 2. Comparative performance of metabolomic and genetic information on risk. (A) Ten-
year hazard ratios of metabolomic, polygenic or combined scores comparing the highest risk 
decile to the remaining study population (UK Biobank test set, n=126,645). Horizontal error bars 
denote 95% confidence intervals. (B) Risk of disease incidence after blood sampling for high 
genetics risk group stratified by their metabolomic risk score and for average genetic risk group. 5 
Shaded region denotes 95% confidence interval. (C) Hazard ratios for highest decile of 
metabolomic or polygenic scores stratified by time to event. Vertical error bars denote 95% 
confidence intervals per bin, shaded region is 95% confidence interval for a generalized survival 
model allowing a time-varying effect using natural splines with 2 knots. 
 10 
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Figure 3. Risk of future disease onset for three diseases among those who remain in the 
high-risk group over multiple years, or leave it. Maroon lines show those who were in the 
high-risk group at both time points ~5 years apart, green lines show those who were in the high-5 
risk group at enrolment but had left it by the second time point, black lines show those who were 
not in the high-risk group at enrolment.  
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Fig. 4. Implementing omic prediction in public health settings. (A) Performance of a simple 
model with clinical variables compared to those variables plus the best ‘omic data (either just 
metabolomics or metabolomics plus PGS from Figure 2). (B) For each disease, the calibration of 
three-year observed event rates are shown by 10 equally sized deciles of absolute predicted risk. 5 
Vertical lines represent 95% confidence intervals. Calibration slopes and intercepts were derived 
from a logistic regression of the observed risk on the predicted risk.  
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UK Biobank Estonian Biobank THL Biobank* 
Number of participants 254,993 190,785  31,928 
Age at blood sample 
(median, [IQR]) 

58.0 [50.0-63.0] 43.0 [31.0-56.0] 50.0 [39.0-61.0] 

Females (%) 54.0 65.8 53.5 
Body mass index 
(kg/m^2; median, [IQR]) 

26.7 [24.2-29.8] 25.3 [22.4-29.0] 26.2 [23.6-29.3] 

Smoking prevalence (%) 10.5 18.3 34.8 
Cholesterol-lowering 
medication (%) 

17.1 10.1 10.6 

Follow-up time 
(median, [IQR]) 

11.8 [11.1-12.5] 3.2 [2.9-3.7] 13.8 [8.8-15.2] 

Recruitment period 2006-2010 2002-2021 1997-2012 

Table 1. Basic characteristics of the participants in the three national biobanks. See Figure 
S1 for age and recruitment year histograms. *See Table S1 for characteristics by cohort. 
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