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Abstract: Loop-mediated isothermal 
amplification (LAMP) is a low-technology 
molecular assay highly adaptable to point-of-
care (POC) applications. However, achieving 
sensitive naked-eye detection of the amplified 
target in a crude sample is challenging. Herein, 
we report a simple, yet highly efficient and 
sensitive methodology for the colorimetric 
visualization of a single target copy in saliva, 
using chitosan-capped gold nanoparticles (Chit-
AuNPs) synthesized via a green chemistry 
approach. The presence or absence of free Chit 
in the Chit-AuNPs solution was shown to affect 
LAMP colorimetric detection oppositely: the observed stabilization in the negative samples and 
aggregation in the positive samples in the presence of free Chit was reversed in the case of neat 
Chit-AuNPs. The mechanism of the two assays was investigated and attributed to electrostatic and 
depletion effects exerted between the Chit-AuNPs, free Chit and the solution components. The 
developed contamination-free, one-tube assay successfully amplified and detected down to 1-5 cfu 
of Salmonella and 10 copies of SARS-CoV-2 per reaction (25 μL) in the presence of 20% saliva, 
making the method suitable for POC applications. Compared to the commonly used pH sensitive 
dyes, Chit-AuNPs are shown to have an enhanced sensitivity toward the naked-eye colorimetric 
observation owing to the direct detection of DNA amplicons. Thus, this is a simple, highly 
sensitive, fast and versatile naked-eye detection methodology that could be coupled to any LAMP 
or RT-LAMP assay, avoiding the need of using complicated sample pretreatments and/or AuNPs 
long and laborious functionalization processes. 
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Introduction 
 

Loop mediated isothermal amplification (LAMP) has become a powerful alternative to 
polymerase chain reaction (PCR) for pathogen detection in clinical specimens1,2 and food 
matrices.3,4 Owing to the ability of Bst DNA polymerase to display a high strand displacement 
activity at a constant temperature (60-65 °C), isothermal LAMP has the potential to revolutionize 
molecular biology using simpler instrumentation, as well as faster and more efficient assays than 
PCR, even for crude samples.5 Consequently, LAMP has been adopted as a low-technology 
molecular analysis tool for resource-limiting areas and point-of-care (POC) applications.6 
Achieving efficient detection at the POC, though, depends largely on the method selected for 
amplicons detection. 

Naked-eye monitoring is the most promising method for inexpensive and simple diagnostics, 
with colorimetric detection being a prevalent approach for POC applications.7 The most common 
way to induce a nucleic acid-dependent colorimetric change is to use pH sensitive dyes by directly 
integrating them into a LAMP reaction;8,9 this is key in order to reduce the risk of contamination 
and provides a simple color-discrimination between the positive and negative samples. The 
potential drawbacks of using pH-sensitive dyes are the inability of the assay to generate sufficient 
pH variation, as reported for some targets and sample-types,10 and the need for a weakly buffered 
solution that restricts their use in the LAMP reaction.11 An alternative to pH-sensitive dyes is 
metallic nanoparticles (NPs), which can exhibit a size- and/or shape- dependent surface plasmon 
resonance (SPR) in the visible spectrum.12 Gold NPs (AuNPs), used extensively due to their strong 
quantum size effect and high stability, are capable of generating naked-eye visible color changes 
(e.g., from red to blue/purple, red to pink, and contrariwise)13,14 as a result of the NPs stabilization 
(dispersed) or destabilization (aggregated) induced by the presence or absence (or vice versa) of 
the target. There are two main approaches for AuNPs-based visual detection of amplicons, the 
target-specific and target-independent method.7 The former involves AuNPs functionalized with 
oligonucleotide (OG) probes where the state of the AuNPs relies on the complementarity of the 
probe with the target nucleic acid. The target-specific method has been used in combination with 
LAMP assays to detect different pathogens. The reported detection limits of the target-specific 
methods have been within the range of 10 to 200 copies per reaction;15,16 however, this was 
achieved upon DNA extraction, which is still a lab-based methodology. Recently, AuNPs-based 
target-specific assays have been developed in combination with the trans-cleavage activity of 
CRISPR/Cas systems, providing distinct colorimetric differences between the positive and negative 
samples, either by reverting or by promoting AuNPs aggregation.17–19 Notable drawbacks of the 
target-specific naked-eye colorimetric assays are the need for laborious and time-consuming 
protocols, including the need for the AuNPs surface-functionalization and/or multiple sample 
manipulation steps, e.g., mixing the amplified product with the AuNP probes, incubation and later 
reopening for salt addition, resulting in a contamination risk.  

The target-independent detection method primarily relies on the stabilization or destabilization 
of AuNPs, owing to their electrostatic interactions. When AuNPs were coated with 11-
mercaptoundecanoic acid (MUA), they aggregated in the presence of magnesium ions (Mg2+) in a 
negative sample while they were stabilized when magnesium pyrophosphate (Mg2P2O7), one of 
LAMP by-products, was formed in a positive sample (red solution).20 Furthermore, when AuNPs 
were co-functionalized with MUA and polyethylene-glycol (PEG), they were stable in the presence 
of Mg2+ in a negative sample due to steric hindrance (red solution), while they aggregated in the 
presence of Mg2P2O7 in a positive sample (red precipitate).21 The aforementioned assays have been 
demonstrated for the purified samples of extracted DNA with reported detection limits of 200 and 
500 copies per reaction, respectively. An advantage of these assays is the ability to incorporate the 
AuNPs in the LAMP solution, although sonication is occasionally necessary to prevent 
aggregation; disadvantages include the dependency on the Mg2P2O7 by-product and the 
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requirement of AuNPs surface functionalization. Another target-independent approach relies on 
biotinylated primers combined with streptavidin-coated AuNPs.22,23 This approach has been 
employed to generate a color change between the positive and negative samples; however, such 
assays present increased overall complexity due to multiple preparation steps. 

Cationic polymers provide another potential means for the target-independent detection of 
amplified DNA via electrostatic interactions. An early study24 demonstrated this concept when 
positively charged polyethylenimine (PEI) was added to the LAMP reaction with a fluorescent-
labeled OG probe, allowing visualization down to 0.2 μg of lambda DNA target in a purified 
sample. The main drawbacks of the method are increased contamination risk because of adding 
PEI after LAMP and the requirement of a UV illuminator and fluorescent probes for optical 
detection. In another study,25 chitosan (Chit) polysaccharide together with AuNPs were used for 
the naked-eye detection of mycobacterium tuberculosis using as starting material ~30-400 μg/mL 
of whole DNA extracted from sputum. However, this assay was demonstrated in combination with 
PCR, a lab-based method using purified DNA; thus, it is unsuitable for POC applications.  

Chitosan, a polysaccharide derivative of chitin sourced from the seafood industry, is a promising 
polymer because its cationic form (pH< pKa of ~6.5)26 can conjugate DNA electrostatically, 
forming a Chit-DNA complex.27,28 The use of Chit-conjugated AuNPs has been reported in various 
applications, such as biosensing,29 drug delivery30 and tumor targeting,31 among others. 
Furthermore, Chit-coated magnetic NPs have been extensively used to extract DNA in acidic 
environments in which their charge is positive, and then release it in more basic environments, in 
which their charge gets neutralized.32,33 A main advantage of Chit-capped AuNPs is the ability to 
synthesize them using a green synthetic procedure. Chitosan is a non-toxic, eco-friendly, biosafe 
and biodegradable material.34 Moreover, it has been demonstrated to act both as a reducing and 
stabilizing agent, in a simple AuNPs synthesis procedure based on chemical reduction in aqueous 
environments;35 this method does not require toxic solvents or extra reducing agents. Although Chit 
appears promising for DNA-binding combined with aggregation/stabilization and colorimetric 
detection, its compatibility with LAMP has been low.36 To the best of our knowledge, Chit-capped 
AuNPs visual observation of LAMP products has not been reported yet. Overall, despite recent 
advances, the development of simple and economic colorimetric assays for naked-eye detection 
with high sensitivity still remains a challenge, i.e., detecting a few copies of the target in a crude 
sample with a low contamination risk (single-tube assay). 

Herein, we report the development of a simple, fast and cost-effective method for naked-eye 
colorimetric detection of amplified nucleic acids produced via LAMP, using synthesized Chit-
AuNPs and Salmonella enterica serovar Typhimurium as the selected target for demonstrating the 
proof of principle. Using a facile, rapid green synthesis protocol, positively charged Chit-AuNPs 
were prepared and directly used for amplified DNA detection without further modifications. To 
overcome the incompatibility of the synthesized Chit-AuNPs solutions with the LAMP reaction, 
we immobilized appropriate amounts of Chit-AuNPs inside the lid of the tubes by surface tension, 
which was mixed with the reaction after the amplification process was completed. Using the 
abovementioned one-tube assay, we avoided possible aerosol contamination by eliminating the 
need to open the tube and developed an endpoint colorimetric assay with a time-to-result of ~35 
min. Based on the presence or absence of free Chit in the Chit-AuNPs suspension, we demonstrated 
two colorimetric detection approaches, both of which could be used in the presence of crude saliva 
samples. Moreover, we showed that both methods can be used for the efficient naked-eye detection 
of the Salmonella target in the range of 5-1000 cfu/reaction, while the assay with the optimized 
free Chit exhibited an impressive detection limit of 1 cfu/reaction in both pure and crude saliva 
samples. In addition to the amplification and detection of Salmonella, the SARS-CoV-2 target was 
used as a proof of the method’s generic applicability toward detecting viral targets in combination 
with reverse transcriptase LAMP (RT-LAMP), giving a detection limit of 10 copies/reaction. 
Effective detection of both the aforementioned targets (bacterial-Salmonella and viral-SARS-CoV-
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2) is critical in reducing and monitoring possible outbreaks and providing fast diagnostic tools for 
application in healthcare and agri-food safety. 
 
Results and Discussion 
 
Synthesis and characterization of Chit-AuNPs 

 The Chit-AuNPs “green” synthesis employed in this study follows a chemical reduction 
process, where chitosan has a double role of a reducing and capping/stabilizing agent. Upon 
protonation of their amine groups in the presence of acetic acid, chitosan chains electrostatically 
adsorb negatively charged Au (III) ions that are reduced to neutral Au atoms, and further 
agglomerate to form AuNPs capped with chitosan.37 A schematic representation of the reaction is 
shown in Fig. 1a. We used three different Chit concentrations (0.15%, 0.25% and 0.35%, w/v) to 
prepare the final colloidal solutions, which presented different shades of red color, indicating the 
efficient Chit-AuNPs synthesis in different sizes and concentrations.  

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was 
conducted for neat Chit and Chit-AuNPs samples to further study the interaction between the Chit 
polymer and the formed AuNPs. The characteristic absorption bands from the functional groups of 
neat Chit observed in Fig. 1b were identified based on the literature.38 When comparing the neat 
Chit graph with the Chit-AuNPs one, a decrease in the intensity of several peaks, as well as shifts 
to lower energies were observed in the latter case. Based on these results, a contact between Chit 
and AuNPs through different chemical groups can be concluded (supramolecular interaction), in 
agreement with previous reports.39,40 

 
Figure 1: a) Schematic representation of AuNPs formulation using Chit dissolved in 1% (v/v) aqueous acetic acid. b) 
Representative ATR-FTIR spectra of neat Chit (black line) and Chit-AuNPs (red line), along with the peaks of interest. 
c) UV-Vis absorbance spectra, d) DLS and ZP measurements and e) SEM images (500 nm scale bar), of the Chit-AuNPs 
synthesized with different Chit concentrations (0.15%, 0.25% and 0.35%, w/v) at 75oC for 2h. 
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As shown in the absorption spectra of the synthesized Chit-AuNPs (Fig. 1c), all the solutions 
have SPR bands, with the SPR peaks (λmax) at 532, 523 and 520 nm for 0.15%, 0.25% and 0.35% 
(w/v) Chit-AuNPs, respectively. This implies an inversely proportional relation between the Chit 
concentration and the synthesized Chit-AuNPs sizes, in agreement with similar studies.41,42 
Regarding the full width at half maximum (FWHM), it is larger in the lowest Chit concentration, 
implying bigger polydispersity in the Chit-AuNPs sizes.43 SEM images further confirm the above 
(Fig. 1e), wherein the Chit-AuNPs synthesized with the lowest Chit concentration comprise larger 
and more polydisperse NPs. Besides spherical ones, thin triangular prismatic AuNPs were 
observed, particularly in the Chit-AuNPs synthesized with the lowest Chit concentration, possibly 
due to the slower AuNPs growth process.44 Based on the SEM analysis, the calculated mean Chit-
AuNPs sizes were 38.4, 13.8 and 10.7 nm, while their calculated concentrations were 0.57, 12.3 
and 26.4 nM for the 0.15%, 0.25% and 0.35% (w/v) Chit concentration used for the AuNPs 
synthesis, respectively (detailed calculation described in the ESI). 

Dynamic light scattering (DLS) and zeta potential (ZP) measurements revealed a mean 
hydrodynamic diameter (Dh) of 59.6, 50.4 and 64.1 nm, polydispersity index values (PDI) at around 
0.46, 0.42 and 0.29 and mean z-potential values of +45.7, +46.4 and +53.4 mV for the Chit-AuNPs 
synthesized using 0.15%, 0.25% and 0.35% (w/v) Chit, respectively (Fig. 1d). In general, the 
calculated Dh is higher than the NPs size calculated via microscopy techniques, owing to the 
hydration shell around the NPs affecting their diffusion speed, and by extension their calculated 
size.45 Regarding the PDI, it is higher in the Chit-AuNPs solution synthesized with the lowest Chit 
concentration (0.15%, w/v), in agreement with the abovementioned conclusions based on the 
FWHM of the UV-Vis spectra. Z-potential values are positive owing to the cationic nature of Chit 
in the acidic solution, with values greater than 25 mV, implying a high degree of stability for all 
the colloidal solutions. Notably, the above values are also affected by the presence of free dissolved 
Chit in the solutions, that may undergo self-crosslinking to produce Chit polymer chains.45 
 
Naked-eye detection of LAMP amplicons in purified samples using Chit-AuNPs 

 A previous study has shown that directly incorporating water-soluble Chit in a LAMP reaction 
inhibits DNA amplification because positively charged Chit conjugates with negatively charged 
DNA or interferes with LAMP primer annealing.36 This was further confirmed when we added 
either dissolved neat Chit, or Chit-AuNPs in their originally synthesized acidic environment 
(replaced 5μL of nuclease-free water with Chit or Chit-AuNPs) and included as well 0.5 μL of 
LAMP fluorescent dye (readable in the SYBR®/FAM channel) for detection; in both cases, no 
amplification signal was observed (Fig. S1), as the pH of the final mixture (measured with a pH 
strip) is ~4.5 owing to the acetic acid addition. 

Based on the above, we developed a single-tube assay where 7.5 μL of the synthesized colloidal 
Chit-AuNPs solutions were immobilized, including as well free dissolved non-reacted Chit, inside 
the lids of the tubes (Fig. 2a). This approach was used to test all three different-sized Chit-AuNPs, 
employing Salmonella InvA gene as the target, within a concentration range of 1 - 1000 
cfu/reaction. After the LAMP reactions were completed (30 min), a brief spin-down (~10 s) of the 
tubes was carried out in order to mix the solutions. 

According to Fig. 2b, in all cases (0.15%, 0.25% and 0.35% (w/v) Chit-AuNPs), the 25 
cfu/reaction Salmonella concentration was detected based on pellet creation and supernatant 
discoloration, while the negative samples were stable. Moreover, in the Chit-AuNPs synthesized 
with the lowest Chit concentration (0.15%, w/v), a slight color change was observed even at 1 
cfu/reaction Salmonella concentration. The higher sensitivity observed for the 0.15% (w/v) Chit-
AuNPs was further confirmed by directly adding the three different Chit-AuNPs solutions inside a 
LAMP reaction mixture with 1000 cfu/reaction (positive) or without (negative) target DNA, and 
observing the color change without amplification. As shown in Fig. 2c, for the Chit-AuNPs 
synthesized with the lowest Chit concentration (0.15%, w/v), a color change was detected by the 
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naked-eye between the negative and the positive sample, along with a drop in the UV-Vis 
absorbance intensity in the case of the positive sample. In the case of the Chit-AuNPs synthesized 
with the higher Chit concentrations, both the negative and positive samples retained the same color 
and absorbance intensities. 

 
Figure 2: a) Immobilizing appropriate amounts of Chit-AuNPs solutions inside the lids of the tubes. b) Endpoint 
colorimetric results in purified samples, using the Chit-AuNPs synthesized with the different Chit concentrations; pellet 
formation and supernatant discoloration can be observed with increasing the number of target cfu/reaction. c) 
Photograph of the tubes and UV-Vis absorbance spectra of unamplified LAMP reaction mixed with the different Chit-
AuNPs solutions. d) Photograph of the tubes & real-time qcLAMP diagram, using phenol red (pH indicator). Note: The 
values of 1-1000 below the photographs of the 0.2 mL tubes correspond to Salmonella target concentration in 
cfu/reaction, N corresponds to negative samples, and P to positives with 1000 cfu/reaction. Experiments were performed 
in triplicate. 

 
Parallel to the abovementioned endpoint naked-eye colorimetric detection using Chit-AuNPs, 

colorimetric LAMP using phenol red (pH indicator) was used to further evaluate the assay. For 
these experiments, we used a real-time colorimetric device, which can perform quantitative 
colorimetric LAMP (qcLAMP).46 As shown in Fig. 2d, we could also detect down to 25 cfu/reaction 
Salmonella concentration using this method, but not the 1 cfu/reaction. The time-to-positive result 
was ~17 min for the 1000 cfu/reaction, ~19.5 min for the 100 and 50 cfu/reaction and ~21 min for 
the 25 cfu/reaction. These results confirm that the Chit-AuNPs colorimetric detection methodology 
is equally or more sensitive to a colorimetric real time method, although the Chit-AuNPs approach 
cannot be used for real-time quantification. 
 
Naked-eye detection of LAMP amplicons in saliva samples using Chit-AuNPs 

Experiments were also conducted with crude saliva samples to further test the applicability of 
the Chit-AuNPs-based colorimetric assay for POC applications. Initially, we tested the effect of 
saliva on the stability of the Chit-AuNPs in the LAMP reaction by testing one positive, containing 
100 cfu/reaction of the Salmonella target, and one negative sample. In particular, we replaced 2.5 
or 5 μL of the nuclease-free water in the LAMP mix with lysed saliva. These amounts correspond 
to a final 10% and 20% saliva sample concentration, respectively, one of the highest % of crude 
samples in a LAMP reported so far. At the same time, similar amounts (7.5 μL) of the three Chit-
AuNPs solutions were immobilized inside the lids of the tubes. After the LAMP reactions were 
completed, a brief spin-down of the tubes was conducted to mix the solutions and help reveal the 
changes in the color fast. A pellet was observed in the negative samples, primarily at the two lower 
concentrations (0.15% and 0.25%, w/v), along with an intense discoloration of these two solutions 
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(Fig. 3a, left). After a second spin-down, the only solution that retained its color was the negative 
sample with 0.35% (w/v) Chit-AuNPs (Fig. 3a, right) for both 2.5 and 5 μL saliva samples, while 
the discoloration of the negatives (0.15% and 0.25%, w/v) was stronger and faster in the 5 μL (20%) 
than that of the 2.5 μL (10%) saliva sample. The positive samples containing 100 cfu/reaction of 
the target presented aggregation in all cases, as observed before with pure samples (Fig. 2b). Out 
of these results, it can be concluded that in the negative samples, the free Chit was not sufficient to 
efficiently protect the 0.15% and 0.25% (w/v) Chit-AuNPs from aggregation induced by the 
different saliva components. However, we cannot exclude the effect of the three different Chit-
AuNPs in the above behavior because of the different Chit-AuNPs sizes and concentrations. 

The solution of 0.35% (w/v) Chit-AuNPs, the most efficient to maintain Chit-AuNPs 
stabilization in the presence of saliva, was further used for the clear naked-eye detection of different 
target amounts within the range of 25-1000 cfu/reaction of the Salmonella target (Fig. 3b). 

  
Figure 3: a) Observation of the different Chit-AuNPs stabilization efficiency on the negative samples in the presence of 
different amounts of lysed saliva samples inside the LAMP mix. b) Endpoint colorimetric results using the synthesized 
0.35% (w/v) Chit-AuNPs, in different target cfu/reaction, in a LAMP mix containing 5 μL saliva (20%). Note: The values 
of 1-1000 below the 0.2 mL tubes correspond to Salmonella target concentration in cfu/reaction, N corresponds to 
negative samples, and P to positives with 100 cfu/reaction. Experiments were performed in triplicate. 
 

To further evaluate the effect of free Chit and the final solution’s pH on differentiating negative 
and positive samples, 0.5 mL of 0.15% (w/v) Chit-AuNPs solution was centrifuged, as it had the 
worst performance in the saliva samples. Afterward, the supernatant containing the free Chit was 
removed, and the Chit-AuNPs pellets were redispersed in three solutions: (a) 1% (v/v) aqueous 
acetic acid; (b) ultrapure water; and (c) 1% (v/v) aqueous acetic acid containing 0.15% (w/v) Chit. 
The resulting solutions showed no aggregation after the purification step and redispersion in the 
different media (Fig. S2). 

As seen before, the initially synthesized 0.15% (w/v) Chit-AuNPs were not able to provide a 
distinct colorimetric difference between the positive (100 cfu/reaction) and negative samples after 
the LAMP reaction in 20% saliva, because Chit-AuNPs aggregation occurred in both solutions 
(Fig. 4a, middle). The addition of excess Chit in the solution (0.15%, w/v) was able to inhibit the 
complete Chit-AuNPs aggregation of negative samples (Fig. 4a, right), similar to 0.35% (w/v) Chit-
AuNPs solution in the crude saliva samples, further confirming the role of the free Chit itself in the 
solution. Interestingly, the Chit-AuNPs solution without any free Chit, i.e., the one redispersed in 
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1% (v/v) aqueous acetic acid, provided the opposite results, with aggregation in the negative sample 
and the positive ones remained stable (Fig. 4a, left). When we repeated these experiments in pure 
samples, a distinct colorimetric difference was observed in all cases (Fig. 4b). 

 
Figure 4: a, b) Comparative colorimetric results between the initially synthesized 0.15% (w/v) Chit-AuNPs, and the 
redispersed Chit-AuNPs in either 1% (v/v) aqueous acetic acid or 0.15% (w/v) Chit in 1% (v/v) aqueous acetic acid for 
both purified and crude saliva samples (20%). c) Endpoint colorimetric results using the redispersed Chit-AuNPs – 
mirror-like results based on the presence or absence of free Chit in the solution, for 20% saliva samples (Salmonella 
target). d, e) Photographs of endpoint colorimetric detection and real-time qcLAMP diagram, after RT-LAMP reaction 
containing 20% saliva samples (SARS-CoV-2 target). Note: The values of 1-1000 below the 0.2 mL tubes correspond to 
target cfu (Salmonella) or copies (SARS-CoV-2)/reaction, N corresponds to negative samples, and P to positives with 
100 cfu/reaction. Experiments were performed in at least triplicate. 
 

Moreover, the two 0.15% (w/v) Chit-AuNPs solutions, with or without excess free Chit in 1% 
(v/v) aqueous acetic acid, were tested with different amounts of the target within the range of 1-
1000 cfu/reaction (Fig. 4c, left) for the saliva samples. In both cases, the 25 cfu/reaction target 
concentration was easily detected colorimetrically by naked-eye in the LAMP reaction, while the 
1 cfu/reaction target concentration was detected only when the Chit-AuNPs were redispersed in 
excess Chit (0.15%, w/v). Testing closer the efficiency of the two assays in the range of 1 and 25 
cfu/reaction confirmed the abovementioned observations; notably, the 1 cfu/reaction target 
concentration was detected in half of the tested samples (number of samples: 6) (Fig. 4c, right), 
probably reflecting the probability of capturing the target with every pipetted sampling.  

Finally, RT-LAMP experiments further confirmed that the aforementioned method could also 
detect SARS-CoV-2 in the presence of 20% saliva, with a detection limit of 10 copies/reaction (Fig. 
4d). This result proves that the assay is flexible and generic as it can be used with different targets 
and in combination with RT. Comparison with colorimetric detection using phenol red (qcLAMP) 
further confirmed the higher sensitivity of the Chit-AuNPs detection method, compared to pH 
sensitive dyes. (Fig. 4e). The time-to-positive was ~19 min for both 100 and 50 cfu/reaction target 
concentration in the phenol red system, while the 10 copies/reaction were not able to be detected, 
probably due to insufficient H+ by-products produced during amplification that shall induce a 
significant pH drop, and/or due to the possibly increased buffer capacity and pH in the presence of 
the crude (5 μL saliva) sample. 
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Mechanism of the Chit-AuNPs-based colorimetric detection of LAMP amplicons 
To explain the abovementioned results, we investigated both the ability of Chit to exist in a pH-

dependent charged form and the mechanism behind AuNPs stabilization. For a pKa of ~6.5, Chit 
is protonated at a lower pH and exists in a cationic form and a DNA-binding state. AuNPs can be 
stabilized and remain dispersed in a solution because of electrostatic repulsive forces. Additionally, 
when polymer molecules are attached to the AuNPs, forming a coating, steric stabilization is 
achieved via repulsive forces that separate the particles from one another, while depletion 
stabilization can also be observed in the presence of free polymeric molecules in the solution. The 
combination of all three colloidal stabilization factors is shown to provide ultrahigh NPs stability 
under different conditions,47,48 which would otherwise lead to aggregation. Herein, different 
destabilization agents (salt, non-target DNA, dNTPs, and other elements in the saliva) in the LAMP 
mix can lead to NPs aggregation. 

Based on the above, our results indicate that when using Chit-AuNPs with free Chit in purified 
negative samples, the free Chit polymer can protect the Chit-AuNPs from aggregation induced by 
the different LAMP reagents, keeping the AuNPs dispersed in the solution owing to the depletion 
stabilization effects in addition to the Chit-AuNPs electrosteric (electrostatic and steric) 
stabilization mechanism (Fig. 2b). However, it appears that there is an optimum free Chit amount 
required for stabilization depending on the sample-type (purified vs saliva). Although the free Chit 
in the 0.15% (w/v) synthesized Chit-AuNPs is sufficient to provide stabilization in purified 
negative samples (Fig. 4b, middle), it is not equally effective in crude negative samples (Fig. 4a, 
middle). In saliva, this amount was insufficient to cope with the extra DNA released upon cell-lysis 
and possible variations in the pH and salt;49,50 hence, a higher amount of free Chit concentration is 
essential to induce the same result. Alternatively, free Chit operates as a “buffer” solution providing 
enhanced stability of the Chit-AuNPs in both pure and saliva-containing negative samples. In both 
pure and saliva-containing positive samples, the high yields of negatively charged DNA amplicons 
combined with the positively charged free Chit and Chit-AuNPs (in the acidic final solution of ~4.5 
pH) disturb stabilization via electrostatic interactions, causing Chit-AuNPs aggregation. However, 
in the presence of saliva, the negative samples also tend to aggregate after ~4 days, possibly due to 
the differently charged antagonistic populations inside the solution (Fig. S3a). A schematic diagram 
of the Chit-AuNPs stabilization mechanism with free Chit is depicted in Fig. 5, top line. 

Figure 5: Close-up image of the Chit-AuNPs, free Chit and (amplified) DNA interactions inside the LAMP mix after 
amplification reaction. Note that the Chit-AuNPs solutions are dissolved in 1% (v/v) aqueous acetic acid in both cases. 
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Conversely, when using Chit-AuNPs without free Chit in the solution, a “mirror effect” is 
observed; the negative samples are destabilized in the presence of the LAMP mix even in the 
presence of 20% saliva, with the Chit-AuNPs aggregating due to the absence of the free Chit 
depletion protection. At the same time, the positive samples remain stable, as the large amounts of 
DNA amplicons can electrostatically coat the positively charged Chit-AuNPs, protecting them from 
aggregation via repulsion forces (Fig. 5, bottom line). The complete coating/stabilization of the 
positively charged Chit-AuNPs with negatively charged amplified DNA in the stable positive 
samples was also confirmed by the z-potential measurements (Fig. S4a), where the solution showed 
a negative z-value (~ -7.1 mV). This was contrary to the stable negative samples of the free Chit 
method, where the solution presented a positive z-value (~ +10.7 mV), owing to the dominating 
presence of free Chit stabilizing the solution. UV-Vis measurements further proved the efficient 
conjugation of Chit-AuNPs with DNA in the neat Chit-AuNPs method (no free Chit) via the 
observed red-shift of SPR λmax from 532 to 541 nm and a drop in the absorbance intensity (Fig. 
S4b). The low pH of ~4.5 in the final solution (LAMP mix + Chit-AuNPs redispersed in 1% (v/v) 
aqueous acetic acid) is essential for the electrostatic stabilization of the positive samples; indeed, 
when repeating the same experiment with Chit-AuNPs redispersed in ultrapure water, the positive 
samples also aggregated (Fig. S3b). In ultrapure water, the pH of the final solution is close to the 
pKa of Chit (~6.5), which partially neutralizes the charge of the Chit polymer, reducing the 
electrostatic stabilization or repulsive Coulomb forces between the Chit-AuNPs, leaving only the 
steric stabilization provided by the Chit coating of the AuNPs. Consequently, the positive samples 
also tend to aggregate in the LAMP mix owing to the absence of strong electrostatic interactions 
with the negatively charged DNA. Notably, the concentration of Chit-AuNPs used in this method 
is also crucial, as low concentrations of NPs may lead to stabilization by the non-target DNA 
contained in the saliva, eliminating the possibility of differentiating the negative samples from the 
positive ones (false positives). 
 
Conclusions 
 
Herein, we exploited the effect of free Chit in synthesized Chit-AuNPs solutions to create two 
different naked-eye endpoint colorimetric assays combined with LAMP. Using the different 
stabilization forces (depletion, electrostatic, and steric) between the pH-responsive Chit and Chit-
AuNPs, we developed two mirror-like assays, one in the presence and the other in the absence of 
free Chit. In both cases, we demonstrated the ultrasensitive eye-detection of the Salmonella target 
with a detection limit of 1 cfu/reaction (40 cfu/mL) in the presence of free Chit and 5 cfu/reaction 
(200 cfu/mL) in the absence of free Chit in the Chit-AuNPs solution. The above performance was 
also shown in an impressive final saliva concentration of 20%. The general applicability of the 
method toward the detection of viral targets was also demonstrated when 10 copies/reaction (400 
copies/mL) of SARS-CoV-2 in 20% saliva, amplified with RT-LAMP were successfully detected 
by naked-eye. This colorimetric detection method combines many attractive features, such as 
simplicity, high sensitivity, and rapid results, making it an ideal candidate for incorporation in POC 
applications. Using a “green” synthesis of Chit-AuNPs is considered an added advantage. Being a 
target-independent method, this assay does not provide any added degree of specificity, which 
entirely depends on the selected primers. However, this limitation leads to one advantage of this 
method, which is the compatibility with any kind of (RT-)LAMP assay. Currently, both assays rely 
on endpoint detection; however, the assay using free Chit and Chit-AuNPs could be employed for 
quantitative results based on the decrease of the absorbance intensity of the supernatant 
(discoloration), when the final solutions are measured at the same time. Such a quantification 
method could be more sensitive than colorimetric assays using pH-sensitive dyes, because the free 
Chit/Chit-AuNPs system essentially detects DNA under appropriate pH conditions and not LAMP-
induced pH changes. Finally, this assay could possibly be applied to other isothermal amplification 
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methods, such as (RT-)RPA, where amplification happens at even lower temperatures (37-42 oC), 
providing another efficient, fast, sensitive and cost-effective POC system. 
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