1	Late presenter thrombolysis for ischemic stroke between 4.5-24 hours after last known
2	well: a retrospective cohort study
3	
4	Lester Y. Leung, MD, MSc, ¹ Devin Zebelean, MPH, ¹ Emiliya Melkumova, MD, ¹ Katelyn
5	Skeels, MSN, APRN, FNP-C, ¹ Neel Madan, MD, ² David E. Thaler, MD, PhD ¹
6	
7	¹ Division of Stroke and Cerebrovascular Diseases, Department of Neurology, Tufts Medical
8	Center, Boston, MA
9	² Division of Neuroradiology, Department of Radiology, Tufts Medical Center
10	
11	Corresponding author:
12	Lester Y. Leung, MD, MSc
13	Department of Neurology
14	Tufts Medical Center
15	800 Washington Street, Box 314, Boston, MA 02111
16	Phone: 617-636-5848
17	Fax: 617-636-8199
18	Email: <u>lleung@tuftsmedicalcenter.org</u>
19	
20	Running title: Late presenter thrombolysis for ischemic stroke
21	Abstract word count: 265
22	Manuscript word count: 3041
23	Figures: 1

24 Tables: 3

25

26 Keywords: stroke, acute stroke, thrombolysis, wakeup, extended window

27	Background: Two RCTs demonstrated efficacy and safety of IV alteplase for patients with acute
28	ischemic stroke (AIS) who awaken with symptoms or with last known well (LKW) more than
29	4.5 hours prior to arrival. However, real world experience using CT perfusion (CTP) or DWI-
30	MRI for patient selection in the U.S. is limited. We developed the Tufts Late Presenter
31	Thrombolysis (LPT) protocol to offer alteplase to patients with wakeup stroke, known LKW
32	more than 4.5 hours, or unknown LKW likely more than 4.5 hours and less than 24 hours, using
33	CTP or DWI-MRI to aid patient selection.
34	
35	Methods: We reviewed ED stroke codes from our Comprehensive Stroke Center between
36	1/1/20-12/31/22 to identify patients treated with alteplase. Data were collected on demographics,
37	comorbidities, LKW-to-treatment time (LTT), imaging modality, imaging findings, NIHSS,
38	vessel occlusions, endovascular therapy (EVT), symptomatic ICH, and 90 days mRS. Outcomes
39	for comparative analyses included process times (door to needle, door to CT) and clinical
40	outcomes (90 day mRS, symptomatic ICH).
41	
42	Results : Forty-three of 118 patients (36%) presenting with AIS and treated with thrombolysis
43	were treated between 4.5-24 hours after LKW. Patients treated in the 4.5 hour window and the
44	later window had similar demographics, comorbidities, NIHSS, and EVT rates. CTP was used in
45	the majority of LPT cases. The median penumbra was 45.04 mL (11.55-83.21), and the median
46	core infarct was 5.92 mL (1.89-16.7). Symptomatic intracranial hemorrhage occurred in one LPT
47	case (2.3%). Favorable mRS (0-1) was achieved by 36% of LPT patients with documented 90
48	day mRS.
49	

- 50 Conclusions: A pragmatic protocol offering thrombolysis to late presenters may be safe and
- 51 achieve favorable outcomes.

53 Introduction

54

55 While last known well to treatment time remains the major determinant of functional outcome 56 and safety of treatment with acute revascularization therapies in acute ischemic stroke (AIS), the 57 increasingly widespread use of advanced neuroimaging technologies in the hyperacute setting 58 offers the ability to select patients, based on favorable physiology, for thrombolysis and 59 thrombectomy in later time windows. Two randomized clinical trials, WAKEUP and EXTEND, 60 demonstrated safety and efficacy of IV thrombolysis beyond 4.5 hours after last known well 61 (LKW) using DWI-MRI and CT perfusion (CTP), respectively, to evaluate patients who awaken 62 with stroke symptoms or have known LKW beyond 4.5 hours.(1, 2) A third nonrandomized trial, 63 MR WITNESS, assessed the safety of thrombolysis in patients without a witnessed onset of 64 symptoms likely between 4.5 to 24 hours from LKW using MRI.(3) Nonetheless, the American 65 Heart Association-American Stroke Association guidelines for the early management of AIS 66 only incorporated data from the WAKEUP trial: thus, its provisional recommendations regarding 67 thrombolysis beyond 4.5 hours was based solely on an MRI-informed practice.(4) Accordingly, 68 the safety, efficacy, and logistical considerations of thrombolysis beyond 4.5 hours using CTP in 69 the real world setting is largely unknown. Furthermore, the selection criteria for the WAKEUP 70 and EXTEND trials do not readily overlap, making it challenging to offer thrombolysis in these 71 scenarios while adhering strictly to the RCT selection criteria. 72

Acknowledging the different target populations, heterogeneous selection criteria, and different
imaging modalities used in recent clinical trials on thrombolysis in later time windows, we
sought to create a pragmatic, inclusive protocol for "late presenter thrombolysis" at Tufts

76 Medical Center, favoring CTP as the more readily available technology. We started this protocol 77 in February 2020 as a nonmandatory treatment option that our neurologists could offer to select 78 patients. In this study, we sought to compare characteristics of patients treated with thrombolysis 79 through standard and LPT protocols and assess outcomes for patients treated through the LPT 80 protocol. 81 82 Methods 83 84 Design and sample 85 86 This is a retrospective cohort study including all patients age ≥ 18 hospitalized at a 87 comprehensive stroke center (Tufts Medical Center) with a principal diagnosis of acute ischemic 88 stroke (AIS) presenting to the emergency department and treated with thrombolysis between 89 1/1/2020-12/31/2022. An evidence informed protocol (Figure 1) extending the time window for 90 thrombolysis up to 24 hours was implemented on 2/1/20 and allowed for use of CTP or DWI-91 MRI to aid patient selection. Patients were identified from a prospective database of stroke code 92 activations. The LPT cohort were patients who received alteplase between 4.5-24 hours after 93 LKW, and the standard window comparison group were patients who received alteplase within 94 4.5 hours after LKW. All patients who survived the hospitalization received phone calls at 95 approximately 90 days post-stroke to assess a modified Rankin Score (mRS). This study was 96 approved by the IRB at Tufts Medical Center and followed STROBE guidelines. 97

98 <u>Covariates</u>

100	Data were collected on demographics, comorbidities, admission NIHSS, imaging modalities,
101	imaging findings, LKW-to-thrombolysis time (in hours), endovascular treatment (EVT),
102	symptomatic intracranial hemorrhage (sICH, defined as imaging signs of any intracranial
103	hemorrhage and post-treatment NIHSS increase \geq 4), and 90 day mRS. CTP imaging was
104	processed using Syngo.via (Siemens) using default settings (core infarct defined as a region of
105	absolute cerebral blood flow [CBF, measured in milliliters of blood per 100 grams of brain]
106	reduction to 30% or less than the maximum CBF; penumbra defined as the region with time-to-
107	maximum [TMax, measured in seconds] greater than 6 seconds). Outcomes for comparative
108	analyses included process times (door to needle, door to CT; measured in minutes) and clinical
109	outcomes (90 day mRS, sICH). Missingness for specific covariates is indicated in the tables,
110	including loss-to-followup for the 90 day mRS assessment.
111	
112	Statistical analyses
113	
114	Descriptive statistics and comparative statistics (t-test, Chi square, Kruskal-Wallis rank sum) are
115	reported according to the structure of the data). R (version 4.2.3, Vienna, Austria) was used for
116	all statistical analyses.
117	
118	Results
119	
120	Among 118 patients presenting to the ED with AIS and treated with alteplase, 43 (36%) were
121	treated with the LPT protocol. Demographics, comorbidities, NIHSS, and EVT rates were

122	similar between both cohorts (Table 1). The median NIHSS was 8 (IQR 3, 14) in both cohorts.
123	The median LKW-to-thrombolysis time was 11 (IQR 8, 15) in the LPT cohort as compared to 2
124	(IQR 1, 3) in the standard window cohort.
125	
126	Regarding process outcomes, both median door to CT times and median door to needle times
127	longer for patients in the LPT cohort as compared to the standard window cohort (Table 2).
128	
129	Clinical outcomes were comparable between both cohorts (Table 2). Favorable 90 day mRS
130	(defined as 0-1) was achieved by 36.4% of patients in the LPT cohort as compared to 50.9% in
131	the standard window cohort ($p = 0.19$) among those with a documented 90 day assessment.
132	Symptomatic ICH occurred in a single patient in the LPT cohort (2.3%) and in no patients in the
133	standard window cohort ($p = 0.19$).
134	
135	Advanced imaging findings are described in Table 3. Among LPT patients, CTP was the
136	advanced neuroimaging modality for 91% of patients. DWI-MRI was used for 1 patient (2.3%),
137	and no advanced imaging was used for 3 patients (7.0%), due to presentation near the 4.5 hour
138	threshold in 2 cases and a very late presentation near the 24 hour mark in 1 case (i.e. CTP was
139	omitted to expedite thrombolysis with a clinical presentation of monocular vision loss due to
140	central retinal artery occlusion). Core infarcts were generally small (median 5.9 mL, IQR 1.9,
141	17), and penumbras were generally intermediate in volume (median 45 mL, IQR 12, 83).
142	Thrombolysis was offered in 4 cases where CTP did not detect a penumbra or a core infarct (i.e.
143	lacunar stroke) but a clinical deficit was present. Vessel occlusions were present on CT

angiography in 65% of cases (with 35% due to large vessel occlusion defined as terminal ICA,
M1, or basilar artery occlusion).

146

147 **Discussion**

148 To our knowledge, this is the first study describing real world experience with a pragmatic

149 protocol leveraging both CTP and DWI-MRI to select a broad range of patients for thrombolysis

150 when presenting between 4.5 and 24 hours after LKW. This builds upon the findings of the

151 WAKEUP and EXTEND trials as well as prior observational studies using noncontrast CT for

152 patient selection.(1-3, 5, 6) Most of the randomized trials informing this practice used MRI as the

153 primary modality to select patients, but this is impractical for many hospitals that lack rapid and

154 consistent access to this technology.(7) This study illustrates how CTP can be used to inform

155 clinical decision-making despite lingering concerns regarding the possible low sensitivity of CTP

156 for detecting small infarcts and posterior circulation infarcts.

157

158 The central finding of this study is that thrombolysis beyond the conventional time window can 159 be achieved without a high rate of sICH when patients are selected with advanced neuroimaging 160 guidance. Our pragmatic protocol (e.g. not mandating treatment or strict adherence to specific 161 core or penumbra measurements) allowed for treatment with a variety of clinical and imaging 162 characteristics, including large penumbras, lacunar syndromes, and preceding EVT. Considering 163 the high rate of CTP use versus MRI, this study suggests that a protocol based solely on the 164 WAKEUP trial selection criteria that only allows use of DWI-MRI for patient selection may be 165 too restrictive, especially in hospitals where CTP is more readily available than MRI in a timely 166 fashion. This study adds to the data indicating that thrombolysis beyond 4.5 hours after LKW

167 can be accomplished using CTP and is reasonably safe as compared to standard window168 thrombolysis.

169

170 The process time outcomes in this study illustrate early challenges and opportunities for 171 improvement with the LPT protocol. We anticipated that the door to needle time would be longer 172 for LPT patients as compared to standard window patients due to the need to process and 173 interpret CTP or DWI-MRI findings and incorporate this into treatment decisions. However, the 174 door to CT time was also longer for LPT patients: this time interval ideally should not be 175 different between LPT and standard window patients, so this difference suggests that the 176 Neurology and Emergency Medicine clinicians and Pharmacists might not have proceeded 177 through the stroke code protocols as swiftly for patients potentially eligible for LPT as compared 178 to standard window patients. This may be due to the contemporary novelty of this practice and 179 uncertainty regarding the effectiveness and safety of this practice. The findings from this study 180 hopefully can provide reassurance on the potential for clinical benefit and the relative safety of 181 this practice, and thus encourage stroke teams to proceed through the treatment process as 182 efficiently for LPT patients as with standard window patients given the continued importance of time as a determinant of outcomes in acute stroke. 183

184

Notably, the majority of estimated core infarcts for patients treated with the Tufts Late Presenter Thrombolysis protocol were relatively small and comparable to those reported in EXTEND (median 6 mL in our study vs median 5 mL in EXTEND).² Even the one patient who had a sICH had a small estimated core infarct (2 mL with a 72 mL penumbra). However, our protocol (modeled on the EXTEND protocol) used an upper threshold recommendation of 70 mL for

estimated core infarcts on CTP. Two patients had estimated core infarcts above the 70 mL

190

191	recommended threshold (80 and 83 mL), and five additional patients had estimated core infarcts
192	between 20-70 mL; none of these patients had sICH. Altogether, this study provides only limited
193	data on the safety of thrombolysis for patients with medium to large estimated core infarcts on
194	CTP. Future trials of LPT should intentionally assess efficacy and safety of thrombolysis with
195	larger estimated core infarcts than those seen in EXTEND.
196	
197	This study has important strengths and limitations. First, patients were administered
198	thrombolysis in accordance with a local, standard-of-care protocol informed by prior clinical trial
199	and observational data, so the process of evaluating and treating patients was largely
200	homogeneous. Second, to our knowledge, this is the largest report of thrombolysis cases
201	combining potential treatment-eligible patient categories outside the standard time window.
202	Third, the diverse spectrum of demographic and clinical characteristics of both cohorts is
203	comparable to many comprehensive stroke centers with broad catchments areas in the U.S. One
204	important limitation is that the Tufts LPT protocol does not mandate thrombolysis in the later
205	time window which could result in some selection bias. Nonetheless, the characteristics of
206	treated patients in both time windows were similar, so any selection bias is unlikely to influence
207	the results of the comparative analyses. Finally, there was considerable missingness in 90 day
208	mRS for patients treated in both time windows, so the proportion of patients achieving excellent
209	outcomes may be subject to loss-to-follow up bias. However, the proportion of missingness was
210	similar between the two cohorts, again suggesting that this is unlikely to substantially influence
211	the comparative results.
212	

213	
214	Conclusion
215	The Tufts Late Presenter Thrombolysis protocol leveraging both CTP and DWI-MRI is
216	pragmatic, feasible, safe, and associated with favorable outcomes for patients with acute
217	ischemic stroke.
218	
219	Funding: None.
220	
221	Disclosures: None.
222	
223	Acknowledgements: We would like to thank Amr Jijakli, MPH, MBBS, and Mohammed Al-
224	Dulaimi, MD for their assistance with data collection.
225	
226	References
227	1. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. MRI-
228	Guided Thrombolysis for Stroke with Unknown Time of Onset. N Engl J Med. 2018;379(7):611-
229	22.
230	2. Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, et al. Thrombolysis
231	Guided by Perfusion Imaging up to 9 Hours after Onset of Stroke. N Engl J Med.
232	2019;380(19):1795-803.
233	3. Schwamm LH, Wu O, Song SS, Latour LL, Ford AL, Hsia AW, et al. Intravenous
234	thrombolysis in unwitnessed stroke onset: MR WITNESS trial results. Ann Neurol.
235	2018;83(5):980-93.

236	4. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al.
237	Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to
238	the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for
239	Healthcare Professionals From the American Heart Association/American Stroke Association.
240	Stroke. 2019;50(12):e344-e418.
241	5. Barreto AD, Fanale CV, Alexandrov AV, Gaffney KC, Vahidy FS, Nguyen CB, et al.
242	Prospective, open-label safety study of intravenous recombinant tissue plasminogen activator in
243	wake-up stroke. Ann Neurol. 2016;80(2):211-8.
244	6. Roveri L, La Gioia S, Ghidinelli C, Anzalone N, De Filippis C, Comi G. Wake-up stroke
245	within 3 hours of symptom awareness: imaging and clinical features compared to standard
246	recombinant tissue plasminogen activator treated stroke. J Stroke Cerebrovasc Dis.
247	2013;22(6):703-8.
248	7. Thomalla G, Boutitie F, Ma H, Koga M, Ringleb P, Schwamm LH, et al. Intravenous
249	alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review
250	and meta-analysis of individual patient data. Lancet. 2020;396(10262):1574-84.

252 Figure 1. Tufts Late Presenter Thrombolysis Protocol

- 253 Thrombolysis for suspected acute ischemic stroke may be offered to patients awakening with
- stroke symptoms, with LKW > 4.5 hours, and with unknown LKW likely less than 24 hours,
- 255 with the following selection criteria:
- 256 Inclusion Criteria (recommended)
- LKW within 24 hours
- 258 Parenchymal imaging suggesting small core infarct (one of the following):
- 259 CT Perfusion Head: Infarct core volume \leq 70 mL (lesion size as estimated by markedly
- 260 reduced CBV or CBF < 30% of normal)
- 261 MRI Brain: DWI positive, FLAIR negative
- 262 Parenchymal imaging suggesting the presence of a penumbra (one of the following):
- 263 CT Perfusion Head: Penumbra approximately 20% larger than core or \geq 10 mL larger
- 264 MRI Brain: DWI positive, FLAIR negative
- 265 All criteria that apply for IV alteplase use with LKW \leq 4.5 hours
- 266 Exclusion Criteria (IV alteplase generally not recommended)
- 267 Unable to undergo CT Perfusion or acute MRI
- All criteria that apply for IV alteplase use with $LKW \le 4.5$ hours

269 Other factors that may affect benefit-risk ratio (if they are present, counsel and clearly

- 270 document decision making)
- 271 NIHSS \geq 25
- 272 DWI lesion size > 100 mL or \ge 1/3 MCA territory
- All factors that apply for IV alteplase use with LKW \leq 4.5 hours
- 274
- 275

276 Table 1. Baseline characteristics, outcomes, and imaging findings of patients considered for

277 late presenter thrombolysis.

Characteristic	Standard window	Late presenter	p-value
	(< 4.5 h)	thrombolysis (wakeup	
	(n=75)	stroke, 4.5-24 h)	
		(n=43)	
Age, median in years (IQR)	69 (58,80)	72 (61,80)	0.69
Sex, female (%)	37 (49.3%)	18 (41.9%)	0.43
Race, non-white (%)	21 (28.8%)*	16 (38.1%)**	0.30
Comorbidities			
Atrial fibrillation	9 (12.0%)	8 (18.6%)	0.33
Coronary artery	12 (16.0%)	10 (23.3%)	0.33
disease			
Diabetes mellitus	16 (21.3%)	15 (34.9%)	0.11
Hyperlipidemia	41 (54.7%)	30 (69.8%)	0.11
Hypertension	54 (72.0%)	32 (74.4%)	0.78
Prior stroke	13 (17.3%)	7 (16.3%)	0.88
Tobacco use (ever)	18 (24.0%)	7 (16.3%)	0.32
Admission NIHSS, median	8 (3, 14)	8 (3, 14)	0.74
(IQR)			
LKW-to-thrombolysis,	2 (1, 3)**	11 (8, 15)	< 0.001
median in hours (IQR)			
Endovascular therapy	23 (30.7%)	8 (18.6%)	0.15

performed (%)		

- 278 *Missing for 2 patients.
- 279 **Missing for 1 patient.

280 Table 2. Clinical and process outcomes for patients treated with standard window and late

281 presenter thrombolysis.

Outcome	Standard window	Late presenter	p-value
	(< 4.5 h)	thrombolysis (wakeup	
	(n=75)	stroke, 4.5-24 h)	
		(n=43)	
Door to CT time, median in	22 (17, 29)*	34 (26, 48)	0.013
minutes (IQR)			
Door to needle time,	42 (32, 60)	76 (58, 118)	< 0.001
median in minutes (IQR)			
Symptomatic ICH (%)	0 (0.0%)	1 (2.3%)	0.19
90 day mRS, median (IQR)	1 (0, 4)**	2 (1-3)†	0.33
90 day mRS (% 0-1)	28 (50.9%)**	12 (36.4%)†	0.19

282 *Missing for 1 patient.

283 **Missing for 20 patients or 27% (standard window).

²⁸⁴ †Missing for 10 patients or 23% (LPT).

285	Table 3. Imaging findings for patients treated with late presenter thrombolysis.
205	Table 5. Imaging intuings for patients treated with fate presenter thromborysi

Advanced imaging performed	n = 43
СТР	39 (90.7%)
DWI-MRI	1 (2.3%)
None	3 (7.0%)
Core infarct measurement, median in mL (IQR;	5.92 (IQR 1.89, 16.7; range
range)	0-83.04)
Penumbra measurement, median in mL (IQR;	45.04 (IQR 11.55, 83.21;
range)	range 0-215.21)
Potential recuperation ratio, median (IQR; range)	79.85% (IQR 60.75%,
	94.52%; range 0-100%)
Vessel occlusion on CTA	28 (65.1%)
ACA (A2)	2
Basilar artery	4
MCA (M1)	8
MCA (M2)	5
MCA (M3)	1
PCA (P2)	3
ICA (terminus)	3
Vertebral (V4)	2