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ABSTRACT 
The utility of polygenic risk score (PRS) models has not been comprehensively evaluated for 
childhood acute lymphoblastic leukemia (ALL), the most common type of cancer in children. 
Previous PRS models for ALL were based on significant loci observed in genome-wide 
association studies (GWAS), even though genomic PRS models have been shown to improve 
prediction performance for a number of complex diseases. In the United States, Latino (LAT) 
children have the highest risk of ALL, but the transferability of PRS models to LAT children has 
not been studied. In this study we constructed and evaluated genomic PRS models based on 
either non-Latino white (NLW) GWAS or a multi-ancestry GWAS. We found that the best PRS 
models performed similarly between held-out NLW and LAT samples (PseudoR2 = 0.086 ± 
0.023  in NLW vs. 0.060 ± 0.020 in LAT), and can be improved for LAT if we performed 
GWAS in LAT-only (PseudoR2 = 0.116 ± 0.026) or multi-ancestry samples (PseudoR2 = 0.131 
± 0.025). However, the best genomic models currently do not have better prediction accuracy 
than a conventional model using all known ALL-associated loci in the literature (PseudoR2 = 
0.166 ± 0.025), which includes loci from GWAS populations that we could not access to train 
genomic PRS models. Our results suggest that larger and more inclusive GWAS may be needed 
for genomic PRS to be useful for ALL. Moreover, the comparable performance between 
populations may suggest a more oligo-genic architecture for ALL, where some large effect loci 
may be shared between populations. Future PRS models that move away from the infinite causal 
loci assumption may further improve PRS for ALL. 
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INTRODUCTION 
 Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer 
worldwide, representing 20% of all cancers in children in the United States.1 There are few 
established environmental risk factors for ALL, and genome-wide association studies (GWAS) 
have confirmed the contribution of genetic variation to ALL risk. To date, at least 19 loci have 
been discovered and replicated in previous GWAS, primarily performed with European ancestry 
individuals, suggesting the polygenic nature of susceptibility to ALL2–12. Yet, how these variants 
collectively contribute to disease risk has not been fully characterized. 
 Polygenic Risk Scores (PRS) can identify individuals at significantly elevated risk for a 
disease, such as cancer, by providing a quantitative measure of an individual's inherited risk 
based on the cumulative impact of variants shown to be associated with the disease of interest. 
Moreover, there has been growing evidence that the predictive power of PRS can be further 
increased by aggregation of genotypic effects across all variants even if they do not reach the 
commonly acknowledged genome-wide significance threshold for association (P = 5e-8).13,14 
With ALL, this genomic PRS approach may enhance the efficacy of PRS models given the small 
number of known susceptibility loci.  

However, one of the biggest limitations of PRS is the lower predictive performance in 
non-European ancestry populations.15 Part of this loss in efficacy may be due to the over-
representation of GWAS participants of European ancestry,15,16 resulting in much more 
informative GWAS for European ancestry individuals compared to that for other ancestries. The 
poor transferability may also arise due to differences between patterns of linkage disequilibrium 
(LD), allele frequencies, causal variants, and effect sizes.15,17,18 Such a limitation is particularly 
important for ALL, since Latino children have an higher and faster-increasing risk and poorer 
survival than non-Latino Whites in the United States.19–23 Currently available PRS models for 
ALL are based only on a limited number of known risk alleles. One of the first PRS models for 
ALL was one constructed with 11 single nucleotide polymorphisms (SNPs) known to be 
associated with ALL as of 2018, with effect sizes estimated from a European ancestry cohort.24 
Its efficacy in individual risk discrimination analysis may be over-estimated as early estimates of 
variant effect sizes tend to be over-estimated, and its transferability to non-European cohorts has 
not been evaluated. A subsequent PRS model reported in 2021 using again only SNPs from 
known associated loci from multi-ancestry GWAS showed lower predictive performance than 
the earlier study, though it demostrated similar performance between Latinos and non-Latino 
White cohorts.2 No study has constructed genomic PRS models for ALL in any population to 
date.   

In this study, we set out to construct and evaluate genomic PRS models derived using 
non-Latino White (NLW) cohorts and test their transferability to Latino (LAT) individuals. We 
evaluated two genomic PRS approaches – Pruning and Thresholding (P+T) and LDPred2 – in 
parallel to PRS models constructed based on only genome-wide significant loci from the 
literature. We also aimed to examine whether effect sizes estimated from ethnic-specific GWAS 
or multi-ancestry meta-analysis, and whether training with matched ancestry LD reference panel, 
could improve the efficacy of the PRS.  
 
RESULTS 

For each step of, we used three non-overlapping datasets to (1) perform discovery GWAS to 
estimate variant effect sizes, (2) optimize parameters for the best predictive score, and (3) 
evaluate the predictive performance of the resulting scores (Figure 1). Following the convention 
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previously suggested,25,26 we refer to the datasets used in each of the three steps as “GWAS”, 
“testing”, and “validation” datasets. We randomly selected and held out 360 cases and 1,200 
controls from each of NLW and LAT as the testing datasets to identify the best PRS models, and 
reserved the entire California Childhood Leukemia Study (CCLS) cohort for validation. We used 
the remaining samples as the GWAS dataset in the three different discovery GWAS: (1) NLW-
only meta-analysis, (2) LAT-only GWAS, or (3) multi-ancestry meta-analysis. For each GWAS, 
we constructed PRS using two established approaches - Pruning and Thresholding (P+T) and 
LDPred227. We explored multiple strategies to develop PRS models. We labelled the different 
strategies using the convention of “POPGWAS_POPtesting”, where POPGWAS is the population in 
which the discovery GWAS was conducted, and POPtesting is the population in which the 
optimization for the best model was performed (Methods). Once the best performing PRS model 
for a given strategy is identified, the PRS model was then evaluated in the validation cohort - 
CCLS NLW (306 cases and 258 controls) or LAT (592 cases and 509 controls). 
 
Transferability of genomic PRS for ALL 

We first evaluated a genomic PRS model derived from GWAS summary statistics of a 
NLW cohort and its transferability to the LAT cohort. We performed a GWAS in 2,306 cases 
and 59,072 controls in NLW (Supplemental Table 1) after holding out individuals for testing 
and validating the PRS models. Our first design is termed NLW_NLW, for the discovery GWAS 
was performed in NLW, and the model was optimized also in held-out NLW samples (strategy 1, 
Figure 1). This is a typical scenario where GWAS and PRS model optimizations were both 
completed in European-ancestry populations. 

The best model with the highest Negelkerke’s Pseudo R2 in the NLW_NLW approach 
was based on LDPred2, a non-sparse model with ρ = 0.0032 and ℎ! = 0.22. This model 
consisted of approximately 1.08M SNPs across the genome and is significantly associated with 
case/control status in both CCLS NLW and LAT cohorts (P = 4.1e-9 and 3.9e-12 for NLW and 
LAT, respectively). The resulting PRS explained 8.6 ± 3.2% of the variance in the CCLS NLW 
cohort, after accounting for covariates, as measured by pseudo R2 (Table 1). The same PRS 
model explained 6.0 ± 2.0% of the variance in the CCLS LAT cohort (Table 1, Figure 2), 
suggesting minimal loss of transferability in efficacy after taking into account the standard errors 
of these estimates. The AUC in both NLW and LAT are also similar (0.667 ± 0.045 and 0.652 ± 
0.032 in NLW and LAT, respectively, in the full prediction model, including PRS as well as sex 
and 10 principal components; Table 1). 

An alternative approach to evaluate the transferability of the genomic PRS model is to 
assess if the prediction efficacy differs by proportion of European ancestry in the Latino 
individuals. Because the CCRLP has the largest collection of LAT individuals and have not been 
used in the NLW_NLW model, we can evaluate the prediction accuracy in CCRLP LAT 
individuals (N = 3901; 1878 cases). In tertiles of LAT individuals, each with approximately 1300 
individuals, we found little evidence of differences in performance across strata of ancestry 
proportions (Pseudo R2 = 0.036, 0.051, 0.037 across the highest, middle, and lowest tertiles by 
European ancestries in LAT; AUC = 0.624, 0.629, and 0.617, respectively. Table 1). Taken 
together, we identified little evidence that there is a substantial difference in transferability 
between NLW and LAT populations or ancestries. 

 
Improving the prediction accuracy of genomic PRS for Latinos 
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We first evaluated a scenario where the LAT was used as the cohort to identify the 
optimal PRS model, even though the discovery GWAS was still from NLW (NLW_LAT; 
strategy 2a in Figure 1). We found that in this case, the best model was a LDPred2 sparse model 
with parameters ρ= 0.01 and ℎ! = 0.1826. This model did not appear to improve the performance 
of the PRS in CCLS LAT over the best NLW_NLW model (PseudoR2 = 0.041 ± 0.018, 
compared to 0.060 ± 0.020 under NLW_NLW approach; Figure 2, Supplemental Table 2). 

We also evaluated a scenario where the LAT were used both for the discovery GWAS 
and PRS model optimization. In this case, 1,518 cases and 7,210 controls of LAT individuals 
from CCRLP+GERA were used in the discovery GWAS, and 151 models based on either P+T or 
LDPred2 were optimized in 360 cases and 1200 controls from held-out LAT individuals 
(LAT_LAT strategy; 2b in Figure 1). The best PRS model from this approach was a LDPred2 
sparse model with parameters ρ= 0.001 and ℎ! = 0.1764. When validating this model in CCLS, 
the performance was significantly better than when the NLW had been used for discovery 
GWAS (Pseudo R2 = 0.116 ± 0.026, compared to 0.060 ± 0.020 under the NLW_NLW strategy, 
P = 0.0019; Figure 2; Supplemental Table 2). 
 Finally, as discovery GWAS based in NLW or LAT are both potentially underpowered, 
we also evaluated the meta-analysis design that combined all four multi-ancestry cohorts from 
CCRLP+GERA as well as the COG+WTCCC samples (Supplemental Table 1). In total, the 
GWAS contained 4,226 cases (2306, 1518, 318, and 124 in NLW, LAT, EAS, and AFR, 
respectively) and 73,366 controls (59072, 7210, 5017, and 2067 in NLW, LAT, EAS, and AFR, 
respectively). We then trained the best genomic PRS model in either NLW (META_NLW; 
strategy 2c in Figure 1) or LAT (META_LAT; strategy 2d in Figure 1), both using a held-out 
sample of 360 cases and 1200 controls. Likely due to the increased sample sizes, the meta-
analysis designs produced the best performing genomic PRS models. Under the META_NLW 
design, the best model was a LDPred2 sparse model with parameters ρ= 0.0032 and ℎ! = 0.1376. 
Under this model, the prediction accuracy in CCLS LAT was better than the naïve NLW_NLW 
strategy (Pseudo R2 = 0.131 ± 0.025 vs. 0.060 ± 0.020, P  < 1e-4; Figure 2, Supplemental 
Table 2), and slightly though not significantly higher than the LAT_LAT strategy (Pseudo R2 = 
0.116 ± 0.026; P = 0.15). The best META_LAT strategy (a non-sparse model with parameters 
ρ= 0.001 and ℎ! = 0.1127) also appeared to perform similarly compared to the META_NLW 
approach (Pseudo R2 = 0.130 ± 0.024; Figure 2, Supplemental Table 2). The AUC for the full 
model including PRS, sex, and PCs were 0.700 and 0.701 for META_NLW and META_LAT 
strategies, respectively. Our results thus suggest that given the currently available data, 
combining the largest multiethnic sample for discovery GWAS will lead to the best genomic 
PRS model in terms of prediction accuracy. 

As the multi-ethnic meta-analysis GWAS is the most powerful discovery GWAS 
currently available, we also evaluated the transferability of the PRS model from the 
META_NLW strategy by comparing the PRS performance in CCLS NLW vs. LAT samples. 
The Pseudo R2 remains comparable between the two cohorts (e.g. under the META_NLW 
strategy, Pseudo R2 = 0.153 ± 0.034 for NLW vs. 0.131 ± 0.025 for LAT; Figure 3, 
Supplemental Table 3). This result is consistent with the attempt described above (NLW_NLW 
strategy). 
 
Genetic Architecture of ALL 

LDPred2 has two different modes of inference, LDPred2-grid and LDPred2-inf, where 
the former assumes some proportions of the variants are causal and parameters need to be 
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optimized in a grid, while latter assumes an infinitesimal model where every variant have a mean 
effect of 0 with some small variance. In our META_NLW and META_LAT approaches, where 
we have the most powerful discovery GWAS to guide PRS model constructions, we noticed that 
LDPred2 models consistently outperformed the LDPred2-inf models (e.g. Pseudo R2 = 0.130 ± 
0.025 in LDPred2 vs. 0.013 ± 0.016 in LDPred2-inf when model under the META_LAT 
strategy was evaluated in CCLS LAT; Supplemental Figure 1, Supplemental Table 3). Our 
results are thus consistent with a more oligogenic architecture of ALL, while LDPred2-inf is 
more appropriate for traits with highly polygenic inheritance. 
 
Genomic PRS vs. PRS based on genome-wide significant loci 

Generally speaking, genomic PRS models, whether through P+T, LDPred2, or other 
similar approaches, are expected to be more accurate in risk prediction or stratification over a 
simple PRS model based solely on the set of known GWAS loci (i.e. those that have been shown 
to reach a P-value less than 5e-8 in one or more GWAS for a particular trait)27. Indeed, in each of 
the strategies that we have examined, the best genomic PRS models tend to be better than P+T 
model with p-value threshold of 5e-8, a special case which is equivalent to building a PRS model 
with the genome-wide significant loci. For instance, under the META_LAT strategy, the best 
PRS model achieved a pseudo R2 of 0.130 ± 0.024, while the best P+T model with P-value 
threshold of 5e-8 only attained a pseudo R2 of 0.088 ± 0.021. 

However, the genomic PRS requires a held-out sample to optimize the parameters for 
building the PRS. This necessitates a reduction in the sample sizes available for GWAS. While 
this may not be a huge obstacle for common diseases, it could be a concern for a rare disease 
such as ALL. In order to evaluate the genomic PRS, we had to reduce our case proportions by 
8.7% (from 2666 cases to 2306 cases and from 1878 cases to 1518 cases after removing 360 
cases each for NLW and LAT respectively from CCRLP+Kaiser as training sample). Thus, an 
alternative approach could have been constructing a simple PRS model based on only genome-
wide significant variants, and subsequently test this PRS model in independent cohorts. 

We built a PRS model using 23 SNPs previously associated with ALL, identified across 
11 studies2–12. These 23 SNPs were derived from 19 loci, including conditionally independent 
secondary associations at 4 loci (Supplemental Table 4). These associated SNPs were identified 
in one or more independent cohorts in the literature, including the full CCRLP+GERA datasets 
that were used for constructing and evaluating genomic PRS models above. Because there is no 
need to optimize the PRS model in held-out samples, we directly tested this “conventional” PRS 
in the independent CCLS cohort that were not used in the discovery of any of these 23 loci 
(although they had been used as part of the replication cohort in previous studies). This strategy 
produced better prediction accuracy than the best performing genomic PRS models in CCLS 
LAT (Pseudo R2 = 0.166 ± 0.025; AUC = 0.726 compared to Pseudo R2 = 0.131 ± 0.025 from 
genomic PRS derived using the META_NLW strategy, P < 1e-4; Table 2, Figure 3), a 
difference that was not seen between the conventional PRS and genomic PRS tested in CCLS 
NLW (Pseudo R2 = 0.151 ± 0.034; AUC = 0.706 compared to Pseudo R2 = 0.153 ± 0.034 from 
genomic PRS derived using the META_NLW, Table 2, Figure 3). 
 
DISCUSSION 

In the current study, we leveraged the largest available multi-ancestry meta-analysis 
GWAS to investigate strategies to build and evaluate polygenic risk score models for ALL across 
populations. We evaluated the extent of loss in efficacy for PRS models trained solely in NLW 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.08.23291167doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.08.23291167
http://creativecommons.org/licenses/by-nc-nd/4.0/


populations but applied in LAT populations, explored approaches to improve PRS models for 
LAT through different optimization strategies, and compared the genomic PRS models against a 
simple model that used all previously reported genome-wide significant ALL-associated variants 
with no optimization. We found little evidence of a loss in efficacy when transferring the 
genomic PRS model between populations. We also found that while leveraging multi-ethnic 
information to increase GWAS sample sizes and representation could lead to much more 
effective genomic PRS models (pseudo R2 = 0.131 ± 0.025, AUC = 0.700), this model currently 
still has lower prediction accuracy for Latinos compared to a simple model of using only 23 
known ALL-associated SNPs (pseudo R2 = 0.166 ± 0.025, AUC = 0.726) that were derived from 
multiple independent cohorts in literature (including ones we do not have access to and not 
utilized in this study for building genomic PRS). 

We undertook multiple analytical approaches to evaluate the transferability of a PRS 
model for ALL, but generally found little evidence of loss in efficacy across populations. After 
determining the best predictive PRS models in NLW, using either the CCRLP NLW 
(NLW_NLW approach) or the meta-analysis (META_NLW) for the discovery GWAS, we 
observed little difference in performance in CCLS NLW and LAT subjects (66.7% in NLW vs. 
65.2% in LAT by AUC for the NLW_NLW strategy; 71.0% in NLW vs. 70.0% in LAT by AUC 
for the META_NLW strategy; Table 1, Supplemental Table 3). We also did not observe 
differences in the PRS predictive performance across strata of LAT individuals by estimated 
European ancestry proportions (Table 1). If there had been overt transferability issues, we would 
expect that strata with the highest European ancestry would have higher prediction accuracy 
compared to strata with lower European ancestry. It remains unclear whether the similar 
performance across populations is driven by representation in GWAS, European-ancestry 
admixture in LAT samples, or sufficiently shared genetic architecture between populations for 
ALL that is minimally impacted by LD differences.  

As one possible explanation for comparable PRS efficacy between LAT and NLW is 
shared genetic architecture; whereby ALL may follow a more oligogenic architecture where 
several large effect causal loci exist on top of a polygenic background of smaller effect causal 
loci. Our previous study2 had demonstrated that the genetic correlation between NLW and LAT 
is relatively high (rG = 0.714 ± 0.13), though could be different from 1 (P = 0.014). Here, we 
have shown that an LDPred2 model for PRS assuming infinitesimal causal loci drastically 
underperforms compared to one without this assumption (Supplemental Figure 1, 
Supplemental Table 3). Combining these two observations, we speculate that the disease 
architecture for ALL may be driven by a few large effect loci that are shared across ancestries. 
The lower genetic correlation between populations may then be driven by significant differences 
in the polygenic background, or by other yet-undiscovered population-enriched alleles. But as 
these loci may have smaller effects: PRS efficacy, and hence transferability, could be driven 
largely by the main effect loci, at least within the resolution of the sample size of the current 
validation cohort (i.e. CCLS). Future studies, particularly if focused on a single ethnic group 
such as NLW, that continue to elucidate the polygenic background of the ALL architecture may 
then both improve the accuracy of PRS model performance as well as exacerbating the loss of 
efficacy across populations that we are not currently able to detect. For this reason we would 
advocate for greater inclusion in GWAS representation despite currently observing little 
evidence in the loss of transferability in PRS model. With regards to the LAT population which 
has higher risk for ALL, increasing sample sizes will likely help improve PRS models in this 
population; indeed, using a smaller GWAS solely from LAT already substantially improved PRS 
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prediction efficacy in out-of-sample LAT cohort (Figure 1) and further discovery of LAT-
enriched alleles will improve PRS models for this population. More generally, diverse ancestries 
in multi-ancestry GWAS can also help with better fine-mapping of causal loci, which would 
improve both efficacy and transferability of PRS models.15,17 

Altogether, our study provided guidance for future designs to propose and evaluate PRS 
models for ALL. Firstly, efforts to continue to increase the sample size and ancestry 
representation in GWAS is imperative. We have shown that genomic PRS using LDPred2 
outperforms that based on just genome-wide significant loci (using the same GWAS, i.e. P+T 
models with P-value threshold of 5e-8). But this model currently does not outperform one simply 
based on aggregating all known loci from the literature, effectively combining information 
across multiple independent GWAS datasets. Therefore, an aggregation of available GWAS 
through a consortium effort should provide the ideal dataset to train better genomic PRS models. 
Efforts like the Childhood Leukemia International Consortium (CLIC)28 should provide the best 
resources in the foreseeable future. CLIC meta- or mega-analysis will include around 20,000 
cases and 160,000 multi-ancestry ALL cases and controls. Given a larger dataset, we can ensure 
more homogeneity and greater sample size for both the testing and validation dataset and would 
have more cohorts with diverse ancestry to iteratively assess the transferability of the PRS 
models. This is particularly important for Latino populations, given the known heterogeneity in 
ancestry compositions and fine-scale structure of Latinos across the United States and Latin 
America.29,30  

Secondly, given the suspected oligo-genic architecture of ALL, alternative PRS strategies 
that incorporate information from the distribution of effect sizes may also further improve the 
performance from a methodological standpoint. While LDPred2 controls somewhat the 
proportion of the genome underlying a trait through optimization of the ρ parameter, its prior is 
ultimately a “spike-and-slab” prior. A more direct modelling of the distribution of effect sizes, on 
top of a polygenic background may prove to be a better model for ALL. Methods following these 
types of models are emerging (e.g. see ref 31), and will likely become more mature in the near 
future. But even without a unified framework to model effect size distributions, a simpler 
approach32 that combines weighted PRS could also be more effective. In this case, one score 
would be derived from sections of the genome known to be associated with ALL that may also 
include multiple secondary but independent causal variants, and the other score could be derived 
from LDPred2 or similar approaches from the rest of the genome. The weights between these 
two scores can then be optimized in the training dataset as an additional parameter to derive a 
score that may outperform any of the existing models evaluated here. 

PRS are intended to be robust prediction tools that would be utilized in research and 
clinical settings. In research settings, PRS would be applicable in defining the attributable 
fraction of leukemia risk derived from common genetic variation when examining other risks – 
either from low frequency genetic alleles or environmental factors.  In the clinical setting, PRS 
could become useful tools to genetic counselors in working with children’s families in 
combination with sequencing for pathogenic germline variants in predisposition genes. 
Ultimately, PRS may be incorporated with additional risk prediction tools such as markers of 
early leukemia-promoting mutations on a population scale in neonatal screening efforts where 
interventions were available. Employment of PRS in such settings requires accurate tools across 
all ancestral/ethnic groups, particularly for the Latino population who harbor the greatest risk of 
ALL, and our study represents one of the first approach toward this goal.  
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MATERIALS AND METHODS 
Study Cohort 

The California Childhood Cancer Record Linkage Project (CCRLP) includes all children 
born in California during 1982-2009 and diagnosed with ALL at the age of 0-14 years per 
California Cancer Registry records from 1988-2011. Children who were born in California 
during the same period and not reported to California Cancer Registry as having any childhood 
cancer were considered potential controls. Detailed information on sample matching, preparation 
and genotyping has been previously described4. Because ALL is a rare childhood cancer, to 
increase statistical power of a genetic study we followed previous practice4 and incorporated 
additional controls using adult individuals from the Kaiser Resource for Genetic Epidemiology 
Research on Aging Cohort (GERA; dbGaP accession: phs000788.v1.p2). The GERA cohort was 
chosen because a very similar genotyping platform had been used. Genome-wide SNP 
genotyping was performed for all individuals in CCRLP and GERA using the Affymetrix Axiom 
World LAT array4. Both studies included data on self-reported race/ethnicity. The imputation 
and quality control (QC) of SNP array data were carried out in each study population, as 
previously described in a multi-ancestry meta-analysis GWAS of ALL2. After QC filtering, the 
LAT GWAS included 1,878 cases and 8,441 controls, the NLW GWAS included 1,162 cases 
and 57,341 controls, the African American GWAS included 124 cases and 2067, and the East 
Asian GWAS included 318 cases and 5,017 controls.  

Another GWAS was performed with individuals from the Children’s Oncology Group 
(COG; dbGAP accession: phs000638.v1.p1) as cases and from the Wellcome Trust Case–
Control Consortium (WTCCC) as controls.33 We generally followed the same quality control 
pipeline, but because self-reported race/ethnicity was not available to us, we performed global 
ancestry estimations using ADMIXTURE and the 1000 Genomes populations as reference and 
removed individuals with < 90% estimated European ancestry from the analysis, resulting in a 
total of 1504 and 2931 NLW cases and controls respectively. This dataset was previously used as 
a replication cohort of European ancestry in our earlier study2, but here we combined it with 
CCRLP NLW to increase the sample size of the discovery GWAS (below). 

The California Childhood Leukemia Study (CCLS)12,34, a non-overlapping California case-
control study with controls selected from California birth records (1995-2008), was used as our 
validation dataset. In total, there were 306 NLW cases, 258 NLW controls, 592 LAT cases, and 
509 LAT controls available for analysis. The QC procedures and imputation were performed in 
accordance with the discovery/training dataset.  
 
Overall Study Design 

A PRS of an individual j is defined as a weighted sum of SNP allele counts:  

'() =*+",-#$
%

#&'
 

where m is the number of SNPs to be included in the predictor, +",  in the per allele weight for 
each SNP, -#$ is the allele count (0,1,2) or dosage of the allele of SNP in individual j. 

For each step of score derivation, optimization, and evaluation, we used three non-
overlapping datasets to (1) perform discovery GWAS to estimate variant effect sizes, (2) 
optimize parameters for the best predictive score, and (3) evaluate the predictive performance of 
the resulting scores (Figure 1). Following the convention previously suggested,25,26 we refer to 
the datasets used in each of the three steps as “GWAS”, “testing”, and “validation” datasets. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.08.23291167doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.08.23291167
http://creativecommons.org/licenses/by-nc-nd/4.0/


We randomly selected and held out 360 cases and 1,200 controls from each of CCRLP NLW  
(~2.7% of the sample size) and LAT (~15.2% of the sample size) as the testing datasets to 
identify the best PRS models, and used the remaining sample from CCRLP+GERA cohort as the 
GWAS dataset in the three different discovery GWAS: (1) NLW-only meta-analysis (combined 
with COG+WTCCC sample), (2) LAT-only GWAS, (3) multi-ancestry meta-analysis. For each 
GWAS, we constructed PRS using two established approaches - Pruning and Thresholding 
(P+T) and LDPred2.  
 
Discovery GWAS 

We used PLINK (version 2.3 alpha) to test the association between imputed genotype dosage 
at each SNP and case-control status in logistic regression, after adjusting for the top 20 principal 
components to control for potential confounding due to fine-scale structure and variation in 
genetic ancestry within each ethnic group. For NLW and multi-ancestry GWAS meta-analysis, 
the results from each study and/or racial/ethnic groups were combined via the fixed-effect meta-
analysis with variance weighting using METAL35. After excluding 360 cases and 1200 controls 
each for NLW and LAT (as the held-out/testing samples), we included 802 cases and 56141 
controls in NLW, 1518 cases and 7210 controls in LAT, 318 cases and 5017 controls in East 
Asian, and 124 cases and 2067 controls in African American discovery GWAS in 
CCRLP/GERA. For NLW meta-analysis, CCRLP/GERA GWAS was meta-analyzed with a 
separate GWAS conducted with 1504 cases and 2931 controls from COG/WTCCC cohort, for a 
total sample size of 2306 cases and 59072 controls. Multi-ethnic meta-analysis was conducted 
with CCRLP/GERA NLW, LAT, East Asian, African American and COG/WTCCC individuals, 
totaling 4266 cases and 73366 controls. The total sample size for each discovery GWAS design 
can be found in Supplemental Table 1. 
 
Polygenic Risk Score Derivation / Optimization 

For each ethnic-specific or multi-ancestry GWAS, we constructed PRS using two different 
methods: Pruning and Thresholding (P + T) and LDPred2. Both methods used the GWAS 
summary statistics as the starting point, but each make different choices for which SNPs to 
include in the predictor and the weight values assigned to each SNP.  
 Pruning and Thresholding (P+T) uses a P-value threshold and LD-driven clumping 
procedure to construct scores. The scores using P+T approach were constructed using PLINK 
(version 1.9). In brief, given a user-defined threshold for associated P-value and clumping 
parameters, the algorithm forms clumps around the index SNPs with all SNPs within a specified 
distance (kb) that have P-value and pair-wise LD (measured by r2) at levels greater than a 
specified threshold. The algorithm greedily and iteratively cycles through all index SNPs, 
beginning with the SNP with the most significant P-value, only allowing each SNP to appear in 
one clump. The most significant SNPs for each LD-based clump across the genome are used to 
build the PRS with associated estimate beta as weights. We constructed PRS using a range of P-
values (1.0, 0.5, 0.05, 5 × 10−4, 5 × 10−6, and 5 × 10−8), r2 (0.2, 0.4, 0.6, and 0.8), and kb (250, 
500) thresholds for a total of 48 PRS models to optimize under this approach. 

LDPred2 uses a Bayesian approach to calculate posterior mean effect size for each 
variant given a prior and subsequent shrinkage based on the extent to which the variant is 
correlated with similarly associated variants.27,36 The underlying Gaussian distribution 
additionally considers the proportion of causal variants (ρ). LDPred2 uses a grid of values for 
hyper-parameters/tuning parameter -  ρ, ℎ! (the SNP heritability), and sparsity (whether to fit 
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some variant effects to exactly zero) to construct PRS. We used ρ from a sequence of 17 values 
from 10−4 to 1 on a log-scale, a range of ℎ! within (0.7, 1, 1.4)  × estimated heritability, and a 
binary sparsity option of either on and off (LDPred2-grid models). In addition, we tested a model 
assuming infinitesimal causal effects, where each variant assumed to contribute to disease risk 
(LDPred2-inf model). In total, we evaluated 103 PRS models using LDPred2.   

Once the variants and weights for each PRS model were estimated, the scores were generated 
in the testing sample (360 cases and 1200 controls in NLW or LAT) using PLINK (version 2.3 
alpha), and then standardized to have mean of 0 and variance of 1. For each strategy, the score 
with the best predictive performance was determined based on the highest Negelkerke’s pseudo-
R2, which was calculated as the difference of R2 from a full model inclusive of the PRS and the 
covariates and the R2 from a null model with covariates alone. Covariates in the model included 
the first 20 principal components (PCs) and sex. 
 
PRS evaluation  

After optimizing the PRS model in held-out testing samples of 360 cases and 1200 
controls, we computed the PRS score in the CCLS, which is our validation dataset. The CCLS 
included 306 cases and 258 controls in the NLW subcohort, and 592 cases and 509 controls in 
the LAT subcohort. The predictive performance of PRS was quantified by Negelkerke’s pseudo-
R2 (the proportion of variance explained, as computed above for the testing datasets) and area 
under receiver operating characteristic curve (AUC; probability that a case ranks higher than a 
control). AUC was computed for the full model with covariates to account for population 
stratification. AUC for the null model (ALL ~ 10 PCs + sex) is 0.593 and 0.577 in CCLS LAT 
and NLW, respectively. AUC were calculated using pROC package in R.37 Standard errors in 
these measures of model performance was computed with 1,000 sets of bootstrap samples across 
individuals. 
 
Ancestry Inference 

Global ancestry inference was performed on CCRLP Latino cases and controls using 
RFMix38, using a reference panel consisting of 671 non-Finnish European individuals for 
European ancestry, 716 African individuals for African ancestry, and 94 Admixed American 
individuals (7 Columbian, 12 Karitianan, 14 Mayan, 4 Mexican in Los Angeles, 37 Peruvian in 
Lima, Peru, 12 Pima, and 8 Surui) for Indigenous American (IA) ancestry from gnomAD v3.1 
release39, as previously identified to be enriched with indigenous ancestry.40 We stratified Latino 
individuals into three tertiles of global European ancestry, and in each group evaluated the 
predictive performance of the best PRS model for NLW_NLW strategy (i.e. GWAS conducted 
in NLW, and PRS optimization performed in held-out NLW). 
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TABLES 
 

Testing dataset 
Sample 
size P-value AUC SE_AUC PseudoR2 SE_PseudoR2 

CCLS NLW 564 4.13E-09 0.667 0.045 0.086 0.032 
CCLS LAT 1101 3.95E-12 0.652 0.032 0.060 0.020 

CCRLP 
LAT_highEUR 1300 3.59E-09 0.624 0.030 0.036 0.016 

CCRLP 
LAT_medEUR 1301 2.68E-12 0.629 0.030 0.051 0.017 

CCRLP 
LAT_lowEUR 1300 1.79E-09 0.617 0.030 0.037 0.016 

 
Table 1: Performance of the best model for NLW_NLW strategy  across different testing 
datasets. P-value denotes the evidence of association of the PRS model in a logistic regression 
model with additional covariates of 20 PCs and sex. AUC denotes area under the curve from 
receiveer-operator characteristic analysis. PseudoR2 was calculated from the difference between 
a logistic regression model with PRS and one without PRS. SE denotes standard error for both 
AUC and PseudoR2, which were computed using 1,000 bootstrap samples. CCRLP 
LAT_highEUR, medEUR, and lowEUR denote the top, middle, and bottom tertile, respectively, 
of individuals sorted by proportion of estimated European ancestries. 
 
 

 CCLS NLW CCLS LAT 

 PseudoR2 SE AUC PseudoR2 SE AUC 
conventional PRS 0.151 0.034 0.706 0.166 0.025 0.726 

genomic PRS 0.153 0.034 0.710 0.131 0.025 0.700 
 
Table 2: Predictive performance of best performing genomic PRS model vs. conventional 
model constructed with 23 known ALL risk SNPs. Conventional PRS is a model based on 23 
SNPs in literature known to be associated with ALL, having passing the genome-wide 
significance threshold of 5e-8 in GWAS. PseudoR2 was calculated from the difference between 
a logistic regression model with PRS and one without PRS. SE denotes standard error, estimated 
from 1000 bootstrap samples. 
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4,266 case 
73,366 control

Figure 1: summary of study design and analysis. The flowchart details different cohorts used for each step 
of PRS derivation with different discovery GWAS dataset, optimization dataset, and evaluation in either non-
Latino white or Latino populations. In PRS evaluation, comparison (1) focused on evaluating the 
transferability of PRS models optimized in non-Latino White cohort. Comparison (2) focused on different 
strategies for improving the PRS efficacy by optimizing in a Latino cohort (2a), using a Latino-only 
discovery GWAS (2b), using a multi-ethnic discovery GWAS and optimized in non-Latino white (2c) or 
Latinos (2d). NLW: no-Latino White, LAT: Latino American, CCRLP: California Childhood Cancer Record 
Linkage Project, GERA: Genetic Epidemiology Research on Aging Cohort, COG: Children’s Oncology 
Group, WTCCC: Wellcome Trust Case-Control Consortium, CCLS: California Childhood Leukemia Study.
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Figure 2: PRS efficacy based on the best performing model for each strategy, as validated in CCLS Latinos. 
The PRS efficacy, as measured by pseudo R2, of the best performing model for each strategy aimed to improve 
the efficacy of PRS models for LAT (strategies 2a-2d in Figure 1) is summarized and compared to a baseline 
model (strategy 1). Baseline model is a Euro-centric discovery GWAS (using only NLW individuals), with model 
optimization in held-out NLW individuals. * Strategy 2b (LAT_LAT; Latino-only discovery GWAS and PRS 
model optimization in LAT) is significantly better than the baseline model (P = 0.0019). ** Strategy 2c and 2d 
(META_NLW and META_LAT; Multi-ancestry meta-analysis discovery GWAS and model optimization in NLW 
or LAT, respectively) are both better than the baseline model as well (P < 1e-4). Statistical significance is 
computed by 10,000 rounds of bootstrap samples across individuals. No other comparisons produced statistically 
significant results.

*

**



0

0.05

0.1

0.15

0.2

0.25

NLW LAT

Ps
eu

do
 R

2

Testing cohort

conventional PRS
genomic PRS

Figure 3: Predictive performance of best performing genomic PRS model (META_NLW) vs. PRS 
model constructed with 23 known ALL risk SNPs. Both models were tested in CCLS NLW and LAT, 
which were not used in the discovery GWAS for genomic PRS. CCLS was also not used in the identification 
of the 23 known loci in literature, although it had been used as replication cohort. * In CCLS LAT, the pseudo 
R2 for PRS model based on 23 known loci is significantly better than that from our best performing genomic 
PRS model (P < 1e-4) based on 10,000 sets of bootstrapping.
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