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 2 

ABSTRACT 28 

Objectives There is an ongoing debate over whether a procedural specific (e.g. Society of Thoracic 29 

Surgeons (STS)) or universal model (e.g. EuroSCORE II (ES II)) should be used for patient selection in 30 

cardiac surgery. Recently, we showed that ES II suffers from severe performance drift across several 31 

important metrics and that ML approaches such as Xgboost and Random Forest are substantially more 32 

resistant to dataset drift. With the growing interest in big data and its leverage through the use of ML 33 

approaches that are not limited by linear statistical assumptions, the number of clinical variables can 34 

theoretically increase exponentially. In addition, the variations and residual confounding that historically 35 

hindered the usefulness of cardiac risk stratification scores can potentially be taken into account. Here, we 36 

assess these possibilities on a large United Kingdom (UK) database. 37 

Methods: A retrospective analysis of prospectively routinely gathered data on adult patients undergoing 38 

cardiac surgery in the UK between 2012-2019. We temporally split the data 70:30 into a training and 39 

validation subset. Two sets of seven ML mortality prediction models, with and without variable selection 40 

were assessed for consensus Clinical Effective Metric (CEM) overall performance and performance within 41 

each of CEM’s consistuent metrics. Confounding and potential causal relationships between covariates and 42 

outcomes were evaluated using bayesian network analysis.  43 

Results: A total of  227,087 adults underwent cardiac surgery during the study period with a mortality rate 44 

of 2.76%. For non-variable selected (NVS) risk scores with 102 variables, Xgboost with adjustment for 45 

hospital variation was superior to the Xgboost without adjustment (p < 2e-16). Both NVS and the 18 46 

variables selected (VS) Xgboost with adjustment for hospital variation risk scores were superior to the 47 

Xgboost (ES II 18 variables) model (p < 6.3e-15), with NVS Xgboost with adjustment for hospital variation 48 

having the best performance, followed by the VS Xgboost with adjustment for hospital variation (CEM 49 

Difference: 0.0150 and 0.0023, respectively). 50 

Conclusions: We have identified an ML adjusted risk score comprising 102 variables that increases risk 51 

stratification performance on hold out dataset, removing the need to perform variable selection and 52 
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reduction.  This paves the way for further research that utilises this new set of variables with hospital-based 53 

adjustments for the safer selection of patients undergoing cardiac surgery. 54 

Keywords: cardiac surgery; artificial intelligence; risk prediction; machine learning; operative mortality; 55 

confounding analysis; causal analysis; performance analysis; national dataset 56 
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 75 

 76 

Introduction 77 

The importance of Machine Learning (ML), a branch of Artificial intelligence (AI) has recently been 78 

highlighted as a potential alternative to mortality risk scores for cardiac surgical procedures, such as Society 79 

of Thoracic Surgeons (STS),[1] and EuroSCORE II (ES II) [2] which are prone to miscalibration overtime 80 

and poor generalisation across datasets.[1,3] In particular, ES II, which is based on logistic regression using 81 

18 items of patient information, has been shown by numerous studies to display poor discrimination and 82 

calibration across datasets with differing characteristics, including but not limited to age,[4] ethnicity[5] and 83 

procedures groups.[6–10] Furthermore, ES II suffers from severe performance drift across several metrics 84 

including but not limited to discrimination, calibration, clinical utility and overall accuracy. ML approaches 85 

such as Xgboost and Random Forest are substantially more resistant to performance drifts that arise as a 86 

consequence of dataset drift.  87 

ML has been shown to be superior to conventional scoring systems with the magnitude and clinical 88 

influence of such improvements demonstrated.[2] The ability to counter-performance drift due to temporal 89 

changes in the prevalence of risk factors has also been evaluated across multiple centres and has been shown 90 

to be superior to universal scores such as the ES II. However, the confounding effects of variables not 91 

included in ES II for its consistuent procedures have not been taken into account and may confuse 92 

correlation with causation of the outcome,[11] and may also limit the full potential of the risk stratification 93 

scores. The influence of these “hidden” variables on the performances of ML scores have yet to be fully 94 

elucidated.  95 

Parsimonious models can result in improved prediction by preventing overfitting in scenarios where 96 

the number of events to variables are low, e.g. small sample size and high dimensional datasets. However, 97 

The No Free Lunch Theorem states that all optimisation algorithms perform equally well when their 98 

performance is averaged across all possible problems,[25] and suggests that different ML models will have a 99 

different set of optimal prediction variables for any given task or dataset. This makes it difficult to provide a 00 
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fair comparison of models based on equal events per variable (EPV). Keeping the EPV constant would 01 

require different sample size of data being compared due to differences in number of variables per model. 02 

This would lead to unfairness due to sample size disparity. An alternative solution to create a comparative 03 

set of parsimonious models is to keep EPV constant by using the top N most important variables across all 04 

models, thereby also fixing the sample size across all model comparisons.  05 

Since cardiac surgery mortality events are low and typically in the order of 3%, the events per 06 

variable (EPV) will require careful judgement of the right balance of variables to use for prediction 07 

modelling.[12] In small datasets, the cardiac surgery risk predictions are more likely to be biased and to 08 

have high error rates, especially when larger numbers of variables are used.[13] The commonly used ES II is 09 

limited to the use of 18 variables partly for this reason. However, for larger multi-centre National Adult 10 

Cardiac Surgery Audit (NACSA) datasets, the number of events will be larger relative to smaller datasets, 11 

theoretically supporting the use of larger number of variables. One other reason that ES II  does not use a 12 

larger number of variables is due to restrictions in logistic regression that variables should be absent of 13 

multi-collinearity i.e. predictors should be independent of each other. This assumption becomes more 14 

difficult to meet as variable numbers increases. However, ML is not affected by this limitation and is more 15 

suited to modelling complex non-linear relationships among variables. We therefore hypothesised whether 16 

ML could be applied to enable increased performance when a larger set of variables are used. 17 

One other issue of using a larger multi-centre national dataset such as NACSA is that there may exist 18 

systematic differences in relationships of variables across different centres, i.e. calibration drift across 19 

geographic regions. For example, each hospital could have different cardiac surgery protocols or different 20 

suppliers for surgical equipments and devices. In addition, patients from different centres are likely to have 21 

different levels of deprivation and social demographic profiles that could result in regional differences in 22 

cardiac surgery risk. Therefore, we hypothesise that taking hospital variation into account could improve the 23 

performance of cardiac surgery risk prediction.  24 

We, therefore, trained and evaluated two sets of 7 supervised ML models based on various 25 

combinations of a large set of 60 clinical variables with and without hospital location variable(s) to (1) 26 

determine the best ML model in terms of overall accuracy, discrimination, calibration and clinical 27 
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effectiveness, (2) use variable importance to select and build a parsimonious version of the set of 7 models 28 

from (1) and to compare performances within and across parsimonious and non-parsimonious sets; (3) 29 

analyse causal and non-causal relationships between newly proposed variables and the outcome.  30 

 31 

Related works 32 

Machine learning (ML) techniques have drawn interest as potential substitutes for existing scoring systems 33 

for predicting the mortality risk of cardiac surgery. ML models have been demonstrated to perform better 34 

than traditional methods, offering predictions that are more accurate with potential treatment 35 

optimization applications. However, prior studies of cardiac surgery risk prediction modelling using ML 36 

have mostly concentrated on applying ML algorithms without taking into account the potential variability of 37 

patients across various hospital locations. 38 

Incorporating random effects into machine learning models for risk prediction applications has 39 

drawn attention in recent years. By incorporating random effects, this method, sometimes referred to as 40 

mixed effects machine learning, may take into account the heterogeneity introduced by various hospital 41 

locations. The model can capture the systematic variations in the interactions between variables across 42 

different centres through the incorporation of random effects, which enhances the risk prediction model's 43 

overall performance and calibration. 44 

While one survival analysis study using ML on cardiovascular related risk factors highlighted the 45 

importance of using the hospital index as a random effect to account for clustering within the hospital,[14] 46 

this random effects was only evaluated for the traditional Cox proportional-hazards regression as part of the 47 

sub-analysis without similar adjustment in the Random Forest model. While there are few studies specific to 48 

mixed machine learning in cardiac surgery, one study in the related field of cardiovascular imaging applied 49 

linear mixed effects model as a post-processing step following convolutional neural network (CNN) to 50 

compare across different coefficient of variation across decision made by human and the CNN.[15] 51 

However, the no mixed effects machine learning or deep learning model was used.  52 
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In other domains such as neurology[16] mixed effects linear regression have also been used to 53 

account for random variations across models compared. However,  such studies also apply mixed effects 54 

separate to the main models analysed rather than incorporating effects with the machine learning model. 55 

Unlike previously mentioned studies which applied linear mixed effect models to compare machine learning 56 

models, another study in precision oncology used random effects within a linear mixed model to select 57 

features while adjusting for patient variations.[17] In a different study on plant sciences utilising a random 58 

forest, similar linear mixed random effects selection of features before machine learning modelling was 59 

used.[18] 60 

We have previously evaluated the calibration changes in machine learning base models across the 61 

1996-2011 and 2011-2017 for the EuroSCORE I variables and shown that both LR and random forest 62 

models were associated with good discrimination ability but substantial miscalibration.[19] We followed 63 

this by a development of a suit of performance metrics for evaluating clinical machine learning models.[20] 64 

In a separate study, we have developed an approach that compared calibration changes, variable importance 65 

drift, performance drift and actual dataset drift of the base models using EuroSCORE II variables across the 66 

years 2017-2019.[21] With respect to changes in techniques, Dataset drift was observed across the Holdout 67 

time periods for Weight of intervention of EuroSCORE II. Sharp dataset drifts were observed for the Single 68 

non-CABG and 3 procedures category between 2018-12 to 2019-02. In a separate study, we found that 69 

machine learning models could be ensembled to combine EuroSCORE I and EuroSCORE II variables and 70 

data from different time periods to improve performance through Xgboost homogeneous ensembles.[22]  71 

While prior research has emphasised the need for mixed effects in machine learning studies and 72 

related techniques in prediction, little research has specifically compared the different ways of 73 

encoding random effects to account for hospital site heterogeneity in ML models. By using a mixed effects 74 

machine learning approach with random effects as hospital location, this research aims to bridge this gap. 75 

The suggested model can effectively account for regional variations in cardiac surgery operation and patient 76 

characteristics by taking into consideration the hospital-specific impacts. As a result, the model's predictions 77 

of mortality risk are more precise and reliable. 78 
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 79 

Materials and methods 80 

 81 

The register-based cohort study is part of a research approved by the Health Research Authority (HRA) and 82 

Health and Care Research Wales and a waiver for patients’ consent was waived (HCRW) (IRAS ID: 83 

278171). An Abbreviations and Definitions list of frequently used technical terms used in this study has 84 

been provided for the reader at the start of the Supplementary Materials.  85 

Dataset and Patient Population 86 

The study was performed using the National Adult Cardiac Surgery Audit (NACSA) dataset, which 87 

comprises data prospectively collected by National Institute for Cardiovascular Outcome Research on all 88 

cardiac procedures performed in all NHS hospital sites and some private hospitals across the UK.[19]  89 

Patients undergoing cardiac surgery from 42 cardiac surgery centres between 1 Jan 2012 and 31 Mar 90 

2019 were included. Missing and erroneously inputted data in the dataset were cleaned according to the 91 

National Adult Cardiac Surgery Audit Registry Data Pre-processing recommendations;[23] details are found 92 

in the Supplementary Materials, Table S1: Handling of missing data and Supplementary Materials 93 

Treatment of Missing Data section.  Missing categorical variable values were generally set to the baseline 94 

level, i.e., no risk were present, except where other specific values are more appropriate. Missing continuous 95 

variable values were imputed using the median (Hmisc R package). Detailed variable processing are shown 96 

in Table S1. Variable distributions were checked using histogram plots. Data standardization was performed 97 

by subtracting variable mean and dividing by the standard deviation values.[24] 98 

The dataset was split into two cohorts: Training/Validation (n = 157196; 2012-2016) and Holdout (n 99 

= 69891; 2017-2019) as per previous studies.[20,21]  00 

 01 

Baseline Statistical analysis  02 
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Continuous variables are compared using non-parametric Wilcoxon rank-sum test, whilst categorical 03 

variables are compared using Pearson’s χ2 tests or Fisher’s exact test as appropriate. Baseline variable 04 

characteristics were assessed by pooling the top 18 most important variables identified through SHAP from 05 

each model and retaining only unique variables across all models.  06 

Scikit-learn v0.23.1 and Keras v2.4.0 were used to develop the models and to evaluate their discrimination, 07 

calibration and clinical effectiveness capabilities. Statistical analyses are conducted using STATA-MP 08 

version 17 and R v4.0.2.[25] Anova Assumptions were checked using R rstatix package. 09 

 10 

Variable Selection and Processing  11 

A total of 245 NACSA variables were considered. 179 indication, intra-op, anatomical, rare procedures, 12 

dates, comorbidities, other outcomes and similar variables were excluded. An additional 3 intra-op variables 13 

were excluded resulting in 63 variables. Two variables (ethnicity and the total number of grafts) were 14 

excluded because they were only recorded at 1 hospital. Intra-Aortic Balloon Pump usage (IABP) and 15 

ventricular assist device used (VAD) were recoded to two levels (pre-op usage: Yes or No). Aortic valve 16 

(AV),  Mitral Valve (MV), Tricuspid Valve (TV) and Pulmonary valve (PV) procedures were recoded to 17 

two levels (procedure performed: Yes or No). Pre-op sinus, Atrial Fibrillation (AF), Ventricular Fibrillation 18 

or Tarchicardia, and heart block or paced rhythm were combined as a single categorical variable with levels 19 

0, 1, 2, 3, respectively. Aortic, Tricuspid, Pulmonary and Mitral valve procedures were made more general 20 

by combining individual repair types into a single repair category, resulting in three levels: 0.None; 1.Repair; 21 

2.Replacement. Further variable processing details are provided in Table S1, resulting in 61 initial sets of 22 

variables (Figure S2). A correlation analysis was conducted to determine the collinearity of variables.  23 

 24 

Fixed and mixed effects dataset 25 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.08.23291129doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.08.23291129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

Three different versions of datasets were generated based on whether the geographic location of the cardiac 26 

centre was 1) modelled as mixed-effects model or 2) not; 3) excluded. The number of baseline variables for 27 

1) is 61; 2) is 60 + 42 = 102; and for 3) is 60.  28 

1) Mixed Effects modelling  29 

The geographical location of the 42 centres was converted from the character format to a single vector of 30 

numeric equivalents and entered as the random effects.  31 

2) Fixed Effects modelling 32 

The geographical location of the 42 centres was hot-encoded into 42 new variables each indicating whether 33 

or not each procedure originated from that geographical location.  34 

3) No Cardiac Centre 35 

This is the baseline model with the removal of the geographical location variable.  36 

Non-variable selected Modelling  37 

Using the above datasets, seven models were developed without variable selection. Those model included 38 

Xgboost – centres,[26] Xgboost + centres (hot encoded), RF – centres,[27] RF + centres (hot encoded), 39 

Mixed Effects RF (MERF) + random effects (RE): centre, Mixed Effects Xgboost + RE: centre and 40 

GPBoost + RE: centre, where – indicates the exclusion of centre variable and + indicates inclusion of centre 41 

variable. Due to the MERF and Mixed-effects Xgboost requiring the outcome to be in a continuous format, 42 

the outcome variable for these two models was transformed into probabilities based on the corresponding 43 

training set. Xgboost – centres was considered as the baseline comparison.  44 

Variable selected Modelling  45 

Shapley global variable importance was used to identify the top 18 most important variables for each of the 46 

above models respectively.[28] N = 18 was chosen in so as to enable comparison to the performance of ES II 47 

and ML models built using ES II. The identified variables was used to re-build a parsimonious version of the 48 

above set of seven models. Due to the MERF and Mixed effects Xgboost requiring the outcome to be in 49 
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continuous format, the outcome variable for these two models was transformed into probabilities based on 50 

the corresponding variable selected training set. Xgboost – centres was considered as the baseline 51 

comparison.  52 

Further details on model development can be found in Supplementary Materials, section: Model 53 

Specification. 54 

Hyperparameter Tuning 55 

For non-variable selected models, a shuffled and stratified randomized 3-fold cross-validation (CV) search 56 

on hyperparameters was conducted for Xgboost - centres, Xgboost + centres (hot-encoded), RF - centres, RF 57 

+ centres (hot-encoded). The process was repeated for the top 18 variables identified from shapley for each 58 

corresponding model. For non-variable selected models, the optimal hyperparameters for RF - centres and 59 

Xgboost - centres were used as initial hyperparameters for the Mixed-effects RF (RE: centre) and Mixed-60 

effects Xgboost (RE: centre), respectively and the maximum number of expectation maximization (EM) 61 

iterations was set to five. For variable selected models: Mixed-effects RF (RE: centre) and Mixed-effects 62 

Xgboost (RE: centre) models, optimal hyperparameter values were identified using RF and Xgboost with 63 

shuffled and stratified randomized 3-fold cross-validation (CV) search on the top 18 variables from the 64 

corresponding non-variable selected models. Shuffled and stratified CV hyperparameter tuning was not 65 

possible for GPBoost, so a randomised 3-fold CV search on hyperparameters was conducted. In order to 66 

determine the optimal hyperparameters from the set of possible parameters, including parameters informed 67 

by previous studies,[20] 30 different combinations were randomly selected and evaluated in each fold of CV.  68 

This hyperparameter selection process was conducted for both the non-variable selected and variable 69 

selected sets of models.  70 

 71 

Assessment of model performance 72 

External validation was performed on the Holdout dataset (2017-2019).[29] Each model calculated the 73 

probability of surgical mortality for each patient. As per previous studies,[21,22] we applied the consensus 74 
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metric approach of Clinical Effectiveness Metric (CEM), using the combined geometric average results of 75 

all metrics[30]: 76 

1. Discrimination: AUC[31], F1 score[32] 77 

2. Calibration: 1 - ECE.[33]   78 

3. Overall accuracy[30]: 1 - Brier score.[34] 79 

4. Clinical utility – Net benefit Analysis[35] 80 

Further details on the theory and application of each individual metric above is provided in our previous 81 

study of machine learning models using ES II variables.[20] One thousand bootstrap samples were taken for 82 

the CEM and its constituent metrics. Further details of this metric can also be found in the Supplementary 83 

Materials, section: Assessment of model performance.   84 

We evaluated the following comparisons:    85 

1) Non-variable selected Xgboost – centres model against all other non-variable selected models. 86 

2) Variable selected Xgboost – centres model against all other variable selected models. 87 

3) Highest performing model from 1) against that from 2) and Xgboost built using EuroSCORE II (ES 88 

II) variables, with the latter model as the control.[ref prj 1.2] 89 

For comparisons 1) and 2), adapted Rain plots in R-3.6.2 was used to visualise constituent metrics within 90 

CEM.[36] For comparisons 1), 2) and 3), differences across models’ CEMs were tested using Repeated 91 

measures One-Way Anova and Bonferroni Corrected multiple pairwise paired t-tests; this was followed by 92 

Dunnett’s Correction for multiple comparisons. ANOVA assumptions for outliers were checked. Normality 93 

assumptions were checked using the Shapiro-Wilk test and histogram plots.[37] An overview of the study 94 

design is shown in Figure 1. 95 

 96 

 97 
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Figure 1. Design overview of the study; Non-variable and variable selected analyses are performed; CEM is used to 98 

simultaneously assess discrimination, calibration, clinical utility, overall accuracy; analyses are performed for i) 99 

Mixed effects modelling with 60 main variables and hospitals as a single random variable; ii) Fixed effects modelling 00 

with 60 main variables and 42 hospitals each as a single variable and iii) Without consideration of hospital variation. 01 

 02 

 03 

Bayesian Networks 04 

A Bayesian network is produced using the training dataset to interpret 1) the relationship between the 18 05 

most important variables and the outcome, for the highest overall performing model and;[38] 2) the 06 

relationships between variables in 1) and the other variables used for the non-variables selected models.  07 

 08 

Results  09 

Patients characteristics 10 

A tota of 227,087 procedures of patients over 18 years of age from 42 UK hospitals were included in this 11 

analysis, following the removal of 3,930 congenital cases, 1,586 transplant and mechanical support device 12 
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insertion cases and 3,395 procedures missing information on mortality (Table 1). There were 6,258 deaths 13 

(mortality rate of 2.76%). The primary outcome of this study was in-hospital mortality. A CONSORT flow 14 

diagram is shown in Figure S1.1. Missing rates of variables were low except for Left Ventricular Function, 15 

pulmonary artery systolic pressure (PAsys), and Number of Valves (Figure S1.2). Missing variables were 16 

backfilled using other informative variables according to NACSA dataset cleaning protocol: 17 

https://www.nicor.org.uk/wp-content/uploads/2018/09/nacsacleaning10.3.pdf and then imputed to improve 18 

variable quality, after which there were no missing variable values.  19 

 20 

Baseline variable characteristics  21 

Following data pre-processing, there were no missing values (Figure S4). Correlation analysis of all 61 22 

variables considered for the non-variable selected models showed that there was no concern for multi-23 

collinearity (Figure S3). After pre-processing and pooling 18 most important variables from each model and 24 

retaining only unique variables, 27 variables were found to have strong evidence of being associated with 25 

outcome (Table 1, p <0.001). 26 

 27 

Variable Importance Characteristics  28 

The top 18 important variables for each of the non-variable selected models are shown in Table S12. 29 

Detailed importance scores for the variables of each model are shown for Mixed Effects Xgboost: Table S4, 30 

Figure S5, S6; MERF: Table S5, Figure S7, S8; Xgboost – Centre: Table S6, Figure S9, S10; Random 31 

Forest (RF) – Centre: Table S7, Figure S11, S12; Random Forest + Centre (hot-encoded): Table S8, Figure 32 

S13, S14;  Xgboost + Centre (hot-encoded): Table S9, Figure S15, S16; GPBoost + Centre: Table S10, 33 

Figure S17 and S18.  It can be seen that models of the same general type without a centre and that with a 34 

centre (hot-encoded) have a more similar ranking of important variables than the corresponding mixed-35 

effects model. Urgency has the highest frequency of being selected as the most important predictor of 36 

mortality across models, followed by Age, Creatinine, NYHA, Previous Surgery, Pulmonary Artery Systolic 37 

Pressure and Weight.  38 
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Hyperparameter Tuning 39 

The optimal hyperparameters for non-variable selected and variable selected models are shown in Table S2 40 

and S3, respectively.  41 

Assessment of model performance 42 

Non-variable selected model  43 

Adapted Rain plots 44 

For non-variable selected models, it can be seen in Figure 2a that AUC performance is generally consistent 45 

across models with GPBoost having slightly lower AUC than other models. Mixed-effects RF + RE: centre 46 

and Mixed Effects Xgboost + RE: centre models performed poorly compared to other models across several 47 

metrics, namely: adjusted ECE, adjusted Brier, and net benefit. Apart from these two models, the other 48 

models performed comparably in terms of net benefit. These two models achieved higher F1 scores than 49 

GPBoost but were outperformed by all remaining models. Xgboost + Centre (hot-encoded) demonstrated the 50 

highest overall performance in terms of magnitude and ranking as shown in a detailed report of individual 51 

metric results comprising the CEM (Table 2).  52 

Figure 2. a) Non variable selected models: adapted Rain plot of CEM constituent metrics by model; larger sized 53 
spheres represent higher metric performance and vice versa. ECE: 1-ECE; Brier: 1-Brier. 54 

 55 
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 56 

 57 

Statistical Analyses 58 

No extreme outliers were found. The CEM scores was normally distributed for all models, as assessed by 59 

Shapiro-Wilk’s test (p > 0.05). There was strong evidence of a difference across models p < 0.0001, except 60 

between RF + Centre (hot-encoded) and RF - Centre (Table S11 and Figure S19). Dunnett’s test showed that 61 

there was strong evidence that Xgboost + Centre (hot-encoded) was superior to the Xgboost - Centre model 62 

(p < 2e-16, Table 3). There was strong evidence that Xgboost - Centre model outperformed all other models, 63 

with Mixed effects RF + RE: centre performing worst, followed by Mixed Effects Xgboost + RE: centre 64 

(CEM difference: -0.2605 and -0.2583, respectively). RF - Centre and RF + Centre (hot-encoded) had 65 

similar performance (CEM difference: -0.0073) and have performance rankings immediately below Xgboost 66 

– Centre, but above GPBoost.  67 

 68 

Variable selected Xgboost 69 
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Adapted Rain plots 70 

Model performance differences showed a similar overall pattern for variable selected compared to non-71 

variable selected models (Figure S21). GPBoost showed lower AUC compared to other models, with the 72 

contrast in difference being greater for variable selected than for non-variable selected models. There was 73 

lower variation in F1 score for variable selected models, with all models outperforming GPBoost. Although 74 

mixed-effects models RF and Xgboost obtained a higher net benefit for variable selected models, the net 75 

benefit performance was markedly lower compared to other models than for non-variable selected models. 76 

A detailed report of individual metric results comprising the CEM is given in (Table S15).  77 

Statistical Analyses 78 

No extreme outliers were found. The CEM scores were normally distributed for all models, as assessed by 79 

Shapiro-Wilk’s test (p > 0.05). There was strong evidence of a difference across models p < 0.0001, except 80 

between: a) RF + Centre (hot-encoded) and RF - Centre; b) Mixed-effects RF and Mixed Effects Xgboost; c) 81 

Xgboost + Centre (hot-encoded) and Xgboost - Centre (Table S13 and Figure S20). Dunnett’s test showed 82 

that there is minute but insignificant increase in performance between Xgboost + Centre (hot-encoded) and 83 

Xgboost - Centre model (CEM Difference: 0.0002, p = 0.94, Table S14). Xgboost – Centre significantly 84 

outperformed all other models except Xgboost + Centre (hot-encoded). The next best performing model was 85 

RF + Centre (hot-encoded) followed by RF - Centre, GPBoost and Mixed-effects RF. Mixed-effects 86 

Xgboost demonstrated the worst performance (CEM Difference: -0.2539).  87 

 88 

Highest performing: non-variable vs. variable selected model vs. Xgboost (ES II 89 

variables) 90 

Xgboost + Centre (hot-encoded; 102 variables),  Xgboost + Centre (hot-encoded; 18 variables) and Xgboost 91 

(ES II) variables models were compared. No extreme outliers were found. The CEM scores was normally 92 

distributed for all three models except Xgboost (ES II), as assessed by Shapiro-Wilk’s test (p > 0.05). A 93 
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histogram plot of the Xgboost (ES II) CEM values did not show substantial deviation from the normal 94 

distribution. There was strong evidence of a difference across models p < 0.0001 (Table S16 and Figure 2b).  95 

 96 

Figure 2. b) CEM performances of Xgboost (ES II), the best non-variable and variable selected models are 97 
compared using multiple pairwise paired t-tests with Bonferroni correction; NVS: non-variable selected; VS: 98 
variable selected; ES II: EuroSCORE II. 99 

 00 

 01 

Dunnett’s test showed that there was strong evidence that both non-variables selected (NVS) and variables 02 

selected (VS) Xgboost + Centre (hot-encoded) models were superior to the Xgboost (ES II) model (p < 6.3e-03 

15, Table S17), with NVS Xgboost + Centre (hot-encoded) model having the best performance, followed by 04 

the VS Xgboost + Centre (hot-encoded) model (CEM Difference: 0.0150 and 0.0023, respectively).  05 

Bayesian Networks 06 

The Bayesian network for the interactions between the top 18 important variables, from the optimal model: 07 

Xgboost + Centre (hot-encoded), and the outcome (mtly) shows that Urgency, Age, Critical Preoperative 08 

State (CPS), NHYA, Number of Valves, Number of previous operations (PrevOp) have direct relationship / 09 
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path to the outcome variable (Figure 3). CPS confounds the relationship between NYHA and the outcome; 10 

Age confounds the relationship between Urgency and the outcome; NYHA confounds the relationship 11 

between Number of Valves and the outcome; Urgency confounds the relationship between CPS and the 12 

outcome; Number of Valves and Age both confounds the relationship between PrevOp and the outcome. 13 

Creatinine is a potential collider confounder that could bias the relationships between Urgency and the 14 

outcome.[39]  15 

Figure 3. Bayesian network of interactions between the top 18 important variables, from Xgboost + Centre (hot-16 

encoded) model, and the outcome, i.e. mtly: 0 – survival, 1 – non survival.  17 

 18 

The Bayesian network for the interactions between all the variables, from the optimal model: 19 

Xgboost + Centre (hot-encoded), and the outcome (mtly) shows that only Urgency and Cardiogenic Shock 20 

have a direct relationship/path to the outcome (Figure 4). Urgency confounds the relationship between 21 

Cardiogenic Shock and the outcome. Urgency mediates the relationship between Active Endocarditis 22 

(Endocarditis) and the outcome, whilst Endocarditis mediates the relationship between Mitral Valve 23 
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procedure (MVProcedure) and Urgency. Urgency mediates the relationship between “Interval between 24 

surgery and myocardial infarction (MI)” (IntervalMI) and the outcome. Urgency mediates the relationship 25 

between ascending aorta procedure (Ao.Asc.Procedure) and the outcome. Ao.Asc.Procedure mediates the 26 

relationship between Aortic root procedure (Ao.Root.Procedure) and Urgency.  27 

Figure 4 Bayesian network of interactions between all variables, from the non-variable selected Xgboost + Centre 28 

(hot-encoded) model, and the outcome (red), i.e. mtly: 0 – survival, 1 – non survival.  The top 18 important 29 

variables are shown in green: within main network or in yellow: outside of the main network.  30 

 31 

 32 

 33 

DISCUSSION 34 

 35 

ML approaches have the advantage of not be limited by linear statistical assumptions, and the number of 36 

clinical variables can theoretically increase exponentially. In addition, the variations and residual 37 

confounding that historically hindered the usefulness of cardiac surgery risk stratification scores can 38 
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potentially be taken into account. However, these potential goldmines in clinical data usage have yet to be 39 

fully harvested. One example of this problem is exemplified in the controversial decision over whether to 40 

use a single procedural or a multi-procedural (universal) risk score/model.   41 

While some studies have investigated the potential to devise scoring systems for specific surgical 42 

procedures such as tricuspid valve surgery using additional scores for other diseases such as a score for end-43 

stage liver disease (MELD),[40] they have been limited by samples size of cohorts, unavailability of multi-44 

centre data and limited use of holdout data. Conversely, universal (or general) risk scores have been 45 

developed focusing on a wider range of procedures than that by ES II and STS-PROM,[41] such as the 46 

American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) for 47 

mortality and morbidity for more than 100 different procedures.[42] Universal models such as the 48 

EuroSCORE and ES II have the benefit of allowing a large number of covariates to be included to improve 49 

model performance for low event rate (e.g. <1%) cardiac surgery datasets,[41] as well as allowing surgeons 50 

to evaluate the risk for nearly any combination of cardiac procedures, something that the procedure specific 51 

STS-PROM score does not allow.[41] There is mixed evidence as to whether a universal or procedure-52 

specific score is preferable.[43]  53 

 Unlike our study, the current state of procedural specific and universal scores described above did 54 

not adjusted for hospital-based variation using a machine learning-based approach. This study also provides 55 

evidence for the use of larger number of covariates in universal cardiac surgery risk prediction models, and 56 

substantially increases the number of risk factors compared to only 18 variables of ES II. This was achieved 57 

by comparing ML models built from a combination of a large set of 61 variables, and adjusting for 58 

geographical variation as a result of 42 different hospital contributions. In addition, by using a larger multi-59 

centre national dataset, the number of events (6,258; mortality rate of 2.76%) increased compared to smaller 60 

sized studies (<1%).[41] Therefore, despite using a substantially larger number of variables in the best 61 

performing Xgboost non-variable selected model with 102 variables, the Events Per Variable (EPV) rate 62 

remained (EPV = 6,258 / 102 = 61) substantially larger than that previously found through simulation to be 63 

necessary for low bias and error in prediction modelling (EPV > 25).[13]  64 
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This study provides strong evidence that the ES II variables are suboptimal for risk stratification 65 

modelling and that a larger set of 60 variables with additional adjustment for hospital variation provides 66 

superior performance to ML models built using ES II variables. The Xgboost model with hospital location 67 

adjustment of the large variable set performed best overall. Whilst the parsimonious models using the small 68 

(18) number of variables provided significiantly weaker performance than the full variable set model, we 69 

demonstrated that there was significant evidence that the new small (18) variable models (Xgboost 70 

variations) outperformed the ES II 18 variable model (Xgboost). However, the improvements through 71 

adjustment for hospital location in the small variable set is so small through the dummy coding approach 72 

that this may not be necessary.  73 

Notably, this study provides strong evidence that adjustment for hospital location improves ML 74 

model performance, but only in the presence of adjustment using a large set of variables and that cardiac 75 

surgery risk models with relatively small number of variables may not require this adjustment process. One 76 

possible reason for this is that in the small variable set models, more confounders are not being adjusted for. 77 

It is also worth noting that this effect applied to certain ML models, namely Xgboost, but did not apply to 78 

Random Forest. This work also shows that adjustment, whereby hospital location variables are separated 79 

into individual binary or dummy variables, demonstrated strong evidence of being superior over adjusting 80 

for location using a single vector random variable in a mixed-effects model. It is possible that separating out 81 

the hospital random effects into a multi-dimension set of individual vectors enabled the non-linear machine 82 

learning models to better adjust for the complex interactions across differences (or heterogeneity) in patient 83 

and operative characteristics across different cardiac centres. 84 

One limitation of universal scores is that unadjusted variables that are not part of the score may 85 

negatively impact procedures that are more reliant on such variables, than other procedures, leading to 86 

inconsistency in procedural performances.[44] It has been highlighted that the high importance of certain 87 

interventional variables in risk scores is confounded by other factors, especially for the sickest patients,[11] 88 

making scores such as ES II and STS less useful for procedures for which confounding variables are not 89 

included.  90 
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This study is one of the first in its kind to demonstrate the importance of using Bayesian Networks 91 

(BN) for confounding analysis in the clinical setting as an alternative to the typically used Propensity score, 92 

which although useful, may overlook subtle causal relationships that could confound the real relationship 93 

between clinical variables and the outcome. The proposed BN approach enables clinicians to interpret the 94 

causal relationships in light of the confounding and is well suited to studies involving large variables such as 95 

the current study. One interesting observation is that by including the full set of variables in contrast to only 96 

the top 18 most important variables, many of the previously identified confounding relationships across 97 

variables disappeared. We identified that Cardiogenic Shock is the main cause of mortality following 98 

cardiac surgery, even though causation does not necessarily indicate optimal importance for prediction. 99 

Although Urgency (or highly urgent) procedures are also more likely to result in a higher risk of mortality, it 00 

could be seen that MV procedures for Endocarditis are likely to result in higher Urgency cases and 01 

consequently lead to a higher risk of surgical mortality. Another interesting finding is that the longer the 02 

interval between myocardial infarction (MI) and surgery, the higher the Urgency and consequently the 03 

higher the mortality risk. Clinical efforts should therefore target minimsing the interval between MI and 04 

surgery. We also identified ascending aorta and specifically root procedure as high risk.  05 

This study also provides a novel application of the adapted Rain plot for taking a wholistic view of 06 

the individual constituent metrics within the Clinical Effective Metric (CEM) consensus metric, and enables 07 

the filtering of high performance models. This provides a useful tool for clinicans to better understand how 08 

the CEM arrives at its ranking of competitive risk scores.  09 

 10 

Limitations and Future work 11 

This study is not without limitations. As the STS-PROM model coefficients are not made publicly available, 12 

we were not able to compare our universal model against a procedural specific model using this combination 13 

of new variables. Future studies should aim to compare the effects of pre-selecting features[18] using linear 14 

mixed effects adjustement of hospital variations in relation to the hot-encoding adjustment of random effects 15 

as well as considering multiple random effects including adjustment for surgeon differences.[17] To validate 16 
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the findings of this study, future studies may also compare the models considered herewithin using the linear 17 

mixed effects adjustment as a post-processing step.[15,16] Although the optimal models proposed in this 18 

study outperformed all models from our previous studies,[21,22] one possible reason for the mixed-effects 19 

models underperforming compared to other models is that mixed-effects ML models are typically better 20 

suited to regression tasks and are less well suited to classification tasks. Although the current study is mainly 21 

focused on the generalisability in terms of performance ranking on the hold out dataset, future work should 22 

investigate the effects of overfitting by considering approaches such as using, for example, the normalised 23 

ratio of holdout to training performance metric values. While a large number of clinically relevant variables 24 

have been taken into account, there may still be variables and hence residual confounding not adjusted for 25 

due to the availability of variables in the dataset. The effects of including or excluding variables such as 26 

Creatinine that demonstrated potential collider confounding relationships need to be further assessed. 27 

Further work is required to enhance the performance of mixed-effects models for the purpose of cardiac 28 

surgery risk classification.  29 

 30 

CONCLUSION  31 

This study based on a multi-centre national registry dataset comprising 42 UK hospitals highlights the 32 

importance of a larger set of potential confounding variables previously not considered by the EuroSCORE 33 

II. Furthermore, it suggests to adjust for hospital variation with specific recommendations for applying the 34 

ML model to study big data whereby each hospital is separated into individual binary input variables. We  35 

identified an ML-based hospital variation adjusted risk score comprising a large number of clinically 36 

predictive variables that increases risk stratification performance on hold out dataset, removing the need to 37 

perform variable selection and reduction. We demonstrated the concept of Bayesian Networks for cardiac 38 

surgery  mortality associated causal relationship analysis following comparative risk score selection and 39 

identified Cardiogenic Shock, Urgency, the interval between myocardial infarction (MI) and surgery, MV 40 

procedures for Endocarditis, ascending aorta procedures and aortic root procedures to either directly or 41 

indirectly cause a higher risk of cardiac surgery mortality. Lastly, this study highlights the versatility of the 42 
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adapted Rain plot for rapid clinical assessment of which risk score should be considered for cardiac surgery 43 

patient selection across multiple consistuent metrics and risk scores. It is recommended that this approach 44 

should be used in conjunction with the more robust CEM consensus metric and the Bayesian Network 45 

whereby possible. Future work will examine this new scoring approach in the context of performance drift 46 

and take into account procedural adjustments.   47 
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 96 

 97 

 98 
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 00 

 01 

 02 

Figure legends 03 

Figure 1. Design overview of the study; Non-variable and variable selected analyses are performed; CEM is used to 04 

simultaneously assess discrimination, calibration, clinical utility, overall accuracy; analyses are performed for i) 05 

Mixed effects modelling with 60 main variables and hospitals as a single random variable; ii) Fixed effects modelling 06 

with 60 main variables and 42 hospitals each as a single variable and iii) Without consideration of hospital variation.  07 
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 30 

Table 1. Patient Demographics. Summary of cleaned and pooled top 27 most important variables from all models. 08 

Variables are for the time period 2012 – 2019. Records with missing mortality status were excluded. 09 

Table 2. Non-variable selected models: Geometric Mean of Individual metrics; CEM refs to Clinical Effective Metric; 10 

Standard deviation and 95% CI are shown for CEM; adjusted 1 - ECE and 1 - Brier score values are shown; net benefit 11 

is average absolute overall benefit across all thresholds.   12 

Figure 2. a) Non variable selected models: adapted Rain plot of CEM constituent metrics by model; larger sized 13 

spheres represent higher metric performance and vice versa. 14 

Figure 2. b) CEM performances of Xgboost (ES II), the best non-variable and variable selected models are compared 15 

using multiple pairwise paired t-tests with Bonferroni correction; NVS: non-variable selected; VS: variable selected; 16 

ES II: EuroSCORE II. 17 

Table 3. Non-variable selected models: Dunnett's test with Xgboost - Centre as control; 95% family-wise confidence 18 

level are shown as well as mean difference in CEM and p-values; NC: no centre; HE: hot-encoded centre; ME: mixed 19 

effects.  20 

Figure 3. Bayesian network of interactions between the top 18 important variables, from Xgboost + Centre (hot-21 

encoded) model, and the outcome, i.e. mtly: 0 – survival, 1 – non survival.  22 

Figure 4 Bayesian network of interactions between all variables, from the non-variable selected Xgboost + Centre 23 

(hot-encoded) model, and the outcome (red), i.e. mtly: 0 – survival, 1 – non survival.  The top 18 important variables 24 

are shown in green: within main network or in yellow: outside of the main network.  25 
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 39 

 40 

 41 

 42 

 43 

Table 2. Patient Demographics. Summary of cleaned and pooled top 27 most important variables from all 44 

models. Variables are for the time period 2012 – 2019. Records with missing mortality status were 45 

excluded. 46 

 Mortality Status   

Variable 0, N = 220,8291 1, N = 6,2581 p-value2 

Age (years), mean (SD) 67.53 (11.23) 70.77 (11.42) <0.001 

Female gender, n (%) 59,467 (27%) 2,328 (37%) <0.001 

Body Mass Index, mean (SD) 28.49 (5.27) 27.93 (5.49) <0.001 

Weight, mean (SD) 82.42 (16.75) 78.98 (17.79) <0.001 

Number of previous 

operations, n (%) 
  <0.001 

0 212,318 (96%) 5,288 (84%)  

1 7,600 (3.4%) 829 (13%)  

2 775 (0.4%) 105 (1.7%)  

3 115 (<0.1%) 26 (0.4%)  

4 19 (<0.1%) 9 (0.1%)  

5 1 (<0.1%) 0 (0%)  

6 1 (<0.1%) 1 (<0.1%)  

Urgency, n (%)   <0.001 

0 - Elective 141,617 (64%) 2,442 (39%)  

1 - Urgent 72,090 (33%) 2,134 (34%)  

2 - Emergency 6,533 (3.0%) 1,230 (20%)  

3 - Salvage 589 (0.3%) 452 (7.2%)  

First Operator Grade, n (%)   <0.001 

0 - Consultant 179,959 (81%) 5,729 (92%)  

1 - Associate specialist 6,726 (3.0%) 75 (1.2%)  

2 - Registrar/ SpR 30,113 (14%) 331 (5.3%)  

3 - SHO 4,031 (1.8%) 123 (2.0%)  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.08.23291129doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.08.23291129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

 Mortality Status   

Variable 0, N = 220,8291 1, N = 6,2581 p-value2 

Critical Preoperative State, n 

(%) 
7,255 (3.3%) 1,382 (22%) <0.001 

Chronic pulmonary disease, 
n (%) 

26,644 (12%) 1,211 (19%) <0.001 

Extra-cardiac Arteriopathy, n 
(%) 

22,327 (10%) 1,215 (19%) <0.001 

Number of Grafts, n (%)   <0.001 

0 78,842 (36%) 2,935 (47%)  

1 18,320 (8.3%) 763 (12%)  

2 34,429 (16%) 880 (14%)  

3 60,648 (27%) 1,207 (19%)  

4 24,965 (11%) 397 (6.3%)  

5 3,294 (1.5%) 68 (1.1%)  

6 331 (0.1%) 8 (0.1%)  

NYHA, n (%)   <0.001 

0 – I 48,625 (22%) 1,055 (17%)  

1 – II 96,888 (44%) 1,609 (26%)  

2 – III 64,049 (29%) 2,228 (36%)  

3 – IV 11,267 (5.1%) 1,366 (22%)  

Creatinine, mean (SD) 92.61 (47.15) 119.15 (84.48) <0.001 

Cardiac Rhythm, n (%)   <0.001 

0 – Sinus  193,158 (87%) 4,677 (75%)  

1 – Preop AF 24,240 (11%) 1,309 (21%)  

2 – Preop VFT 399 (0.2%) 60 (1.0%)  

3 – Preop CHB or pacing   3,032 (1.4%) 212 (3.4%)  

Number of Valves, n (%)   <0.001 

0 133,133 (60%) 2,941 (47%)  

1 77,621 (35%) 2,545 (41%)  

2 9,148 (4.1%) 659 (11%)  

3 916 (0.4%) 111 (1.8%)  

4 11 (<0.1%) 2 (<0.1%)  

Pulmonary Artery Systolic 
Pressure, mean (SD) 

23.65 (11.87) 27.88 (16.80) <0.001 

MV Procedure, n (%)   <0.001 

0 - None 191,803 (87%) 4,870 (78%)  

1 - Repair 17,633 (8.0%) 467 (7.5%)  
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 Mortality Status   

Variable 0, N = 220,8291 1, N = 6,2581 p-value2 

2 - Replacement  11,393 (5.2%) 921 (15%)  

Number of previous 

Myocaridal infarction, n (%) 
  <0.001 

0 150,612 (68%) 3,916 (63%)  

1 60,266 (27%) 1,887 (30%)  

2 9,951 (4.5%) 455 (7.3%)  

Ascending aorta procedure, n 
(%) 

8,011 (3.6%) 769 (12%) <0.001 

Previous valve surgery, n (%) 5,701 (2.6%) 669 (11%) <0.001 

Cardiogenic Shock, n (%) 2,379 (1.1%) 840 (13%) <0.001 

Pre-op Dialysis, n (%)   <0.001 

0 - None 217,789 (99%) 5,764 (92%)  

1 - No dialysis but AKI 853 (0.4%) 164 (2.6%)  

2 - AKI within 6wks of surgery 
needing dialysis 

696 (0.3%) 157 (2.5%)  

3 - CKD dialysis  1,491 (0.7%) 173 (2.8%)  

Days between LHC and 

cardiac surgery date, mean 
(SD) 

91.07 (858.72) 95.97 (468.56) <0.001 

LVEF, n (%) 54.01 (7.38) 51.43 (9.78) <0.001 

Inotropes, n (%) 2,114 (1.0%) 726 (12%) <0.001 

Aortic arch procedure, n (%) 1,286 (0.6%) 216 (3.5%) <0.001 

Aortic root procedure, n (%) 4,069 (1.8%) 387 (6.2%) <0.001 

1Mean (SD) or Frequency (%) 

2Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test 

AF - Atrial Fibrillation; VFT - Ventricular fibrillation or ventricular tachycardia; CHB - Complete heart block / paced; 

CKD - Chronic kidney disease; LHC - Left Heart Catheterization; LVEF - Left ventricular ejection fraction. 

 47 

 48 

  49 
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 50 

 51 

Table 2. Non-variable selected models: Geometric Mean of Individual metrics; CEM refs to Clinical Effective 52 
Metric; Standard deviation and 95% CI are shown for CEM; adjusted 1 - ECE and 1 - Brier score values are shown; 53 
net benefit is average absolute overall benefit across all thresholds.   54 

Model Category ECE AUC Brier F1 Net Benefit CEM Mean CEM S.D CEM CI Lower limit CEM CI Upper limit 

GPBoost ME 0.991 0.808 0.976 0.267 0.899 0.716 0.005 0.715 0.716 

RF HE 0.995 0.849 0.977 0.284 0.906 0.734 0.005 0.733 0.734 

RF ME 0.520 0.843 0.744 0.270 0.290 0.480 0.004 0.480 0.481 

RF NC 0.996 0.848 0.977 0.284 0.906 0.734 0.005 0.733 0.734 

Xgboost HE 0.997 0.855 0.977 0.300 0.908 0.743 0.005 0.743 0.744 

Xgboost ME 0.520 0.835 0.744 0.278 0.291 0.483 0.003 0.482 0.483 

Xgboost NC 0.997 0.854 0.977 0.296 0.908 0.741 0.005 0.741 0.741 

 55 

 56 

 57 

Table 3. Non-variable selected models: Dunnett's test with Xgboost - Centre as control; 95% family-wise 58 

confidence level are shown as well as mean difference in CEM and p-values; NC: no centre; HE: hot-encoded 59 

centre; ME: mixed effects.  60 

   
95% CI  

Group 1 Group 2 CEM Difference (1-2) P Value Lower Bound Upper Bound  

GPBoost ME 

Xgboost NC (Control)  

-0.0252 <2e-16 ***  -0.0257 -0.0247 

RF HE -0.0073 <2e-16 *** -0.0078 -0.0067 

RF ME -0.2605 <2e-16 *** -0.2610 -0.2600 

RF NC -0.0073 <2e-16 *** -0.0078 -0.0068 

Xgboost HE 0.0024 <2e-16 *** 0.0019 0.0029 

Xgboost ME -0.2583 <2e-16 *** -0.2589 -0.2578 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '  61 
 62 

  63 

 64 

 65 

 66 
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