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Abstract: Researchers and policymakers have proposed systems to detect novel pathogens 13 
earlier than existing surveillance systems by monitoring samples from hospital patients, 14 
wastewater, and air travel, in order to mitigate future pandemics. How much benefit would such 15 
systems offer? We developed, empirically validated, and mathematically characterized a 16 
quantitative model that simulates disease spread and detection time for any given disease and 17 
detection system. We find that hospital monitoring could have detected COVID-19 in Wuhan 0.4 18 
weeks earlier than it was actually discovered, at 2,300 cases (standard error: 76 cases) compared 19 
to 3,400 (standard error: 161 cases). Wastewater monitoring would not have accelerated COVID-20 
19 detection in Wuhan, but provides benefit in smaller catchments and for asymptomatic or long-21 
incubation diseases like polio or HIV/AIDS. Monitoring of air travel provides little benefit in 22 
most scenarios we evaluated. In sum, early detection systems can substantially mitigate some 23 
future pandemics, but would not have changed the course of COVID-19. 24 

  25 



 

Introduction 26 

It has been widely debated which policies, if any, could have mitigated the health impacts of the 27 
initial stages of the COVID-19 pandemic in late 2019 and early 2020 as community transmission 28 
became established and widespread. Early studies compared non-pharmaceutical interventions 29 
(NPIs) such as mobility restrictions1,2, school closures3,4, voluntary home quarantine5 and testing 30 
policies6, and optimized NPI parameters like testing frequency7, quarantine length8, testing 31 
modality9, test pooling10 and intervention timing and ordering11. While such NPIs undoubtedly 32 
slowed the early spread of COVID-1912 and previous outbreaks13,14, there has been little 33 
investigation of whether a separate strategy focused on earlier detection of COVID-19 would 34 
have enabled more successful mitigation. In theory, earlier detection enables a response when the 35 
outbreak is smaller: thus, resource-intensive mitigation strategies like test-trace-isolate become 36 
less costly, and the earlier interventions are applied, the larger the number of infections and 37 
deaths that can be delayed until healthcare capacity is increased15. However, the relevant 38 
question is not whether early detection helps, but quantitatively how much of a difference it 39 
would make. This question is especially urgent given current international and national policy 40 
proposals to invest billions of dollars in such systems16,17. 41 

Researchers and policymakers have proposed immediate investments in systems to continuously 42 
monitor for novel pathogens in (i) patients with infectious symptoms in hospitals and clinics18,19, 43 
(ii) community wastewater treatment plants20,21, and (iii) airplane sewage or bridge air on 44 
international flights22–24, as well as other sites25–29. These three sites have attracted interest 45 
because they have been frequent testing sites in COVID-19: hospitals since the pandemic’s 46 
beginning30, and wastewater (including wastewater at treatment plants20, within the sewershed31, 47 
and locally near individual buildings32) and air travel more recently33,34 because hospital cases 48 
can lag community cases35. COVID-19 also spurred methodological innovation and 49 
characterization of sampling from these sites36, particularly wastewater37–39. Detecting novel 50 
pandemics at these sites has occasionally been piloted21,40 but has not been implemented at scale, 51 
in part because it is unclear if these proposed systems sufficiently expedite detection of 52 
outbreaks. The systems under consideration would use multiplex testing for conserved nucleic 53 
acid sequences of known pathogen families, exploiting the fact that many past emerging diseases 54 
belonged to such families, including SARS-CoV-2 (2019), Ebola (2013), MERS-CoV (2012), 55 
and pandemic flu (2009). Proposed technologies include multiplex PCR41–44, CRISPR-based 56 
multiplex diagnostics45, and metagenomic sequencing46, possibly implemented with pooling10. 57 

To determine whether early detection of novel pathogens at these sites could be effective in 58 
changing the course of a pandemic, we first examined whether COVID-19 could have been 59 
detected earlier in Wuhan if systems had been in place in advance to monitor hospitals, 60 
wastewater or air travel. To do this, we developed, empirically validated, and mathematically 61 
characterized a simulation-based model that predicts the number of cases at the time of detection 62 
given a detection system and a set of outbreak epidemiological parameters. We then used this 63 
model and COVID-19 epidemiological parameters47 to estimate how early COVID-19 would 64 
initially have been detected in Wuhan by the three early detection systems, and compare this to 65 
the actual date of COVID-19 detection. Finally, we use our model to estimate detection times of 66 
infectious agents with different epidemiological properties, such as mpox and polio in recent 67 
outbreaks48,49, to inform pathogen-agnostic surveillance for future pandemics. 68 

Results 69 



 

Model to estimate earliness of detection 70 

Previous research15 and our analysis (Supplementary text, figs. S1—5 and table S1) suggest that 71 
earlier COVID-19 lockdowns could have delayed cases and deaths. Thus, it is critical to 72 
understand which early detection systems, if any, could have effectively enabled earlier 73 
response. To do this, we built a model that simulates outbreak spread and earliness of detection 74 
for a given outbreak and detection system (Materials and methods, Supplementary materials). 75 
This builds upon branching process models that have previously been used to model the spread 76 
of COVID-1950,51 and other infectious diseases52. A traditional branching process model starts 77 
from an index case and iteratively simulates each new generation of infections. Our model 78 
follows this pattern, but with each new infection we also simulate whether the infected person is 79 
detected by the detection system with some probability (Fig. 1A), and the simulation stops when 80 
the number of detected individuals equals the detection threshold and the detection delay has 81 
passed. Thus, each detection system is characterized by these three parameters of detection 82 
probability, threshold, and delay (table S2). For example, in hospital monitoring, an infected 83 
individual’s detection probability is the probability they are sick enough to enter the hospital, 84 
which is the hospitalization rate (assuming testing has a negligible false negative rate). In 85 
systems that test individuals (hospital and air travel individual monitoring), the threshold is 86 
measured in an absolute number of cases. In systems that test wastewater (wastewater 87 
monitoring), the threshold is measured in terms of outbreak prevalence because wastewater 88 
monitoring can only sample a small percentage of sewage flows, depending on the sampling 89 
capacity53; thus, a higher number of cases is required to trigger detection in a bigger community 90 
(Materials and methods). We gathered literature estimates of detection system and outbreak 91 
parameters (tables S2 and S3) and validated wastewater monitoring sensitivity in independent 92 
data (fig. S6 and Materials and methods, Supplementary materials). We then empirically 93 
validated the model by testing its ability to predict the detection times for the first COVID-19 94 
outbreaks in 50 US states in 2020. We gathered the dates of the first COVID-19 case reported by 95 
the public health department of each US state (table S4) as well as literature estimates of true 96 
(tested and untested) statewide COVID-19 case counts in early 202054. Using our model, we 97 
were able to predict the number of weeks until travel-based detection in each US state to within a 98 
mean absolute error of 0.97 weeks (fig. S7 and S8). To check the robustness of our results, we 99 
implemented a second, more complex model with varying reproduction number using a Monte 100 
Carlo simulation-based package (EpiNow255). A list of model assumptions can be found in table 101 
S5. 102 

Early detection’s impact on COVID-19 detection in Wuhan 103 

Next we use our model to examine the detection systems’ ability to detect the first major 104 
COVID-19 outbreak in Wuhan (Fig. 1B and table S2). To estimate cases at detection in the 105 
actual pandemic, we used literature estimates of total (tested and untested) COVID-19 case 106 
counts in Wuhan in late 2019 and early 202056. Our model shows that, on average, hospital 107 
monitoring could have detected COVID-19 after 2,292 cases (standard error: 76 cases). In 108 
reality, the pandemic was identified after 3,413 cases on average (standard error: 161 cases). 109 
Thus, hospital monitoring would have caught the outbreak 1,121 cases earlier (approximately 110 
0.43 weeks earlier), a statistically significant difference with p = 1.9e-09 and t = -6.3 (df = 141) 111 
in a one-sided Welch two-sample t-test. Wastewater monitoring would have lagged detection in 112 
the actual pandemic; it caught the outbreak after 4,575 cases (standard error: 523 cases), or 1,162 113 
cases later, on average (p = 0.018; t = 2.1; df = 118). We tested this wastewater prediction 114 



 

empirically by calculating the cases until COVID-19 wastewater detection in Massachusetts in 115 
early 2020, using literature-estimated Massachusetts COVID-19 cases54 and Massachusetts 116 
wastewater SARS-CoV-2 PCR data57; our model prediction was consistent with this analysis 117 
(fig. S9). Because we model wastewater monitoring to detect later in larger communities 118 
(Materials and methods, Supplementary materials), the Wuhan result is in part due to Wuhan’s 119 
650,000-person catchments. Wastewater monitoring would lead status quo detection of COVID-120 
19 in catchments smaller than 480,000 people, well above the global mean catchment size of 121 
25,000 people58. Air travel monitoring did not provide any acceleration of detection because of 122 
the low probability of simultaneously traveling and being sick. 123 



 

 124 

Fig. 1. Comparison of COVID-19 detection times in the actual pandemic versus with 125 
proposed early detection systems. (A) Schematic of first 20 infections in a simulated run of the 126 
detection model. In this run, Person 1 seeds an outbreak in a community covered by a hospital 127 
detection system. Each person infects a number of individuals determined by a draw from a 128 
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negative binomial distribution. Each person is then detected by the detection system with 129 
probability ����� (gold) or goes undetected (olive); in the hospital system, ����� equals the 130 
hospitalization rate. (B) Estimated cases until COVID-19 detection in the actual pandemic versus 131 
model-simulated cases until detection for proposed detection systems (center line, median; box 132 
limits, upper and lower quartiles; whiskers, point closest to 1.5x interquartile range). Estimates 133 
for the actual pandemic are drawn from56. Points for proposed detection systems are simulated 134 
case counts from the model (actual pandemic (black), hospital (teal), wastewater (orange) and air 135 
travel (purple)) assuming a Wuhan-sized catchment (650,000 people). Three, two, and one 136 
asterisk(s) signify that the cases upon detection for the detection system are statistically 137 
significantly lower than those in the actual pandemic at the 0.001, 0.01, and 0.05 levels, 138 
respectively, in one-sided t-tests. NS. signifies not statistically significantly lower at p=0.05. 139 
Equivalent weeks until detection are shown on the right y-axis. 140 

Early detection’s impact for other diseases: mathematical analysis and simulation 141 

To make our model easily usable for pathogenic outbreaks beyond COVID-19, we derived a 142 
compact formula that approximates the model’s simulations. We observed that, without 143 
accounting for the delay of � generations between the threshold case’s infection and detection, 144 
the number of cases until detection, �, is a random variable that follows a negative binomial 145 
distribution by definition: each infected case is a Bernoulli trial, “success” in that trial occurs 146 
when that case enters the detection system (with a probability we name �����), and we count the 147 
number of cases until the number of successes equals the detection threshold �. After accounting 148 
for � and the basic reproduction number R0, we derived a formula approximating the mean of � 149 
when the outbreak starts in a community covered by the detection system (see Supplementary 150 
Text for full derivation): 151 

���� �
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�

�

�����
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We confirmed our formula approximates the simulation model closely by comparing the 152 
detection times predicted by both for all the detection systems for multiple diseases (fig. S10). 153 
Thus, the formula allows us to interpret the model and the quantitative relationships between 154 
detection times and various variables: the formula shows that the number of cases until detection 155 
increases linearly with the detection threshold, increases polynomially with R0 and exponentially 156 
with the delay g as R0

g, and decreases as the fraction of cases being tested increases. This 157 
formula also makes the model easily usable for detection systems beyond the ones studied here. 158 

We applied our model to several outbreaks of recent interest–including COVID-19, mpox 159 
(2022), polio (2013-2014), Ebola (2013-2016) and flu (2009 pandemic)–and found that the 160 
detection systems vary in their success depending on the epidemiological parameters of the agent 161 
(Figs. 2, S11 and S12, and table S3). For example, in our model hospital monitoring tends to 162 
outperform wastewater monitoring when the hospitalization rate is high, as in the case of Ebola, 163 
but tends to underperform for diseases like polio, in which the hospitalization rate is low and 164 
when there is high asymptomatic spread in the delay from detection to hospitalization. This is 165 
consistent with Equation (1), as well as previous observations that Ebola was first detected in 166 
hospitals59 and that wastewater monitoring has been more effective than hospital monitoring for 167 
detecting polio60. We also modeled the status quo detection times for these outbreaks: the 168 
number of cases until these outbreaks were detected in the status quo, without the proposed 169 



 

detection systems in place. We found that early detection systems can catch outbreaks when they 170 
are up to 52% smaller (wastewater for polio) or 110 weeks earlier (hospital for HIV/AIDS) (figs. 171 
S13, S14, S15 and S16). Similar results hold for the more complex model: the relative median 172 
detection times of the three systems remain the same 97% of the time across the five main 173 
diseases (29/30 pairwise comparisons) (fig. S17).  174 
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Fig. 2. Comparison of detection systems for different infectious diseases. (A) Earliness of 176 
detection for detection systems in cases across infectious diseases (hospital (teal), wastewater 177 
(orange), air travel (purple) and status quo (black)) in a 650,000-person catchment (center line, 178 
median; box limits, upper and lower quartiles; whiskers, point closest to 1.5x interquartile 179 
range). (B) Earliness of detection for detection systems in weeks across infectious diseases in a 180 
650,000-person catchment. (C) Epidemiological parameters of the studied diseases. 181 

Because future infectious diseases are likely to have different epidemiological parameters, we 182 
generalized the previous analysis and calculated detection times for many possible diseases 183 
spanning the epidemiological parameter space (Figs. 3 and S18). As expected, hospital 184 
monitoring is the best system for diseases with higher hospitalization rates and lower times to 185 
hospitalization. For diseases with higher R0s and times to hospitalization, wastewater monitoring 186 
emerges as the best system more often, because hospital monitoring has a longer detection delay 187 
(mainly the time from infection to hospitalization) than wastewater (mainly the time from 188 
infection to fecal shedding), during which cases grow exponentially with R0. However, this 189 
holds mainly for diseases with high probability of fecal shedding and low hospitalization rate. 190 
Air travel monitoring, which did not perform well in the previous modeled diseases (Figs. 1 and 191 
2), actually performed best for a few diseases for which fecal shedding is low (disadvantaging 192 
wastewater monitoring) and the time to hospitalization and R0 are too large (disadvantaging 193 
hospital monitoring). 194 
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Fig. 3. Comparison of detection systems across the space of possible diseases of varying 196 
epidemiological parameters. (A) Average weeks gained over status quo detection by the 197 
proposed detection systems across the epidemiological space of possible diseases. Within each 198 
panel, each uniformly colored cell corresponds to a specific disease with the hospitalization rate 199 
and probability of fecal shedding indicated on the x- and y-axes, as well as the R0 and time to 200 
hospitalization (generations) indicated by the panel row and column. The cell has a hue 201 
corresponding to the detection system that detects the disease the earliest (hospital (teal), 202 
wastewater (orange) and air travel (purple)) and an intensity corresponding to the number of 203 
weeks gained by the earliest system over status quo detection. Times are calculated by the 204 
derived mathematical approximation in a 650,000-person catchment. 205 

Discussion 206 

Our results show that the benefits of early detection systems vary from marginal (0.4 weeks 207 
earlier for COVID-19) to significant (110 weeks earlier for HIV/AIDS) (Figs. 1B, 2, and S16). 208 
Our detection time model (Fig. 1A) can be used for many diseases and detection systems, 209 
including other systems beyond this study25,26, by varying the fraction of the infected population 210 
being tested in each system. Some further points are worth emphasizing. First, early detection 211 
only aids mitigation if it leads to a coordinated early response. Many factors beyond detection 212 
affect the pace of response, including the economic and political feasibility of lockdowns, the 213 
availability of medicines and personal protective equipment, and whether there are pre-214 
determined policies to be implemented upon detection. Second, when deciding to invest in these 215 
systems, one must consider factors such as cost-effectiveness and whether the system provides 216 
evidence of disease severity. Although wastewater monitoring gives earlier detection than 217 
hospital monitoring in multiple diseases (Fig. 3A), it does not discriminate between mild and 218 
severe disease (although sequencing could detect lineages known to cause severe illness). In 219 
contrast, hospital monitoring provides evidence that the detected pathogen produces symptoms 220 
that require hospital treatment. Third, our model is meant to be used now, in advance of future 221 
pandemics, and not in the early months of a novel pandemic, because early detection systems 222 
must be set up in advance of the next pandemic to be effective. Because we do not know the 223 
epidemiological parameters of the next pandemic, our study assesses how these systems would 224 
perform for a wide, representative variety of diseases with different epidemiological parameters, 225 
in order to quantify these systems’ benefits in general. 226 

These results can inform ongoing international and national policy debates about which policies 227 
are needed to mitigate future pandemics. In the wake of COVID-19, the World Health 228 
Organization Intergovernmental Negotiating Body is actively negotiating a new treaty on 229 
international pandemic preparedness which updates the International Health Regulations (2005). 230 
Drafts of this treaty highlight “early warning and alert systems” as key measures16. Similarly, the 231 
presidential administration of the United States has proposed investing $5.3 billion over 7 to 10 232 
years in early warning and real-time monitoring systems, including in hospitals and 233 
wastewater17. In this study, we have assessed detection systems’ detection times and have 234 
developed a model to assess current and future detection system proposals. Along with additional 235 
cost-effectiveness analysis and technical pilots21, these results can help inform which detection 236 
systems are most effective and thus worth funding in pandemic preparedness efforts. 237 

Methods 238 



 

Description of model predicting cases at detection. 239 

Our branching process-based model predicts the cumulative number of cases at the time of 240 
detection for a given detection system and outbreak. It follows the approach of branching process 241 
simulation models used previously to model the spread of COVID-1950,51 and other infectious 242 
diseases52, but with the main added step of simulating each infected person’s chance of being 243 
detected by the detection system. The values for parameters for detection systems can be found 244 
in table S2. The values for epidemiological parameters for outbreaks (R0, serial interval, 245 
dispersion, hospitalization rate, and time to hospitalization) can be found in Fig. 2 and table S3. 246 
As in previous models52, we assume the offspring distribution (the number of secondary cases 247 
infected by each primary case) is negative binomial with mean R0. 248 

We generally follow past detection system proposals19,21 to determine the implementation details 249 
of each system in our model. Our model assumes the following. In hospital monitoring, hospitals 250 
would test for high-priority pathogen families (e.g. coronaviruses) in patients presenting with 251 
severe infectious symptoms in hospital emergency departments19. Similarly, in wastewater 252 
monitoring, governments would test for pathogens in city wastewater treatment plants daily, and 253 
monitor for high and increasing levels of high-priority pathogen families21. In air travel 254 
monitoring, we model testing of individual symptomatic passengers (differs from proposals to 255 
monitor airplane sewage22 or bridge air) on incoming international flights for the same 256 
pathogens. The parameters of these systems are shown in table S2. 257 

Our model also accounts for different delays involved in different detection systems. For 258 
example, if the 500th case of a COVID-19-like outbreak triggers the detection threshold in both 259 
the hospital and wastewater monitoring systems, because of the significant delay from infection 260 
to hospitalization compared to the delay from infection to fecal shedding, the wastewater system 261 
would catch the outbreak earlier. 262 

In systems that test individuals (hospital and air travel individual monitoring), the threshold is 263 
measured in an absolute number of cases. In systems that test wastewater (community and air 264 
travel wastewater monitoring), the threshold or sensitivity is measured in prevalence (cases as a 265 
percentage of the population)53,61,62. To predict the number of cases and time to detection, we 266 
need to convert this percentage back to a number of cases, so the wastewater detection time 267 
depends on the catchment population size. 268 

To estimate wastewater sensitivity measured in prevalence, we used data from53.53 conducted 269 
PCR testing for SARS-CoV-2 1687 longitudinal wastewater samples from 353 sampling 270 
locations in 40 US states in early 2020, and synced these with publicly reported local daily new 271 
COVID-19 case counts. This enables us to estimate a distribution of the wastewater sensitivity: 272 
the lowest case count required to trigger positive detection in wastewater. Of the 353 sampling 273 
locations, 47 had both SARS-CoV-2-positive and negative samples such that local case counts 274 
on days of positive samples were all higher than those on days of negative samples. We thus 275 
knew each sampling location’s sensitivity is between the maximum of case counts on negative 276 
sample days and the minimum of case counts on positive sample days. We took the midpoint of 277 
this maximum and minimum as the location’s sensitivity; this gave us 47 local sensitivities. We 278 
fitted this to a log-normal distribution with a median of 2.5 daily new cases per 100,000 people. 279 
As expected, this distribution is similarly shaped but slightly left-shifted of the distribution in 280 



 

Figure 2b of53 (median 3.7 per 100,000), because the latter distribution is an upper bound of the 281 
former. 282 

To use this distribution in our model, in each simulation run, we first randomly drew a 283 
wastewater sensitivity from this distribution, and then we needed to convert this reported 284 
incidence i to the true (reported and unreported) number of cases shedding fecally into public 285 
wastewater systems up to the time of wastewater detection. We converted as follows. Let day T 286 
be the day on which the incidence i is reported. First we assumed the wastewater SARS-CoV-2 287 
level on day T is proportional to the number of COVID-19 cases who are fecally shedding on 288 
day T, which we estimate as the number of fecal shedders infected 2 days before, given the 289 
dominant peak in fecal shedding on day 2 of infection61. We infer the number of fecal shedders 290 
infected on day T-2 from the incidence as follows. To account for underreporting, we first 291 
estimate a true daily incidence of 5.7 x i with symptom onset on day T, based on estimates of the 292 
ratio of true (dated by symptom onset) to reported (dated by reporting date) COVID-19 cases in 293 
the United States in early 202054. (This study’s abstract reports true cases are 5-50x reported 294 
ones, but this refers to the early March 1-April 4, 2020, period. We calculated the factor of 5.7 295 
from the study’s data when we use the fuller March 1-May 16 period, which overlaps better with 296 
the February-June 2020 period in53 and reflects less underreporting as the pandemic developed 297 
and testing capacity increased. We calculated this underreporting factor as an average of state-298 
level underreporting factors, weighted by frequency of each state among the wastewater samples 299 
in53.) Finally, we multiply by (a) the fraction of cases who shed fecally (0.563) and (b) the 300 
fraction of people connected to central sewage (0.8 in the US64, which is the area from which 301 
the53 threshold is derived). This gives us the one-time prevalence of cases p who contribute to the 302 
wastewater SARS-CoV-2 level on day T. For a given catchment with population c, this one-time 303 
number of cases is cp, and we estimate the cumulative number of fecal shedders up to this time 304 

as ∑
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outbreak incidence curve to grow from 1 to cp cases. 306 

To check this estimate, we identified studies that compared wastewater and hospital COVID-19 307 
trends20,53.20 found that trends in wastewater SARS-CoV-2 values led trends in hospital 308 
admissions by 1-4 days in New Haven (catchment size 2e+05). We estimate that wastewater 309 
detection would lead hospital detection of COVID-19 in New Haven by -0.8 to 3 weeks (90% 310 
CI). This is consistent with the 1-4d lead estimate from20. Similarly,53 found that trends in 311 
wastewater led those in clinical data by 4 days in Massachusetts (catchment size 2,300,000). 312 
Their clinical data are dated by date of reporting rather than sample gathering; assuming that 313 
hospital admissions are 5 days ahead of tests by date of reporting20, then wastewater is 5d-4d=1 314 
day behind hospital admissions. We estimate that wastewater detection would lead hospital 315 
detection of COVID-19 in Massachusetts by -4 to -0.09 weeks (90% CI). This is consistent with 316 
the 1-day lag estimate from53. 317 

Validation of model in US states. 318 

We gathered two sources of data for each state: dates of COVID-19 detection and COVID-19 319 
case counts in early 2020. For the former, we searched media reports and US state public health 320 
press releases to determine the dates of the first COVID-19 case reported in each US state. 321 
Sources for each state’s detection date are listed in table S4. We were able to identify such dates 322 
for all 50 states. 323 



 

For the latter, we used literature estimates of true (tested and untested) COVID-19 case counts, 324 
which incorporate COVID-19 mortality data to deal with variation in testing capacity among 325 
states54. We received a time series of weekly symptomatic COVID-19 case estimates for March 326 
1-May 10, 2020 and divided by a symptomatic rate of 0.55 to get an estimate of total 327 
(symptomatic and asymptomatic) cases47. We specifically used estimates from the adjusted 328 
mMAP (mortality maximum a posteriori) method because54 had mMAP estimates for all 50 329 
states, whereas other methods from the same study were missing estimates for various states. We 330 
fit an exponential curve of case counts in each state to extrapolate cases back to January 2020. In 331 
the data we received, all states had case data for all weeks in March 1-May 10, 2020. 332 

We used our model to predict the weeks until detection in each US state (y-axis in Fig. S7). 333 
Because most US states detected their first case by travel (table S4), we modeled a travel-based 334 
detection system similarly to how we modeled the aforementioned detection systems. We 335 
simulated a growing stream of imported travel cases (R0i cases for the i-th generation and global 336 
R0 = 2.5), and as for the other detection systems, we simulated infection and detection steps for 337 
each generation, except that we only allowed travel-associated cases to be detected. We assumed 338 
that the state COVID-19 outbreaks had the same values for all epidemiological parameters 339 
except for R0, which we allowed to vary by state to account for state-specific conditions. We 340 
obtained state-specific R0 values from65. The values for shared parameters were obtained from 341 
literature (table S3). We used a detection delay of 12 days (5-day incubation period47 plus 7-day 342 
test and reporting turnaround in early 2020 in the US66) because many first cases were detected 343 
following symptoms. The only parameter we were unable to precisely estimate from literature 344 
was the probability of a travel case being detected. We noted that this rate was at most the 345 
COVID-19 symptomatic rate (0.5547) and at least the hospitalization rate (0.0347): in the highest-346 
detecting scenario, every symptomatic case would volunteer to be tested; in the lowest-detecting 347 
scenario, only hospitalized travel cases would get flagged for testing. So we chose a rate of 0.1, 348 
near the two rates’ geometric mean. The predicted detection time for each state (the y-value 349 
reported in Fig. S7) was the mean of 100 simulations. 350 

We compared these predictions to ground truth estimates in each state (x-axis in Fig. S7). These 351 
ground truth estimates were calculated by summing the aforementioned weekly case counts from 352 
the first week of January 2020 until the date of detection in that state (Fig. S8). 353 

Comparison of COVID-19 detection times in the actual pandemic versus with proposed early 354 
detection systems. 355 

We used our model to examine whether the early detection systems could have detected COVID-356 
19 earlier than in the actual pandemic. To do this, we used two data sources: (1) literature 357 
estimates of total (tested and untested) COVID-19 case counts in late 2019 and early 202056 and 358 
(2) simulation output from our model. We then used (1) to calculate the cumulative number of 359 
cases when COVID-19 was actually detected, and compared this to results from (2). 360 

For (1), we chose to use estimates from56, which quantifies both the time of SARS-CoV-2 361 
introduction into humans and the time series of cases following said introduction. These 362 
estimates are based on phylodynamic rooting methods applied to SARS-CoV-2 sequence data, 363 
combined with epidemic simulations and accounting for epidemiological data on the first known 364 
cases of COVID-19. These estimates improve upon previous attempts to time SARS-CoV-2’s 365 



 

introduction into humans, which are solely based on phylodynamic rooting methods to quantify 366 
the time to the most recent common ancestor of SARS-CoV-2 sequences67. 367 

As instructed by56, we utilized 368 
‘BEAST.primary.IH.Dec10_16.linB.Dec15_25.linA.cumulativeInfections.timedGEMF_combine369 
d.stats.pickle’ from GitHub68 to obtain the distribution of daily case counts. Conditioning on the 370 
fact that there were at least six COVID-19-related hospitalizations by 2019-12-2969, we 371 
narrowed the distribution to those epidemic simulations with the top 25 percent of 372 
hospitalizations and case counts. We simulated 100 draws from this distribution, and then took 373 
the number of cases on 2019-12-29 in each simulation to get 100 values for the distribution of 374 
cumulative cases at detection in the actual pandemic (‘Actual pandemic’ boxplot in Fig. 1B). We 375 
chose 2019-12-29 as the date that COVID-19 was detected in the actual pandemic, because this 376 
was the date of the first report of an outbreak of pneumonia cases to health authorities in 377 
Wuhan70. 378 

For (2), we ran our model for COVID-19 (see table S3 for the epidemiological parameters used) 379 
and all three detection systems (100 simulations for each system). For each detection system, this 380 
gave us the estimated number of cases until detection of COVID-19 if that system had been in 381 
place at the start of the pandemic. We assumed the system was present in the community in 382 
which COVID-19 originated. We compared each system to the actual pandemic, and determined 383 
that detection could have occurred earlier with the system if there was a statistically significant 384 
difference in cases until detection between the actual pandemic and the simulated world with the 385 
system (Fig. 1B). Statistical significance was assessed by a 1-sided t-test in which the alternative 386 
hypothesis was that the detection system performed better. 387 

We could empirically test our model predictions for the cases until wastewater detection by using 388 
literature-estimated total COVID-19 cases in Massachusetts54 and Massachusetts wastewater 389 
SARS-CoV-2 data57 in early 2020. We aimed to use these to estimate the cases until COVID-19 390 
wastewater detection in Massachusetts in early 2020, but because Massachusetts wastewater 391 
sampling for COVID-19 started only after the Massachusetts outbreak was underway, 392 
wastewater samples were positive for SARS-CoV-2 on the first day of testing, so this first day of 393 
testing was later than when wastewater detection could have caught SARS-CoV-2 if wastewater 394 
detection had been in place in advance. Thus, we could only calculate an upper bound on the true 395 
cases until detection. We utilized the wastewater time series from the Massachusetts Water 396 
Resources Authority (MWRA) website and synced it with the COVID-19 case count time series 397 
(Fig. S9). We multiplied the Massachusetts statewide cases by 0.33 (equal to 398 
2,300,000/6,900,000) because the MWRA data covers 2,300,000 people, out of 6,900,000 people 399 
in Massachusetts in 2020. We then summed these case counts up to the date of apparent 400 
wastewater detection to get an upper bound for cases at detection, and checked whether our 401 
model prediction was consistent with this bound. 402 

Model-simulated cases required to trigger COVID-19 detection versus mathematical 403 
approximations. 404 

We compared the model simulations of cases until detection with our derived mathematical 405 
formula, Equation (1) (Fig. S10). The points in Fig. S10 are the same as in Fig. 2A. The dashed 406 
lines are generated by plugging values into Equation (1) for each detection system: we plugged 407 



 

in the detection threshold, detection probability, outbreak R0, and detection delay (measured in 408 
number of generations, i.e. serial intervals) for d, �����, R0, and g, respectively. 409 

Comparison of detection systems for different infectious diseases. 410 

We applied our model to several outbreaks of recent interest: COVID-19, mpox (2022), polio 411 
(2013-2014), Ebola (2013-2016) and flu (2009 pandemic) (Fig. 2A). Because of the lack of data 412 
on the number of cases at the time of detection in previous outbreaks (except for the COVID-19 413 
data used in Fig. 1B), we used our model to estimate status quo detection times for the outbreaks. 414 
Because many recent outbreaks have been detected in healthcare settings59,69,71,72, we assumed 415 
status quo detection was similar to hospital monitoring, except with a lower detection probability 416 
per case (�����) to reflect that symptomatic cases are less likely to be tested for a panel of 417 
diseases without the proposed systematic, proactive testing scheme. The per-case detection 418 
probability for status quo was set to 0.67 times that of hospital monitoring to match our modeled 419 
status quo detection times for COVID-19 with those estimated independently by56 (Fig. 1B). 420 

Data availability: Data are available in the supplement and at https://github.com/abliu/early-421 
detection/releases. 422 

Code availability: Code is available at https://github.com/abliu/early-detection/releases. 423 
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