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Abstract11

Building trustworthy and transparent image-based medical AI systems requires the ability to interrogate data and12

models at all stages of the development pipeline: from training models to post-deployment monitoring. Ideally,13

the data and associated AI systems could be described using terms already familiar to physicians, but this requires14

medical datasets densely annotated with semantically meaningful concepts. Here, we present a foundation model15

approach, named MONET (Medical cONcept rETriever), which learns how to connect medical images with text and16

generates dense concept annotations to enable tasks in AI transparency from model auditing to model interpretation.17

Dermatology provides a demanding use case for the versatility of MONET, due to the heterogeneity in diseases, skin18

tones, and imaging modalities. We trained MONET on the basis of 105,550 dermatological images paired with natural19

language descriptions from a large collection of medical literature. MONET can accurately annotate concepts across20

dermatology images as verified by board-certified dermatologists, outperforming supervised models built on previously21

concept-annotated dermatology datasets. We demonstrate how MONET enables AI transparency across the entire AI22

development pipeline from dataset auditing to model auditing to building inherently interpretable models.23

Introduction24

Ensuring the transparency and robustness of medical AI systems involves assessing data and models at every stage, from25

model training to post-deployment monitoring. However, the tools and methods needed to promote AI transparency26

and to de-mystify “black-box” models often require medical datasets with dense annotations of human-understandable27

concepts. For example, for building a melanoma classifier, it would be medically meaningful to understand the28

data and model using concepts such as “darker pigmentation”, “atypical pigment networks”, and “multiple colors”.29

Unfortunately, obtaining such labels requires a significant amount of time from domain experts, and consequently,30

most medical datasets limit annotations to little more than diagnoses. In contrast, rich annotation with the extensive31

and highly descriptive clinical concepts developed by the medical community could enable numerous benefits. Such32

rich annotations could promote understanding of key biases in datasets, empower detection of undesirable behavior in33

medical AI devices, and foster the development of AI devices that better align with physicians’ expectations. However,34

few medical image datasets include such extensive annotations, and the time expended in existing efforts [1] argues35

that obtaining this data via large-scale efforts by human experts is infeasible.36

Here, we instead leverage the collective knowledge of the medical community, as encapsulated in publicly available37

medical literature and medical textbooks, to teach an AI model, MONET (Medical cONcept rETriever), to richly38

annotate medical images with semantically meaningful and medically relevant concepts (Fig. 1A-B). We focus on39

the application of dermatology to showcase its versatility since dermatology has heterogeneity in disease appearance40

across diverse skin tones and has no standardized imaging practices, leading to significant heterogeneity in imaging41

conditions (e.g., lighting, blurriness). In this setting, examples of clinical concepts include lesion color (e.g., brown) and42
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morphology (e.g., nodule). MONET’s automatic concept generation capability empowers us to perform meaningful43

trustworthiness analysis across all stages of the medical AI pipeline, as demonstrated by three use cases (Fig.1C-E).44
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Fig. 1 | Overview of MONET framework and its usage examples. (A) Training procedure. MONET is trained
using contrastive learning on an extensive set of dermatology image and text pairs collected from PubMed articles
and medical textbooks. During the training process, the paired image and text are forced to be close in the joint
representation space, while those from different pairs are forced to be far apart. (B) Automatic concept generation.
MONET can map medical concepts and images onto a joint representation space, allowing it to determine the degree
to which a concept is present in an image for any given concept by measuring the distance between the image and
concept text prompts in the representation space. Its concept generation capability enables various concept-driven
analyses at multiple stages of the medical AI pipeline. (C) Concept-level data auditing. MONET’s automatic concept
generation capability makes it possible to explain the distinguishing features between two sets of data in the language
of human-interpretable concepts. This approach facilitates the auditing of large-scale datasets with ease. (D) Concept-
level model auditing. MONET can be used to identify which input characteristic leads to the errors of medical AI.
(E) Developing inherently interpretable models. MONET can be used to develop inherently interpretable medical
AI models that operate on human-interpretable concepts aligning with physicians’ expectations. These models allow
physicians to easily decipher the factors influencing the models’ decisions, ensuring high transparency.

Dataset auditing can identify biases in the data before using it for any clinically relevant task, thereby improving45

the quality of the data, providing an opportunity for preliminary bias mitigation, and improving overall trustworthiness46

in the data. Prior work in dataset auditing has identified how particular concepts are associated, either appropriately47

or inappropriately, with data labels [2–4]. In medicine, data auditing has identified spurious correlations in AI training48

data [5, 6]. For example, the overrepresentation of chest drain in the x-rays of patients with pneumothorax led to AI49

algorithms that relied on their presence. However, chest tubes are a treatment used after a physician had diagnosed50

pneumothorax and not a causal feature [5]. Because data is not static, dataset auditing also allows the detection of51

dataset shifts or drifts by identifying the changes in the representation of a concept in the data [7–9]. MONET enables52
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us to examine datasets on the basis of a rich set of automatically retrieved concepts (Fig.1C).53

Model auditing involves demystifying the “black-box” of AI models – understanding the factors involved in AI54

decision-making [10–13]. AI models that fail during real-world deployment can lead to worse outcomes for patients.55

AI models have been shown to make systematic errors on a subset of data with shared features, resulting in uneven56

performance across the data [2–6, 13, 14]. To prevent this and make appropriate adjustments, models should be57

audited to understand their failure modes prior to deployment. Model auditing is not only important immediately58

after model development, but is a continual process, especially since models may undergo updating over time [7–9].59

MONET powers model auditing: the dense concept annotations generated by MONET can be used to understand60

which input characteristic leads to model errors (Fig.1D).61

While most existing AI models are black boxes, newer methods in the field of explainable AI have attempted to62

create inherently interpretable models that use concept-level features as input [15, 16]. The automatic generation of63

a rich set of semantically meaningful concepts allows us to leverage and enhance these recent models (Fig.1E).64

Because of the need to develop and test the aforementioned methods and tools, there have been prior attempts65

to create densely annotated datasets in medicine. Such datasets include SkinCon [1], PH2 [17], derm7pt [18], and66

Osteoarthritis Institute Knee X-ray dataset (OAI) [19]. However, because these medical datasets are annotated by67

humans and usually require domain expertise, the number of densely annotated datasets, the number of images in68

each dataset, and the number of “concepts” that can be labeled in each image are limited. MONET overcomes these69

challenges by generating medical concepts automatically. Our framework is built upon contrastive learning, a recent AI70

breakthrough that enables the direct utilization of natural language descriptions on images [20]. Since this approach71

does not require manual labeling, it can unlock the potential of vast numbers of image and text pairs, allowing for the72

harnessing of data of much larger scale than was possible with supervised learning.73

To train MONET, we collect an extensive set of dermatology image and text pairs (n = 105, 550) from PubMed74

articles and medical textbooks. We map an image (or text) into a lower-dimensional vector or a representation through75

a neural network, namely the encoder (Fig.1A), creating a representation space. During the training process, an image76

and text from the same pair are forced into close proximity in the representation space, while those from different pairs77

are forced to be farther apart (Methods). Once trained, MONET’s zero-shot capability (i.e., the ability to generate78

a medical concept without a separate learning procedure) generates concepts (Fig. 1B and Methods). When a user79

provides an image and a list of concepts to generate, MONET determines the presence of each concept in the image80

by calculating the distances between the image and concept text prompts in the joint representation space, where81

images and texts are jointly mapped.82

MONET’s automatic concept generation capability enables a whole range of capabilities in medical AI that were83

previously infeasible in practice. We showcase MONET’s versatility by demonstrating its use in auditing data, auditing84

models, and creating inherently interpretable models. MONET enables a sophisticated multi-point analysis and can be85

used to probe any part of the medical processing workflow. For data auditing, we apply MONET to the International86

Skin Imaging Collaboration (ISIC) dataset [21–26], the most widely used data in dermatology AI [27], to confirm87

known trends and discover new ones. We also use MONET to identify which input characteristics lead to errors88

in medical AI models. Finally, we integrate MONET with the concept bottleneck model (CBM) [15], a well-known89

approach for building inherently interpretable models, and show MONET+CBM’s advantages over supervised models90

in terms of both performance and interpretability. All of these tasks are central to the development and deployment91

of trustworthy and transparent AI models in medicine.92

Results93

Automatic concept generation94

We first assess MONET’s concept generation capability before demonstrating how this capability can improve the95

transparency and interpretability of medical AI pipelines. The fundamental mechanism in MONET’s concept gener-96

ation is the mapping of medical concepts and images onto a joint representation space. This allows the generation97

of a concept presence score, i.e., the degree to which a concept is present in an image, by measuring the distance98

between the image and concept text prompts in the joint representation space (Methods). We evaluate MONET’s99

concept generation ability by identifying those images with the highest concept presence scores using both clinical100

and dermoscopic images, the two widely used dermatological image types. Dermoscopic images are captured using101

digital photography with a specialized dermatological instrument called a dermoscope that magnifies skin lesions to102

capture fine details, while clinical images are often taken at least 6 cm away with a digital camera. For our evaluation,103

we employ clinical images (n = 4, 960) from the Fitzpatrick17k and Diverse Dermatology Images (DDI) datasets and104

dermoscopic images (n = 71, 242) from the ISIC dataset (Methods).105

Fig. 2 and Supplementary Fig. 1-2 display clinical and dermoscopic images with high concept presence scores106
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for each concept. These represent examples of widely used medical concepts in dermatology. Dermatologists use a107

standardized terminology to describe the morphology, color, configuration and distribution of skin lesions. MONET108

excels at recognizing these medical concepts in clinical and dermoscopic images. For example, “erythema” is a term109

used by dermatologists to describe a red or violaceous color, which usually occurs in the presence of inflammation.110

It can be found in various skin diseases, such as atopic dermatitis, psoriasis, and rosacea. Two board-certified111

dermatologists confirmed that the images with large presence scores for erythema exhibit skin redness in both clinical112

and dermoscopic images (Fig. 2). Similarly, images with the concept “blue” show dark blue lesions with pigmentation113

in the dermis, resulting from the Tyndall effect. Moreover, MONET was able to retrieve images with primary114

morphological features such as bullae (large, tense fluid-filled blisters) and pustules (small, pus-filled blisters), as well115

as secondary morphological features including ulcers (open sores) and xerosis (dry, scaly skin).116

We assess the performance of MONET’s concept generation using ground truth concept labels in SkinCon (Table117

1). Of the 48 concepts in the dataset, we exclude any with less than 30 positive examples, leaving 21 concepts for our118

analysis. We use 1,645 images from Fitzpatrick17k and DDI datasets with ground truth SkinCon concept labels. We119

compare MONET’s performance to a supervised learning approach, training a ResNet-50 model using ground-truth120

concept labels from SkinCon [28], and to a pre-existing contrastive image-text model that was not specifically trained121

on dermatology images but on 400 million available image-text pairs on the web - the CLIP (Contrastive Language-122

Image Pretraining) model by OpenAI [20] (Methods). We find that MONET outperforms the ResNet-50 model and123

the CLIP model in terms of concept generation. Specifically, we compare the mean of the area under the receiver124

operating characteristic curve (AUROC) across concepts with ground truth labels and count how many concepts125

achieved an AUROC higher than 0.7. MONET achieves a mean AUROC of 0.766; in contrast, CLIP achieves a mean126

AUROC of 0.692. The ResNet-50 model, trained to predict concept labels, achieves a mean AUROC of 0.692. Of the127

21 concepts analyzed, MONET remarkably displays 19 concepts with an AUROC over 0.7, compared to 9 for CLIP128

and 11 for the fully supervised model. Additionally, we conduct the same comparative analysis using disease labels,129

which can be viewed as the most fine-grained concept labels; we map the disease labels instead of SkinCon concepts130

to the image-text joint representation space. Our findings indicate that MONET’s performance is still comparable to131

that of supervised models in this case (Supplementary Table 2). This observation is consistent with a previous study,132

which found that a contrastive learning model trained on radiology images demonstrates comparable performance in133

predicting pathologies in chest X-rays to that of supervised learning models [29].134

We also evaluate the performance of MONET’s concept generation across diverse skin tones (Methods). A recent135

study revealed that state-of-the-art dermatology AI models exhibit uneven performance across skin tones, particularly136

underperforming on dark skin tones, potentially due to the insufficient representation of diverse skin tones in training137

data [30]. One advantage of contrastive learning, the technique used to train MONET, is its ability to easily harness138

heterogeneous data from diverse sources for training. This can help reduce performance disparities across demographics139

compared to training on a single data source. To determine whether MONET is free from this issue, we compared140

its performance per skin tone using the Fitzpatrick skin type labels included in the Fitzpatrick17k and DDI datasets.141

MONET demonstrated even performance across skin tones (Supplementary Table 3).142

Finally, we also explore MONET’s capability to recognize non-clinical concepts, such as artifacts that are irrelevant143

to the diagnosis. Many studies have shown that medical AI systems use such non-clinical concepts to make predictions,144

particularly when a spurious correlation exists between the artifacts and prediction labels [6, 31]. In dermatology AI,145

it has been shown that artifacts, such as clinical marking or size reference stickers, can have a detrimental effect on146

the model’s generalizability [32–34]. The ability of MONET to identify such artifacts, in addition to clinical concepts,147

will facilitate more fine-grained auditing and debugging of medical AI pipelines. Supplementary Fig. 3 shows images148

from the ISIC dataset that MONET identified as containing non-clinical concepts. Supplementary Fig. 3A shows149

images with purple pen ink marking that MONET automatically identified; in dermatology, lesions that are biopsied150

are often routinely marked with purple ink markers. Supplementary Fig. 3B shows orange stickers that MONET151

identified; they serve as a lesion marker. In ths ISIC dataset, these orange stickers predominantly show up in the152

pediatric cases, which are largely benign. As these artifacts predominantly appear in certain types of images, they153

may inadvertently cause AI algorithms to associate purple ink markings with malignancy and orange stickers with154

benign lesions [34]. Also, MONET automatically identifies images with body location features (such as nails and155

hair) (Supplementary Fig. 3C, D). A recent study has shown that anatomic locations may play a critical role in156

the performance of dermatology AI algorithms; however, most datasets lack these annotations [35]. Further,MONET157

identifies images with dermoscopic borders, which appear on a subset of dermoscopic images depending on the image158

processing process (Supplementary Fig. 3E).159

In the following sections, we showcase how MONET can be used to improve the transparency and trustworthiness160

of dermatology AI in real-world scenarios.161
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Fig. 2 | Images with high concept presence scores calculated using MONET. The concept presence score
represents the degree to which a concept is present in an image. Each row displays the top 10 images for each concept.
(A) Clinical images from the Fitzpatrick17k and DDI datasets. We exclude images inappropriate for public display
due to the inclusion of sensitive body parts; for completeness, we denote the filenames of these files in Supplementary
Table 1 (B) Dermoscopy images from the ISIC dataset.

Method Mean AUROC

MONET 0.766 (19/21)
CLIP 0.692 (9/21)
ResNet-50 (Fully supervised) 0.692 (11/21)

Table 1 | Performance of MONET’s concept generation as compared to the baselines. We use concept
labels in the SkinCon dataset as ground truth. Of the 48 concepts in the dataset, we exclude any with less than 30
positive examples, leaving 21 concepts for our analysis. The baselines are CLIP, an image-text model not specifically
trained on dermatology images, and the ResNet-50 model trained on ground truth labels in a fully supervised manner.
The numbers in parentheses represent the count of concepts for which the method achieves an AUROC over 0.7 over
the total number of concepts examined.
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Data auditing162

Ensuring that training data aligns with users’ expectations is a crucial first step toward developing AI models since163

many unreasonable model behaviors stem from unidentified pitfalls in the training data [6, 32, 34]. For example, in164

dermatology, when preparing a dataset for training an AI model to diagnose malignancy, the differentiating features165

in the data between classes (i.e., malignant and benign images) should not contain any biases or spurious correlations,166

such as the pen markings used to identify biopsied lesions [34]. Upon identifying any irregularities, adjustments can167

be made, such as improving the data collection and processing [36, 37] or applying optimization techniques to improve168

generalizability [31, 38].169

However, examining large-scale datasets for irregularities is challenging and labor-intensive. One approach is to170

manually label features of interest and create a contingency table between each feature and the target label to check for171

spurious correlations; however, this is subjective and not easily scalable [5]. Another approach is to train a generative172

model, such as CycleGAN [39], to learn the distribution of data for each class [6]; the trained generative model can173

modify an image from one class to resemble an image from another class. By observing these changes, a data examiner174

can identify the distinguishing features of each diagnostic group. However, generative models are difficult to train and175

necessitate manual inspection of the transformed images.176

To address the issue, we can employ MONET to automate the data examination process. MONET’s automatic177

concept generation capability can explain the distinguishing features between any two arbitrary sets of images in the178

language of human-interpretable concepts, which we refer to as concept differential analysis (see Methods). Supple-179

mentary Fig. 4 shows benchmark analysis results.180

As a practical use case, we employ MONET to analyze the ISIC dataset, the largest dermoscopic image dataset,181

which consists of over 70, 000 publicly available images that are commonly used to train dermatology AI models [21–182

27]. We divide the images into a malignant (n = 10, 091) and a benign set (n = 61, 151), assuming malignancy as183

the prediction target, and examine which concepts were more present in which set (Fig. 3A). We test for 48 concepts184

listed in SkinCon along with eight artifacts, including red coloration, pinkish coloration, and purple ink markings,185

nails, hair, orange sticker, gel, and dermoscopic border.186

The top 5 concepts in the malignant images are ulcer, erosion, warty, pinkish coloration and blue coloration; in187

contrast, the top 5 concepts in the benign images are orange sticker, hypopigmentation, the color salmon, xerosis, and188

hyperpigmentation. These concepts represent key features that a prediction model, trained on the ISIC dataset, may189

potentially use to differentiate benign from malignant lesions. They encompass both clinically pertinent features such190

as ulcer, crust, erosion, warty, and black coloration, as well as irrelevant confounders such as orange sticker and nail.191

Skin ulcerations and erosions are commonly linked to malignant skin tumors such as melanoma, basal cell carcinoma192

and squamous cell carcinoma, making their association with malignancy logical. On the other hand, prediction models193

learning from confounding concepts may lead to biases and detrimental consequences. For example, dermatologists use194

orange stickers as a lesion marker, and with the ISIC dataset, this was predominantly used in the pediatric population195

which had mostly benign lesions. The bias in the data could lead a model to erroneously associate orange stickers196

with a low likelihood of malignancy.197

Furthermore, we can use this approach to assess distinctive trends specific to different data sources. In medicine,198

data sharing across institutions is limited due to the sensitive nature of medical data and regulatory constraints.199

In many cases, a medical AI is developed within a few institutions and then distributed to other institutions for200

deployment. For this reason, it is important to understand and monitor the shifts in the concept representations201

between data and identify factors that can potentially compromise the transferability of medical AI. By doing so,202

necessary adjustments can be made preemptively. The ISIC dataset is a collection of images from multiple hospitals203

and research institutions, which serves as an ideal resource for simulating situations where the development and204

deployment sites differ. In this analysis, we focus on two cohorts released in the ISIC Challenge 2019—the Medical205

University of Vienna (Med U. Vienna, malignant: n = 1, 824 / benign: n = 8, 049) and the Hospital Cĺınic de206

Barcelona (Hospital Barcelona, malignant: n = 6, 097 / benign: n = 6, 205)—since they represent the two largest207

cohorts in the entire ISIC dataset when stratified by release year and data source. We perform concept differential208

analysis between malignant and benign images, as noted above, for each cohort separately. We then compare the209

obtained concept differential expression scores between the two cohorts (Fig. 3B).210

When we sort the test concepts in the order of absolute differences, the top-listed concept was a “red” hue.211

Redness is positively correlated with malignancy for the images from Hospital Barcelona but negatively correlated212

with malignancy for the images from Med U. Vienna. This means that redness has the potential to compromise the213

transferability of medical AI between two institutions. This trend is clearly visible in the sampled images from each214

cohort, as well. Fig. 3C displays images sampled from the top 100 images with high concept expression scores for the215

red coloration for each cohort, along with their diagnostic labels. The images that have more redness collected from216

Med U. Vienna are often benign, while those collected from Hospital Barcelona are often malignant. The top 500 and217

top 1,000 red images in the Med U. Vienna contain more benign than malignant ones, while the top 500 and top 1,000218

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.07.23291119doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.07.23291119
http://creativecommons.org/licenses/by-nc/4.0/


red images from Hospital Barcelona still contain more malignant than benign samples. (Fig. 3D).219

In sum, we demonstrate how MONET can assist with auditing large-scale datasets. Since concept differential220

analysis is conducted simply by describing a concept in a natural language, the approach fosters the scalable discovery221

of trends within the data. Using the insights gained through this process, AI model developers can enhance data222

collection, processing, and optimization techniques, ultimately yielding more reliable and trustworthy medical AI223

models.224
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Fig. 3 | Concept-level data auditing. (A) We perform concept differential analysis between malignant images
and benign images in the ISIC dataset. We show the top 10 concepts with positive values and the top 5 concepts with
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images, and vice versa. (B) We perform concept differential analysis between malignant and benign images per data
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Medical University of Vienna, and the green bar represents the output from the Hospital Clinic de Barcelona. We
show the top 15 concepts based on their absolute differences between the two cohorts. (C) Examples of red images in
each cohort. We display 10 randomly selected images from the top 100 images in each cohort that had high concept
expression scores for redness. (D) Precision-recall curve for images in each cohort. The images in each cohort are
sorted based on their concept presence scores for redness and then compared to their malignancy labels. Precision is
defined as the proportion of malignant images above a certain threshold out of all images above that threshold, while
recall rate is defined as the proportion of malignant images above the threshold out of all malignant images. The top
500 and top 1000 red images from Barcelona Hospital still contain more malignant than benign samples.
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Model auditing225

Various techniques for auditing AI models have been developed to understand the factors involved in AI decision-226

making. One classical approach is the use of saliency maps, which highlight regions in an input image that significantly227

contribute to the model’s prediction [40–42]. The saliency maps of each image help to identify which pixel-level228

features lead to a correct or incorrect prediction. However, the highlighted pixels are often not easily translated into229

semantically meaningful concepts understandable to a human [43].230

To address this issue, we can use MONET to audit AI models through the lens of medical concepts. We developed231

a method “model auditing with MONET” (MA-MONET) that uses MONET to automatically detect semantically232

meaningful medical concepts that lead to model errors (Methods). MA-MONET starts by sorting images from a test233

set into groups based on their visual similarity. It then labels the clusters that perform below the overall accuracy as234

low-performing. For each low-performing cluster, MONET identifies medical concepts. Each low-performing cluster235

is then compared to a high-performing counterpart containing similar images, with concepts separately identified in236

the high-performing cluster. If two visually similar clusters (one high-performing, the other low-performing) differ in237

terms of a few concepts, these differing concept terms can be hypothesized as leading to high error rates. Finally, we238

produce a ranked list of medical concepts identified by MONET that differentiate the two clusters.239

To validate our model auditing, we first perform a benchmarking analysis, using a situation where the ground240

truth (i.e., the concepts leading to model error) is already known (Fig. 4A and Methods). We create a training241

dataset with spurious correlations from the Fitzpatrick17k and DDI datasets: 500 malignant images that feature a242

particular SkinCon concept, while the 500 benign images do not. After training a CNN model to predict malignancy243

on this confounded dataset, we test it on a dataset where the correlation is reversed (Methods); in the test set, 500244

sampled benign images have the SkinCon concept, while 500 sampled malignant images do not. We cluster images245

in the test set into 40 clusters, and about 20 of these clusters underperform, meaning their accuracy falls below the246

average accuracy. For these low-performing image clusters, we apply the MONET-based error explanation method247

to obtain a ranked list of medical concepts that would explain the model error. Finally, we observe if the concept of248

spurious correlation we know is recovered.249

We conduct the analysis using 5 concepts that remain after filtering out concepts with fewer than 30 samples in each250

category required for creating the confounded training and test sets (i.e., malignant–with concept, malignant–without251

concept, benign–with concept, and benign–without concept) : “crust”, “hyperpigmentation”, “plaque”, “erythema”,252

and “papule”. For each of the 5 concepts, we repeat this analysis 20 times with different random seeds changing the253

training and test sets. Consequently, we test 100 settings in total. Across these settings, the mean AUROC of the254

trained model is 0.779 for validation sets, but decreases to a mean of 0.458 for test sets.255

We measure the frequency of the known spurious correlation being recovered by MA-MONET (Fig. 4B), checking256

if the top-N concept lists of any low-performing clusters include the known spurious correlation concept. We compare257

this outcome with that of the out-of-the-box CLIP model, which was not specifically trained on dermatology data258

[20]. The low-performing clusters being analyzed in each setting are the same for both methods, but the enumeration259

of concepts associated with errors is done using CLIP instead of MONET. The results for the top 1, 2, and 3 rankings260

are markedly higher with MONET, at 0.590, 0.800, and 0.890, respectively, compared to those obtained with CLIP,261

which are 0.270, 0.520, and 0.660, respectively.262

To showcase its use in real-world scenarios, we consider a widely occurring situation where a model is trained263

at one institution and deployed at another [44, 45] (Fig. 4C). For training and testing, we use the same datasets264

we used in the data auditing section, specifically the two largest cohorts in the ISIC dataset: the Hospital Cĺınic de265

Barcelona (n = 12, 302) and the Medical University of Vienna (n = 9, 873). We train CNN models on the data from266

one institution using a standard training regimen and test them on the data from the other institution, and vice versa.267

For the AI model trained on Med U. Vienna, it showed an AUROC of 0.885 in the internal validation, but the268

value dropped to 0.707 during the external validation. This decline in performance would prompt AI model developers269

to question which input characteristics led to model errors. To elucidate this, we use MA-MONET to pinpoint which270

concepts are associated with model errors. For each cluster with high error rates, the misclassified images and the271

terms associated with errors are shown in Fig. 4D (displaying the top 5 clusters sorted in the order of high error rates)272

and Supplementary Fig. 5 (displaying the top 15 clusters sorted in the order of high error rates). For example, the273

cluster with the highest error rate, displayed in the first row of Fig. 4D and Supplementary Fig. 5A, is characterized by274

the concepts “blue”, “black”, “gray”, “pigmented”, and “flat-topped”. Remarkably, we notice several clusters where275

high error rates are explained by concepts related to “red”. For instance, the cluster shown in Supplementary Fig. 5F276

are characterized by “erythema”, “salmon”, “sclerosis”, “scar”, and “translucent”. Interestingly, we also find that the277

malignant images are predominantly misclassified as benign. Out of the 74 malignant images in the cluster, 55 images278

are misclassified to be benign. This observation aligns with the trends we noted in the data auditing experiment,279

where red images from Med U. Vienna (i.e., training dataset) were benign, while the red images in Hosp. Barcelona280

(i.e., test dataset) were malignant.281
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Conversely, we also train an AI model on Hosp. Barcelona data and tested it on Med U. of Vienna data. In282

this case, the AUROC of 0.844 in internal validation drops to 0.741 during external validation. For each cluster with283

high error rates, the misclassified images and the identified terms associated with errors are shown in Fig. 4E and284

Supplementary Fig 6. The cluster with the highest error rate, shown in the first row of Fig. 4E, is characterized by the285

concepts “pinkish”, “erythema”, “gray”, “red”, “atrophy”. Out of the 197 benign images in the cluster, 103 images286

are misclassified as malignant. This observation also aligns with the trends we noted in the data auditing experiment.287
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Fig. 4 | Concept-level model auditing. (A) We perform a benchmark analysis to see how well “model auditing
with MONET” (MA-MONET) can identify the semantically meaningful concepts that lead to model error. To this
end, we generate settings where we know the ground truth (i.e., concepts that lead to model errors); we create a
training and test dataset with spurious correlation. We use MA-MONET to identify which concepts lead to model
error for an AI model trained on this confounded dataset. MA-MONET returns a ranked list of concepts that explain
model errors. (B) The frequency of the known spurious correlation being recovered by MA-MONET is shown. (D)-
(E) Each row displays one of the top 5 clusters, sorted by high error rates. For each cluster, we show the misclassified
images and the corresponding concepts associated with errors. We represent the true and predicted labels for each
image by the color of the upper left and lower right triangles in the small box, respectively. The numbers at the top
right compare the number of malignant and benign samples for the true and predicted labels. The 5 misclassified
images shown for each are selected based on the average concept presence of the identified concepts.
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Inherently interpretable model building288

In medicine, inherently interpretable models are of particular interest since they allow physicians to easily decipher289

the factors influencing a model’s decision. Rather than training a complex black-box model that requires post-hoc290

explanation, an inherently interpretable model offers greater transparency and control in model behavior. Concept291

bottleneck models (CBMs) are a well-known type of inherently interpretable model [15]. CBMs make predictions in292

a two-step manner: first, they predict concepts from the input using a complex model such as a CNN (i.e., input293

→ concept); then, they use these predicted concepts to predict the target output via a linear model (i.e., concept294

→ output). As each node in the bottleneck layer represents a human-interpretable concept, CBMs offer greater295

explainability. Further, CBMs facilitate the incorporation of domain knowledge into models by imposing constraints296

on the concepts used, thereby improving the ability to control model behavior.297

However, CBMs have a significant limitation: they require concept annotations in the training data. To achieve298

high performance with CBMs, it is essential to train them on a sufficient number of samples and ensure they operate299

with an adequate number of concept labels that are relevant to the prediction task. This constraint has hindered the300

practical application of CBMs. We address this issue by using MONET’s automatic concept generation to eliminate301

the need for manually annotated concept labels in the original training procedure of the CBMs.302

We explore the application of MONET and CBMs for melanoma and malignancy prediction tasks, the most preva-303

lent prediction tasks in dermatology AI. MONET+CBM approach predicts the target (i.e., melanoma or malignancy)304

by combining automatically generated concepts by MONET (i.e., the concept presence score) via a linear model305

(Fig. 5A and Methods). This gives CBM access to many concepts and many samples compared to a manual labeling306

approach. The following comparison makes use of 4,960 clinical images sourced from the Fitzpatrick17k and DDI307

datasets. For melanoma prediction, we further filter images to ensure that data mirrors a well-defined clinical task,308

resulting in 775 images (Methods). For each setting, we repeated evaluations with 20 different train-test splits.309

We observe that access to a large number of concepts and samples offers performance advantages. Fig. 5B-E310

compares the performance of MONET+CBM to that of using manual concept annotations. For a fair comparison, we311

use both methods on the same set of concepts, specifically the 48 concepts in SkinCon. We chose SkinCon concepts312

because they already have manual annotations provided by experts. For MONET+CBM, we use all training samples313

and concepts because it can automatically generate concepts without expert annotation. As we increase the number314

of manually labeled samples used or the number of concepts used, the performance of the CBM created from manual315

labeling improves. However, even when all manually labeled concepts and training samples are used, the manual316

approach is not able to match the performance of MONET+CBM, which has access to more samples due to the317

ability to produce automatic concept labels. As concepts in SkinCon are not annotated for all images, the manual318

label approach is limited to 1,316 malignancy and 294 melanoma images that have manual concept labels; in contrast,319

MONET makes use of all 3,968 malignancy and 620 melanoma images in our training set.320

We compare the performance MONET+CBM to the other baselines, such as supervised models and CLIP-based321

CBM, for the same prediction targets (as described in Methods) (Fig. 5F and G). Dermatologists selected 11 target-322

relevant curated concepts for the bottleneck layer to compare MONET+CBM and CLIP+CBM, which can both323

flexibly label concepts. Compared to using all 48 SkinCon concepts, the mean AUROC across runs using the 11 curated324

concepts decreased from 0.854 to 0.805 for malignancy prediction and decreased from 0.896 to 0.892 for melanoma325

prediction. Still, for both predicting malignancy and melanoma, MONET+CBM outperforms all other baseline326

methods in terms of the mean AUROC (for malignancy, 0.805 with a standard deviation of 0.014; for melanoma,327

0.892 with a standard deviation of 0.019). Out of 20 runs with different random splits of the train and test data,328

MONET+CBM outperformed all other methods in 15 runs for malignancy prediction and 18 for melanoma prediction,329

with the linear probing method outperforming in the remaining runs. We also conduct one-sided paired t-tests,330

comparing the AUROC values of MONET+CBM to those of other methods, where the alternative hypothesis is that331

MONET+CBM’s AUROC is higher than the other method. In all cases, the resulting p-values are less than 0.001.332

Thus, MONET’s ability to automatically generate concepts enables the creation of models that are both interpretable333

and high-performing.334

While the concepts used for the concept bottleneck model were selected by dermatologists based on factors that can335

help predict melanoma, we wanted to check that the way these concepts were used by this model align with established336

clinical rules for the same task. Fig. 5H and I show the weights of the trained linear classifier corresponding to the337

concepts used in the bottleneck layer. For the Melanoma target, the results are consistent with the ABCDEs of338

melanoma [46], which define easily recognizable features—namely, asymmetry, border irregularity, color variation,339

diameter, and evolution—that differentiate malignant melanomas from benign melanocytic nevi. From the concept340

weights obtained, all concepts that coincide with the ABCDEs get a positive weight as expected, indicating a positive341

correlation with the melanoma prediction target. The concept “blue” also has a positive weight referring to the342

dermoscopy concept of blue-white veils observed in melanomas. The concepts “white” and “tiny” get an almost zero343

weight, while the concept “regular” gets a negative weight, consistent with prior knowledge shared by dermatologists,344
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that regular borders and color indicate a benign lesion. For the malignancy target, no well-defined guidelines exist for345

deriving concepts; thus, the same concept list as the Melanoma target is used. The results are similar, with a majority346

of the concepts retaining their directionality, except for increased sparsity in concept weights.347
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Fig. 5 | Concept bottleneck model. (A) Concept bottleneck model built using concepts generated by MONET
(blue). The model first generates concepts using MONET and then predicts disease labels by combining them via
a linear model. Concept bottleneck model built using concepts manually labeled by experts (green). The model
uses manually annotated concept labels to predict disease labels using a linear model. Manual annotations take a
lot longer than concept generation using MONET. (B)-(C) Performance of a malignancy prediction model trained
using manual labels with respect to the number of concepts and the number of expert-labeled samples. (D)-(E)
Performance of a melanoma prediction model trained using manual labels with respect to the number of concepts
and the number of expert-labeled samples. (B)-(E) MONET+CBM is shown as a cross mark because it can utilize
all concepts without expert annotation. The shaded area represents the 95% confidence interval. (F) Performance
comparison of malignancy prediction models. (G) Performance comparison of melanoma prediction models. (F)-(G)
Unlike (B)-(E), MONET+CBM uses task-relevant concepts curated by dermatologists. Each dot represents the AUC
measure for individual runs with a different train-test split. The box represents the interquartile range with its lower
and upper bounds corresponding to the first quartile and third quartile, respectively. p values derived from one-sided
paired t-tests comparing MONET+CBM and other methods are indicated: *<0.05, **<0.01, ***<0.001; n=20 runs
of each method. (H) Coefficient of the linear model in MONET+CBM for malignancy prediction. (I) Coefficient
of the linear model in MONET+CBM for melanoma prediction. (H)-(I) The error bars present the 95% confidence
interval.
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Discussion348

Even with the regulatory approval of AI-supported medical devices, much of the AI pipeline is not transparent - from349

large-scale datasets that may contain biases to so-called “black-box” models that are not easily audited or interpretable350

[27]. One approach to improving transparency and trustworthiness is identifying semantically meaningful, human-351

understandable concepts that are present in datasets or used by models. However, to date, all datasets and methods352

developed using concepts have relied on human labeling and domain experts, which is not tractable for large-scale,353

real-world deployment.354

Here, we demonstrate the ability to develop automated concept labeling in a medical domain that would usually355

require domain expertise, and we showcase how these automated concepts can be used to perform tasks for trustworthy356

AI development at all stages, from developing new models to auditing existing datasets and models. We focus on357

the field of dermatology due to the heterogeneity of the image data, the large number of potential concepts, and the358

ability to validate our methods on existing datasets.359

Prior work using image-text models in medicine focused on self-supervised training of diagnostic models that can360

identify a handful of disease labels, such as in radiology or pathology [29, 47]. However, our challenge is to develop a361

model that can label a vast number of human-understandable concepts across two image modalities within dermatology:362

clinical images and dermoscopic images. To solve this challenge, we collect a large number of dermatology image-text363

pairs from PubMed articles and medical textbooks and train an image-text model, MONET. This dermatology image-364

test model facilitates automatic generation of concepts, and we show how it can be used to improve the transparency365

of dermatology AI models. To our knowledge, we are the first to use a large biomedical image-text model to improve366

the transparency and explainability of medical AI systems.367

For a concept generation task where we had domain expert labels as the ground truth, we find that MONET,368

which requires no domain expert labeling, outperforms the baseline CLIP model and a supervised model trained369

from domain-expert labeled images. These findings are significant since the bottlenecks of data labeling and domain370

expertise time can be overcome with image-text models developed from existing medical corpora.371

After demonstrating the ability to generate concepts on par with supervised models, we showcase MONET’s ability372

to facilitate AI auditing and transparency in the dermatology domain. For example, artifacts such as pen markings,373

stickers, and hair are known to affect dermatology model performance [34, 48]. However, most studies do not assess374

the influence of artifacts on their models because their datasets are not labeled for these anomalies. We demonstrate375

MONET’s ability to automatically identify these artifacts, which can be useful for data and model auditing. As376

an example of how this kind of auditing is useful, we analyzed data from the ISIC 2018 challenge and find that a377

“red” hue appears more often in benign images for the Medical University of Vienna while images from the Hospital378

Cĺınic de Barcelona more often have a “red” hue associated with malignant images. This leads to confounding if a379

model is trained on one site’s dataset and tested on the other, as we see when we implement MA-MONET for model380

auditing. These insights derived from using MA-MONET might not be readily achievable via conventional saliency381

map techniques [43]. For instance, the “red” hue noticed using MA-MONET is not a localized attribute, so a saliency382

map approach would not necessarily highlight this aspect [43]. Utilizing the insights gained through MONET and383

MA-MONET, AI model developers can refine data collection and processing and also improve optimization techniques,384

consequently fostering the development of more reliable and trustworthy medical AI models.385

In medicine, inherently interpretable models are of particular interest since they allow physicians to easily decipher386

the factors influencing a model’s decision. Concept bottleneck models (CBMs) are one such inherently interpretable387

model but have been limited because they require a priori concept labels, which only a handful of medical datasets388

contain. MONET overcomes this issue with automatic concept labeling, allowing the creation of CBMs that were not389

previously possible.390

MONET demonstrates the ability to automatically label numerous concepts across heterogeneous disease states and391

across two modalities (clinical and dermoscopic) in dermatology. A limitation of our experiments is the availability392

of diverse skin tones in dermoscopic images since no public datasets exist with diverse dermoscopic images [49].393

Thus, when assessing MONET on clinical images, we utilize two datasets known to include a diversity of skin tones,394

Fitzpatrick 17k and DDI, and find that MONET performs well with these datasets.395

While MONET covers heterogeneous dermatology data across two modalities, clinical and dermoscopic, future396

iterations can extend to other forms of medical imaging to improve AI transparency for those use cases. MONET397

demonstrates that AI transparency and trustworthiness at scale is feasible in a way that was previously impossible:398

through image-text models tailored to the medical domain of interest.399
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Methods400

Dataset401

Overview402

We trained MONET on 105,550 pairs of image and text collected from PubMed articles and medical textbooks [50, 51].403

We evaluated MONET using images from the International Skin Imaging Collaboration (ISIC) [21–26], Fitzpatrick17k404

[52], and Diverse Dermatology Images (DDI) datasets [30].405

PubMed406

The PMC Open Access Subset is a dataset with millions of scientific articles released by PubMed Central (PMC) [50].407

First, to find dermatology articles in the dataset, we queried papers in PMC using dermatology-related terms (i.e.,408

dermatology, melanoma, skin cancer), 114 disease labels in the Fizpatrick17k dataset [52], and 48 concept labels in409

SkinCon [1]. We downloaded 496,510 articles found via this query. In total, the articles contained 3,172,490 figures.410

Next, we filtered out non-dermatology-related figures (e.g., graphs, illustrations, diagrams, slide images, and X-ray411

images). To this end, we repeated the process of running a clustering algorithm on the images and manually excluding412

groups of non-dermatology ones. Specifically, we carried out the following procedure. The clustering features were413

50 principal components of the embedding of the penultimate layer of the EfficientNetV2-S model pre-trained on414

ImageNet [53]. Using the features, we ran a K-means clustering algorithm with the K (i.e., the number of clusters) of415

20. For fine-grained filtering, we further applied the K-means algorithm with the K of 20 on each cluster, resulting in416

400 clusters in each step. For the K-means algorithm, we used the implementation in scikit-learn Python package (ver.417

1.2.2) [54]. We manually inspected 50 samples of each cluster and filtered out clusters with non-dermatology images.418

After going through this step three times, we determined that the remaining clusters contained mostly dermatology419

images. Post-filtering, 50,265 images remained. Finally, we paired the figure captions to their corresponding images420

based on the provided XML-formatted file. This file stores the article’s structure with components such as abstract,421

sections, figures, and figure legends tagged.422

Textbook423

We first extracted images from 55 medical textbooks, yielding a total of 104,223 images. After undergoing the same424

filtering procedure as we did for PubMed images, 55,285 images remained. The PDF format of the textbooks made425

matching images with associated text difficult, since PDFs lack the structure information provided by XML formats.426

To address this issue, we implemented the following procedure. We used PyMuPDF (ver. 1.21.1), an open-source PDF427

rendering software, to parse the PDF files, extracting text and image objects along with their respective coordinates.428

Then, we assigned text to images appropriately based on the following criteria. First, we included text that starts429

with words indicative of figure legends, such as “Fig” or “Figure”. Next, we excluded text based on font and font size.430

Also, since each textbook maintained a consistent layout for placing figure legends (i.e., legends positioned above or431

below the figure), we incorporated this into our filtering process. Lastly, from the remaining text, we selected the one432

closest to the image. We customized the specific parameters (i.e., figure identifier, font, font size, and caption position433

relative to the image) for each textbook to ensure accurate text-image associations.434

ISIC435

The International Skin Imaging Collaboration (ISIC) archive is a repository of digital skin images, primarily consisting436

of dermoscopic images, sourced from various institutions. ISIC represents the largest and the most commonly used437

dataset for the development of dermatology AI [27]. We downloaded 71,671 images in total from all of the ISIC438

collections, including ISIC Challenge datasets 2016, 2017, 2018, 2019, and 2020 [21–26]. The images have diagnostic439

attributes, including binary malignancy versus benign labels and 27 granular disease labels. For per-institution440

analysis, we grouped images by data sources based on the attribution column in the metadata. We selected the441

two largest cohorts: the Department of Dermatology at the Medical University of Vienna (9,873 samples) and the442

Department of Dermatology at the Hospital Cĺınic de Barcelona (12,302 samples).443

Fitzpatrick17k444

Since the PubMed and textbook datasets contain clinical (i.e., non-dermoscopic) images, for evaluation purposes,445

we required additional clinical images with ground-truth annotations. As the first of these datasets, we chose Fitz-446

patrick17k[52], which contains dermatological images collected from online dermatology atlases accompanied by disease447

annotations and Fitzpatrick skin type labels. To reduce the impact of artifacts in the images, we filtered the dataset448
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to exclude images with visible patient clothing, visible anatomy (e.g., fingers, ears, eyes, etc.), or other elements449

except for lesions and background skin. To filter these images, we first manually annotated 10% of the full dataset450

(1,657 of 16,577 images), marking each image as include or exclude, then trained a machine-learning model to classify451

the remaining 90% of images. In particular, we fine-tuned a DenseNet-121[55] (pre-trained on ImageNet) to predict452

exclusions using our 80% of our hand-labeled data, then chose an operating point to maximize the F1 score (maximum453

= 0.81) on the remaining 20% of the hand-labeled data. This filtering resulted in a total of 4,951 images, incorporating454

both those that passed the classifier’s screening and 462 images from our hand-labeled set. Fitzpatrick17k contains455

near duplicate images with slight differences in angle or cropping; we filter for duplicate images to prevent overlap456

between the train and test sets for the concept bottleneck model experiments. To measure the distance between457

images, we obtained the 50 principal components of the embedding of the penultimate layer of the EfficientNetV2-S458

model (pre-trained on ImageNet) [53]. Then, we calculated cosine similarity between the 50 principal components of459

EfficientNet embedding. To rigorously filter out duplicates, we used a loose threshold (cosine similarity = 0.9) and460

manually identified any false positives. In total, among the 4,951 images in Fitzpatrick17k “clean” set, we identified461

523 sets of duplicate images, with some sets containing up to 6 duplicates. When selecting which images to keep462

among the duplicates, we prioritized keeping those images with SkinCon annotations. After this filtering, we had a463

total of 4,386 images. Lastly, we excluded 62 images that were marked as ‘Do not consider this image’ (i.e., images of464

low quality or considered not appropriate) in the SkinCon dataset. This led to a final dataset containing 4,324 images.465

Additionally, for melanoma prediction tasks, amongst the 113 fine-grained diagnosis labels, we further refined the466

data to include only melanomas and melanoma look-alikes, such that the data mirrors a well-defined clinical task. In467

line with the disease filtering criteria outlined by Degrave et al. [43], we included melanomas, benign melanocytic468

lesions, seborrheic keratoses, and dermatofibromas, resulting in a total of 500 images.469

DDI470

As a second set of clinical images with ground truth labels, we chose the Diverse Dermatology Images (DDI) dataset.471

DDI contains 656 clinical images of diverse skin tones, obtained from Stanford Clinics [30], accompanied by anno-472

tations of Fitzpatrick skin type and histopathologically proven diagnoses. Again, we excluded 20 images that were473

marked as ‘Do not consider this image’ in the SkinCon dataset, resulting in the final dataset of 636 images. For474

melanoma prediction tasks, we narrowed the dataset to include only melanomas and melanoma look-alikes, resulting475

in a total of 275 images, in accordance with the approach taken by Degrave et al. [43]. Among the 78 fine-grained476

diagnosis labels in DDI, the melanoma category comprises the general label “melanoma” as well as the more spe-477

cific labels acral-lentiginous melanoma, melanoma in situ, and nodular melanoma. Melanoma look-alikes consist of478

acral melanotic macule, atypical spindle cell nevus of reed, benign keratosis, blue nevus, dermatofibroma, dysplastic479

nevus, epidermal nevus, hyperpigmentation, keloid, inverted follicular keratosis, melanocytic nevi, nevus lipomatosus480

superficialis, pigmented spindle cell nevus of reed, seborrheic keratosis, irritated seborrheic keratosis, and solar lentigo.481

SkinCon482

SkinCon is at present the most comprehensive dataset on dermatology concepts [1]. The dataset features 48 concepts,483

curated by board-certified dermatologists, that are frequently used to describe skin lesion attributes such as shape,484

size, color, and texture. The dermatologists manually annotated the ground-truth labels for these concepts on 3,230485

images from the Fitzpatrick17k dataset, which originally consisted of 16,577 images, and all 656 images from the DDI486

dataset. Of the 4,324 images in the Fitzpatrick17k dataset we obtained after filtering, 1,009 had SkinCon annotations.487

Among the 500 images in the dataset used for the melanoma prediction task, 95 had annotations.488

MONET489

Formally, let fimage : Ximage → Rd be the MONET image encoder and ftext : Xtext → Rd be the MONET text encoder.490

Given a dataset of paired images I ∈ Ximage and text descriptions T ∈ Xtext, Dpaired = (Ii, Ti)
npaired

i=1 , our goal is491

to train the two encoders such that the distances between pairs of embeddings dist(fimage(Ii), ftext(Tj)) reflect the492

semantic similarity between Ii and Tj for all i, j ≤ npaired.493

Architecture494

We use the vision transformer architecture, ViT-L/14, as our image encoder [56]. This encoder takes an input image495

of size 224 x 224 and outputs a 768-dimensional embedding. For the text encoder, we use a transformer architecture496

with 12 self-attention layers. It takes tokenized text with a maximum limit of 77 tokens as input and outputs a 768-497

dimensional embedding. We use the same architecture as CLIP [20] to take advantage of the weights from pre-trained498

models.499
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Preprocessing500

To meet the input requirements for the encoder architectures, we process image and text inputs as follows. Each input501

image is re-sized and center-cropped to be 224x224 dimensions. It is then normalized using the mean and standard502

deviation used in CLIP [20]. Throughout the training phase, we applied standard data augmentation steps instead,503

such as random resized crops, vertical flips, horizontal flips, and color jittering for brightness, contrast, and saturation.504

For each input text, we apply tokenization using lower-cased byte pair encoding [57]. In cases the text encountered505

during training was longer than the text encoder’s maximum token limit of 77, we split the text into sentences and506

chose half of them from the beginning. We repeated this process until the token count was reduced to fewer than 77.507

Training508

We use cosine similarity as the distance metric. Both encoders are jointly trained to maximize the cosine similarity509

between the image and text embeddings of the correct pairs while minimizing the cosine similarity between the510

embeddings of incorrect pairings. To this end, we use a symmetric cross-entropy loss on cosine similarity scores; after511

calculating the cosine similarities between embeddings, we scale them by a temperature parameter λ and normalized512

them into a probability distribution with the softmax function. The temperature parameter λ was also updated during513

training. We optimize the loss using the Adam optimizer [58] with a cosine learning rate schedule for 10 epochs. This514

implementation detail follows that of CLIP [20].515

For hyper-parameter tuning, we split the dataset into training and validation sets and find hyper-parameters that516

result in the best validation loss; we use validation loss for hyper-parameter tuning because there is no large-scale517

ground truth label for evaluating concept generation performance. We tune the hyper-parameter of batch size (128,518

256, 512, 1024) and learning rate (1e-3, 1e-4, 1e-5, 1e-6). We find that the larger batch size results in lower validation519

loss until a batch size of 512 is reached. We also find that the learning rate of 1e-5 leads to the lowest validation loss.520

Using the tuned hyper-parameters, we train the model on the whole dataset for 10 epochs. We use 6 Nvidia A40521

GPUs with data parallelism. Model training takes 1 hour and 40 minutes.522

Automatic concept generation523

During the training procedure of image and text encoders, an image and a text from the same pair are forced to be524

close to each other in the embedding space, while ones from different pairs are forced to be far apart. After training,525

MONET can measure the proximity between an image and any arbitrary text. We use this capability to automatically526

generate concepts for images.527

To generate a concept c for a given batch of N images I1, I2, · · · , IN , we first compute the image embeddings528

fimage(I1), fimage(I2), · · · , fimage(IN ) using the image encoder fimage. We also compute the concept prompt embedding529

ftext(Tc) and reference prompt embedding ftext(Tr) using the text encoder, where Tc is a concept prompt (e.g., “This530

is a skin image of {}”) and Tr is a reference prompt (e.g., “This is a skin image of”). Supplementary Table 4 shows the531

terms used for each concept for filling templates. Next, we calculate the cosine similarity between image embeddings532

and prompt embeddings. When multiple terms are used for each concept, we calculate the cosine similarity for each533

term and average them. Finally, we obtain concept presence score pi,c that represents the degree to which a concept534

is present in the image as follows:535

pi,c =
exp(simcos(Ii, Tc)/λ)

exp(simcos(Ii, Tc)/λ) + exp(simcos(Ii, Tr))/λ)
(1)

where simcos(·) is the cosine similarity score between image embeddings and text embeddings, simcos(Ii, Tc) =536

fimage(Ii)
T ftext(Tc)

|ftext(Ii)||ftext(Tc)| , and λ is the temperature parameter learned during the training. We normalize by reference prompt537

to remove the effect of templates being used. Further, we use multiple templates to minimalize the effects of templates.538

For clinical images, we used templates: “This is skin image of {}”, “This is dermatology image of {}”, and “This is539

image of {}”. For dermoscopic images, we used the templates “This is dermatoscopy of {}” and “This is dermoscopy540

of {}”. We use concept presence scores averaged across different templates in the end.541

Quantitative evaluation542

We use 1,645 images with SkinCon labels from Fitzpatrick17k and DDI datasets for the task of predicting SkinCon543

concepts. We use 4,324 images from Fitzpatrick17k and 636 images from DDI datasets for the task of predicting disease544

labels, respectively. We compare the performance of MONET’s concept generation to that of a supervised learning545

approach, training a ResNet-50 model [28], and to that of a pre-existing image-text model CLIP [20]. MONET and546

CLIP do not require additional training to perform these tasks; the output from MONET and CLIP models is obtained547
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via the automatic concept generation procedure described above. In contrast, we need to train a supervised learning548

model. We train the model using a standard training recipe as follows. We initialize the model using ImageNet pre-549

trained weights. We then replace the last layer of the model with a new MLP layer that matches the dimension of the550

prediction target; for SkinCon concepts, we train each concept one by one (the dimension is 1), and for disease labels,551

we train disease labels considered all at once (the dimension is 113 for Fitzpatrick17k and 78 for DDI). We finally552

train the model using cross-entropy loss for 20 epochs. We use the Adam optimizer [58] with a ReduceLROnPlateau553

learning rate scheduler implemented in Pytorch (ver. 1.13.0); the initial learning rate is 1e-3, and it is reduced based554

on validation loss with the patience parameter of 2. Also, we use EarlyStopper implemented in PyTorch, which stops555

the training when the validation loss does not improve 5 times. The available data for each task is split into train/test556

sets with a ratio of 4:1, and 20% of the train set is left for calculating validation loss. While for MONET and CLIP,557

we calculate AUROC across all available samples in one go, for the ResNet-50 model, we repeat the evaluation with558

20 different train-test splits and calculate the average AUROC for each target to leverage all samples fully.559

Data auditing560

Concept differential analysis561

MONET’s ability to map images and texts onto the co-embedding space enables us to describe the different char-562

acteristics between two sets of images in natural language. Assume we have two sets of images, denoted as I+ =563

{I1, I2, · · · , IN+} and I− = {I1, I2, · · · , IN−}, and a list of concepts we want to investigate [c1, c2, ..., cNc ]. We564

first obtain the prototype embedding of each image set by computing an average of normalized image embeddings,565

m+ =
∑

Ii∈{I+}
fimage(Ii)

∥fimage(Ii)∥ and m− =
∑

Ii∈{I−}
fimage(Ii)

∥fimage(Ii)∥ . Then, we calculate the displacement vector from m−566

to m+ by subtracting out the two prototype embedding m∆ = m+ − m−. Finally, we get a differential concept567

expression score by computing the dot product between the prototype and normalized embeddings of concept prompt568

C∆,i = mT
∆ · ftext(Ti)

∥ftext(Ti)∥ . This score measures how much more each concept is differentially expressed in S+ than in S−.569

A similar technique for converting a set of images to text has been previously used by Eyuboglu et al. [13].570

Benchmark analysis571

To perform a benchmark study on concept differential analysis, we construct synthetic data using ground-truth concept572

labels in the SkinCon dataset. For each concept in SkinCon, we create a dataset split into two groups: one with 100573

images, many of which are associated with the concept, and another with 100 images, many of which are not associated574

with the concept. We use the noise level parameter to control the degree to which the concept is correlated with the575

grouping; it indicates the probability that images are randomly sampled from the opposite group. We run simulations576

20 times for each combination of parameters with different random seeds.577

Model auditing578

Model auditing with MONET579

We can use MONET to automatically detect semantically meaningful medical concepts that lead to model errors.580

Model auditing with MONET (MA-MONET) starts by sorting images from a test set into groups based on their581

visual similarity. To this end, we run the K-means clustering algorithm implemented in the scikit-learn Python582

package (ver. 1.2.2) [54, 59]. We use 50 principal components of the embedding of the penultimate layer of the583

EfficientNetV2-S model (pre-trained on ImageNet) [53] as clustering features. Next, we calculate the accuracy across584

all samples and also per cluster; for thresholding the probability output from the trained classifier, we choose an585

operating point that maximizes the F1 score. Following this, we identify medical concepts for the “low-performing”586

cluster; we define low-performing clusters as ones with accuracy lower than overall accuracy. Each low-performing587

cluster is compared to a high-performing counterpart containing similar images to understand what differentiates588

them; among the clusters that perform better than the overall accuracy, we choose one whose centroid is closest in589

Euclidean distance to the low-performing cluster. We conduct a concept differential analysis between the high and590

low-performing clusters to pinpoint concepts that are more presented in the low-performing cluster. If two visually591

similar clusters (one high-performing, the other low-performing) differ in terms of a few concepts, these differing592

concept terms can be hypothesized as leading to high error rates. We then filter out concepts with a concept presence593

score below 0.5 in the low-performing. Finally, we obtain a ranked list of medical concepts identified by MONET that594

differentiate the two clusters.595
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Benckmark analysis596

For benchmarking analysis, we use a situation where the ground truth (i.e., the concepts leading to model error) is597

already known. We create a training dataset with spurious correlations from the Fitzpatrick17k and DDI datasets:598

500 malignant images that feature a particular SkinCon concept, while the 500 benign images do not. For the test set,599

we reverse the correlation; 500 sampled benign images have the SkinCon concept, while 500 sampled malignant images600

do not. For concepts of spurious correlation, we use 5 concepts that remain after filtering out concepts with fewer601

than 30 samples in each category required for creating the confounded training and test sets (i.e., malignant–with602

concept, malignant–without concept, benign–with concept, and benign–without concept): “crust”, “hyperpigmenta-603

tion”, “plaque”, “erythema”, and “papule”. For each of the 5 selected concepts, we repeat this analysis 20 times604

with different random seeds varying the training and test sets. Consequently, we conduct analysis for a total of 100605

settings. In addition to the concept we intentionally introduce as a confounder, there are other concepts that also606

inadvertently become confounders. For example, when we had “papule” to be associated with malignancy in the train607

set, “plaque” was associated with benign images in the training set. In such cases, we define all of them as the ground608

truth. On average, there are two concepts across all 100 test settings. We consider the spurious correlations are609

recovered if the top-N concepts identified by MA-MONET include at least one of these ground truth concepts across610

all low-performing clusters.611

Building inherently interpretable neural network612

Concept Bottleneck Model613

Concept Bottleneck Models (CBMs) [15] are inherently interpretable models that identify the importance of each con-614

cept for the classifier’s prediction. They use a bottleneck layer to extract compact and discriminative representations615

of the input data. The bottleneck layer, typically composed of a small number of units, imposes a constraint on616

the amount of information transmittable through the network, forcing it to make predictions by using interpretable617

features that align well with the users’ expectations. This technique can be used to reduce the dimensionality of the618

data and improve the efficiency of the model while preserving its predictive power. CBMs have been successfully619

applied to a wide range of tasks, including image and video classification [60, 61], natural language processing [62],620

and being applied in different medical settings [1, 63, 64]. However, a caveat is that these models need a large set of621

concept annotations to perform well, and collecting these labels is laborious and time intensive.622

MONET lets us automatically generate concepts for images that can be used to scale to a large concept dataset623

with an arbitrary number of concepts. Specifically, MONET helps to create the bottleneck layer, denoted by bc :624

Ximage → RNc , that maps an input image Ii to a vector of dimension Nc, the number of concepts, where each625

dimension corresponds to one of the Nc concepts. An interpretable linear model is then trained on the prediction626

target to get importance scores for each concept corresponding to the trained model weights.627

To create the bottleneck layer, we start with a concept list [c1, c2, ..., cNc ], chosen with guidance from our derma-628

tologist collaborators, containing concepts that are predictive of the target. Ideally, the bottleneck layer is binarized629

using the concept labels. However, we lack access to the concept annotations, and thresholding the similarity score of630

each concept with the input image is non-trivial. Instead, for each concept cj , we curate a set of reference concepts631

[rj1, rj2, ..., rjNj
] where Nj is the number of reference concepts for concept cj . Each reference concept is selected632

such that it is sufficiently far from the concept of interest in the representation space while being closer to the other633

reference concepts. We do this by choosing antonyms of the concept of interest as the reference concepts.634

Once the set of reference concepts is created, MONET calculates the similarity scores of the input image to the635

concept of interest and the corresponding reference concepts. The former is then normalized by taking a softmax636

with the reference concept scores. The resulting normalized score, p′i,cj , is then used in the bottleneck node for that637

concept, as shown in Equation 2.638

p′i,cj =
exp(simcos(Ii, cj)/λ)

exp(simcos(Ii, cj)/λ) +
∑

k exp(simcos(Ii, rjk)/λ)
(2)

where simcos(·) is the cosine similarity score obtained using MONET, and λ is a temperature parameter used to639

magnify the differences in similarity scores. λ is manually tuned to the value that performs the best on the train640

set. Once the bottleneck layer is created, we train a simple linear classifier on the prediction target using stochastic641

gradient descent. Specifically, for a classifier f and a given sample x ∈ RNc , the prediction obtained is wT f(x)+b. We642

apply L1 regularization to favor sparsity in the trained model weights and make the model more interpretable. Once643

the linear classifier is trained, the learned weights w can be analyzed to understand the importance of each concept644

for the prediction target.645
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To demonstrate the efficacy of MONET, we use two different prediction targets: (1) Melanoma vs. Melanoma look-646

alike, and (2) Malignant vs. Benign. We differentiate between these two targets since all melanomas are malignant,647

but not all malignant lesions are melanoma. For this experiment, we use the clean Fitzpatrick 17k[52] and DDI[30]648

datasets. We use 80% of the data for training and reserving the rest for testing. To create the bottleneck layer, we use649

11 concepts that are known to be correlated to the prediction targets; specifically, we use the ABCDEs of melanoma650

[46] as a guideline to compile the list of concepts for the bottleneck layer. Supplementary Table 5 lists these concepts651

along with the reference concepts used for normalization. MONET’s ability to automatically generate concepts for652

images lets us easily add more data or concepts as needed without any manual annotations.653

We compare MONET+CBM to several other baseline methods of obtaining target predictions from input images:654

• Vanilla CLIP+CBM: We use an out-of-the-box CLIP model to create the bottleneck layer and trains a linear655

classifier, similar to MONET+CBM. The only difference is that the vanilla CLIP model is not fine-tuned on656

dermatology images and thus lacks the context of the setting in which we run the experiment; as a result, it657

cannot adequately capture the semantic differences between technical dermatology terms.658

• Supervised: We train a deep learning model using the standard fully supervised approach without incorporating659

concepts. We use ResNet-50 pre-trained on the ImageNet where the last classification head was replaced to match660

the dimension of the prediction target. We train the model end-to-end to classify the input images into the target661

classes. The implementation details are the same as described in the Qualitative evaluation subsection under662

Automatic concept generation. We only change the maximum training epoch from 20 to 50663

• Linear Probing We use the representation of the penultimate layer of ResNet-50 pre-trained on ImageNet664

as the input for a linear model. The difference with supervised is that during the training, the backbone of665

ResNet-50 is frozen.666

• Manual Labeling We use the SkinCon dataset [1], which applies concept annotations covering 48 concepts for667

3230 images from the Fitzpatrick 17k dataset to create the bottleneck layer. These concepts were chosen by two668

board-certified dermatologists considering the clinical descriptor terms used to describe skin lesions.669

Data availability670

PMC Open Access Subset is publicly available from https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/.671

Evaluation datasets are all publicly available and can be accessed from: ISIC (https://challenge.isic-archive.c672

om/data/), Fitzpatrick17k (https://github.com/mattgroh/fitzpatrick17k), and DDI(https://stanfordaimi.a673

zurewebsites.net/datasets/35866158-8196-48d8-87bf-50dca81df965).674

Code availability675

The code used in our analysis is available at https://github.com/suinleelab/MONET. It includes various scripts for676

data collection and preprocessing, training the MONET model, and conducting benchmark studies. Also, it provides677

the MONET model weights.678
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ErythemaA.

BullaB.

XerosisC.

PustuleD.

UlcerE.

Supplementary Fig. 1 | Clinical images with high concept presence scores calculated using MONET.
We show the top 30 images for each concept. (A) Erythema. (B) Bulla. (C) Xerosis. (D) Pustule. (E) Ulcer.
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ErythemaA.

BlueB.

NoduleC.

UlcerD.

WartyE.

Supplementary Fig. 2 | Dermoscopic images with high concept presence scores calculated using
MONET. We show the top 30 images for each concept. (A) Erythema. (B) Blue. (C) Nodule. (D) Ulcer.
(E) Warty.
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Purple penA.

Orange stickerB.

NailC.

HairD.

Dermoscopic borderE.

Supplementary Fig. 3 | Dermoscopic images with artifacts as determined by high concept presence
scores calculated using MONET. We show the top 30 images for each artifact. (A) Purple pen. (B) Orange
sticker. (C) Nail. (D) Hair. (E) Dermoscopic border.
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Supplementary Fig. 4 | Accuracy of concept differential analysis. We perform a benchmark analysis to
assess MONET’s ability to identify presented concepts correctly. To do this, we generate two paired datasets with
known ground truth (i.e., a specific concept is differentially presented) and conduct concept differential analysis on
these datasets, letting us determine how accurately the analysis recognizes the intended concept. This experiment is
conducted on 21 out of 48 concepts from SkinCon that remained after excluding those with fewer than 30 positive
examples. For each concept, we sample a set of 100 images where a concept is highly presented and another set of
100 images where a concept is highly absent from Fitzpatrick17k and DDI datasets, with replacement. Additionally,
we varied the noise parameters (0, 0.1, 0.2, and 0.4), which control how correlated the concept is to each grouping.
For example, noise = 0.1 means that in the “concept present” set, 90% of the images have the concept, while in the
“concept absent” set, only 10% of the images have the concept. For each combination of settings (i.e., 21 intended
concepts and 4 noise levels), we repeat this evaluation 20 times with different random seeds. The error bars represent
the 95% confidence interval.
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A. Blue, Black, Gray, Pigmented, Flat topped True: 76 / 17  Pred: 11 / 82 

B. Pigmented True: 88 / 36  Pred: 31 / 93 

C. Ulcer, Comedo, Crust True: 91 / 39  Pred: 37 / 93 

D. Blue, Black, Pigmented True: 59 / 22  Pred: 14 / 67 

E. Ulcer, Atrophy, Dermoscopic border True: 167 / 51  Pred: 68 / 150 

F. Erythema, Salmon, Sclerosis, Scar, Translucent True: 74 / 31  Pred: 21 / 84 

G. Atrophy, Dermoscopic border True: 166 / 61  Pred: 64 / 163 

H. Atrophy, Dermoscopic border True: 117 / 78  Pred: 30 / 165 

I. Ulcer, Crust, Dermoscopic border, Dome-shaped, Atrophy True: 32 / 28  Pred: 19 / 41 

J. Translucent, Ulcer, Erythema, Telangiectasia, Red True: 89 / 31  Pred: 42 / 78 

K. Dome-shaped, Atrophy, Dermoscopic border, Cyst True: 124 / 65  Pred: 45 / 144 

L. Atrophy, Dermoscopic border, Dome-shaped True: 141 / 96  Pred: 47 / 190 

M. Dermoscopic border True: 49 / 52  Pred: 13 / 88 

N. Crust, Atrophy, Dermoscopic border True: 76 / 38  Pred: 44 / 70 

O. Atrophy, Gray, Black, Flat topped, Dermoscopic border

Maligant Benign   (Upper left: True, Lower right: Pred)

True: 72 / 38  Pred: 30 / 80 

True: # Malignant / # Benign  Pred: # Malignant / # Benign

Supplementary Fig. 5 | Concept-level model auditing. We train a model on the Med U. of Vienna dataset and
test it on the Hosp. Barcelona dataset. Each row displays one of the top 15 clusters, sorted by high error rates. For
each cluster, we show the misclassified images and the corresponding concepts associated with errors. We represent
the true and predicted labels for each image by the color of the upper left and lower right triangles in the small box,
respectively. The numbers at the top right compare the number of malignant and benign samples for the true and
predicted labels. The 10 misclassified images shown for each are selected based on the average concept presence of the
identified concepts.
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A. Pinkish, Erythema, Gray, Red, Atrophy True: 9 / 197  Pred: 111 / 95 

B. Gray, Pigmented, Hyperpigmentation True: 64 / 139  Pred: 128 / 75 

C. Gray, Hyperpigmentation, Pigmented, Hypopigmentation True: 67 / 182  Pred: 145 / 104 

D. Poikiloderma, Gray, Hypopigmentation, Fungating, Atrophy True: 123 / 168  Pred: 205 / 86 

E. Gray, Pigmented, Hyperpigmentation, Atrophy True: 55 / 229  Pred: 167 / 117 

F. Red, Black, Hyperpigmentation, Pigmented True: 12 / 140  Pred: 79 / 73 

G. Black, Hyperpigmentation, Pigmented True: 38 / 134  Pred: 76 / 96 

H. Hyperpigmentation, Pigmented, Red True: 15 / 173  Pred: 92 / 96 

I. Gray, Pigmented, Hyperpigmentation True: 75 / 124  Pred: 128 / 71 

J. Gray, Pigmented, Hyperpigmentation, Atrophy True: 77 / 164  Pred: 152 / 89 

K. Poikiloderma, Gray, Pigmented True: 31 / 89  Pred: 68 / 52 

L. Gray, Black, Pigmented True: 41 / 90  Pred: 76 / 55 

M. Erythema, Red, Atrophy True: 23 / 432  Pred: 196 / 259 

N. Poikiloderma, Gray, Atrophy True: 103 / 171  Pred: 179 / 95 

O. Hyperpigmentation

Maligant Benign   (Upper left: True, Lower right: Pred)

True: 25 / 164  Pred: 65 / 124 

True: # Malignant / # Benign  Pred: # Malignant / # Benign

Supplementary Fig. 6 | Concept-level model auditing. We train a model on the Hosp. Barcelona dataset and
test it on the Med U. of Vienna dataset. Each row displays one of the top 15 clusters, sorted by high error rates.
For each cluster, we show the misclassified images and the corresponding concepts associated with errors. The 10
misclassified images shown for each are selected based on the average concept presence of the identified concepts.
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Concept File name (Dataset)

Erythema 58b4bc079ca94e6e9377a42ca7564b40.jpg (Fitzpatrick17k)
720cf31558966c82c118ab75b50632eb.jpg (Fitzpatrick17k)
5f046cda32a3cc547205662e7be774f9.jpg (Fitzpatrick17k)

Ulcer d8bf377acc45a3beb0c6e81bf7ac1ff5.jpg (Fitzpatrick17k)

Supplementary Table 1 | Images excluded from figures. We exclude 4 images inappropriate for public display
due to the inclusion of sensitive body parts, such as genitals, breasts, and buttocks, from Fig. 2 and Supplementary
Fig. 1. Their file names, as well as the dataset they belong to, are noted.

Method Mean AUROC

Labels in Fitzpatrick17k Labels in DDI

MONET 0.830 (52/59) 0.701 (4/6)
CLIP 0.680 (28/59) 0.595 (0/6)
Fully supervised (ResNet-50) 0.856 (58/59) 0.700 (2/6)

Supplementary Table 2 | Performance of MONET in annotating disease labels as compared to baselines
We use disease labels in the clinical image datasets, Fitzpatrick17k and DDI datasets, as ground truth. We exclude
any with less than 30 positive examples, leaving 59 labels in Fitzpatrick17k and 6 labels in DDI for our analysis.
We use 4,324 samples from Fitzpatrick17k and 636 samples from DDI. The baselines are CLIP, an image-text model
not specifically trained on dermatology images, and the ResNet-50 model trained on ground truth labels in a fully
supervised manner. The numbers in parentheses represent the count of concepts for which the method achieves an
AUROC over 0.7 over the total number of diseases examined.

Fitzpatrick skin type Mean AUROC

FST I–II 0.767 (17/21)
FST III–IV 0.759 (18/21)
FST V–VI 0.768 (16/21)

Supplementary Table 3 | Evaluation of MONET’s concept generation performance per skin tone. We
calculate AUROC metrics per each Fitzpatrick skin type (FST) separately: FST I–II (light skin tone, n = 717), FST
III–IV (intermediate skin tone, n = 607), and FST V–VI (dark skin tone, n = 283). The numbers in parentheses
represent the count of concepts for which the method achieves an AUROC over 0.7 over the total number of concepts
examined.
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Concept Terms

abscess abscess, swollen, pus-filled lump
acuminate acuminate
atrophy atrophic
black black color, black
blue blue, blue color
brown(hyperpigmentation) hyperpigmented, hyperpigmentation, brown(hyperpigmentation)
bulla bullae, blister
burrow scabies, burrow
comedo whitehead, blackhead
crust dried crust, crust
cyst cyst
dome-shaped like dome
erosion erosive, erosion, breakdown of the outer layers, impetigo
erythema redness, erythematous
excoriation excoriation
exophytic/fungating fungating
exudate exudate
fissure dry and cracked skin
flat topped flat topped
friable friable
gray gray
induration edema, oedema
lichenification lichenification, thickened and leathery
macule freckle, macular, lentigo, macule
nodule nodular, cyst, nodule
papule papular
patch hyperpigmented, melasma, vitiligo
pedunculated pedunculated
pigmented pigmented
plaque plaque, dermatitis, psoriasis
poikiloderma sun aging
purple purple
purpura/petechiae purpura
pustule pustule
salmon salmon patch
scale flaky and scaly, scaly, hyperkeratosis
scar scar, keloid scars, hypertrophic scars, contractures scars, acnescars scars
sclerosis scleroderma, crest syndrome
telangiectasia dilated or broken blood vessels
translucent translucent, this bump is translucent
ulcer ulcer, ulcerated
umbilicated umbilicated
vesicle vesicle, fluid-containing
warty/papillomatous warty and papillomatous
wheal urticaria
white(hypopigmentation) white(hypopigmentation), hypopigmentation
xerosis dry skin, abnormally dry skin, xerosis
yellow yellow
purple pen purple pen
nail nail
pinkish pinkish
red red
hair hair
orange sticker orange sticker
dermoscope border dermoscopy

Supplementary Table 4 | Terms used to generate concept prompts
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Concept of Interest Reference Concepts

Asymmetry Symmetry, Regular, Uniform
Irregular Regular, Smooth
Blue Green, Red
White Black, Colored, Pigmented
Brown Pale, White
Black White, Creamy, Colorless, Unpigmented
Erosion Deposition, Buildup
Multiple Colors Single Color, Unicolor
Tiny Large, Big
Regular Irregular

Supplementary Table 5 | Concepts used in the bottleneck layer for the Concept Bottleneck Model
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