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Key Points 

• Largest and most diverse genetic study of plasma fibrinogen identifies 54 regions (18 novel), 
housing 69 conditionally distinct variants (20 novel).  

• Sufficient power achieved to identify signal driven by African population variant.  
• Links to (1) liver enzyme, blood cell and lipid genetic signals, (2) liver regulatory elements, and 

(3) thrombotic and inflammatory disease. 
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Abstract 
Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, 
yet missing heritability and limited inclusion of non-Europeans necessitates further studies with 
improved power and sensitivity. Compared with array-based genotyping, whole genome sequencing 
(WGS) data provides better coverage of the genome and better representation of non-European 
variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-
analyzed WGS data from the NHLBI’s Trans-Omics for Precision Medicine (TOPMed) program 
(n=32,572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic 
Epidemiology (CHARGE) Consortium (n=131,340) imputed to the TOPMed or Haplotype Reference 
Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of 
fibrinogen. Of these, four are driven by common variants of small effect with reported MAF at least 10% 
higher in African populations. Three (SERPINA1, ZFP36L2, and TLR10) signals contain predicted 
deleterious missense variants. Two loci, SOCS3 and HPN, each harbor two conditionally distinct, non-
coding variants. The gene region encoding the protein chain subunits (FGG;FGB;FGA), contains 7 distinct 
signals, including one novel signal driven by rs28577061, a variant common (MAF=0.180) in African 
reference panels but extremely rare (MAF=0.008) in Europeans. Through phenome-wide association 
studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk 
scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our 
findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer 
new insights for putative mechanisms of fibrinogen regulation.  
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Introduction 
Fibrinogen is a critical coagulation factor and acute phase reactive protein. Under normal conditions, 
fibrinogen is abundant in circulation, yet during the acute phase inflammatory response, interleukin-(IL)-
6 and IL-1 mediate transcriptional cascades which increase circulating fibrinogen levels up to 3-fold 
above baseline1,2. Fibrinogen measures are a clinical predictor of thrombotic diseases, including 
coronary heart disease, myocardial infarction, venous thromboembolism, and ischemic stroke3,4. While 
animal models have shown a causative relationship between fibrinogen and thrombosis5,6, this has been 
difficult to confirm using Mendelian Randomization7–9.  

Circulating fibrinogen levels are estimated to be 30-50% heritable10,11, and heterogeneous across diverse 
populations12–14. Individuals identifying as African American have higher reported baseline levels of 
fibrinogen12–14, with one study suggesting higher fibrinogen heritability in African ancestral populations 
(44%) compared with European and other populations (28%)15. While genome-wide and exome-wide 
sequencing studies have identified several loci associated with fibrinogen measures, these variants 
explain a maximum of 3.7% of variance in European populations7,16,17. Little is known regarding genetic 
regulation of fibrinogen across diverse populations. 

Unlike genotyping arrays, which often have better coverage of variants common in European 
populations, whole genome sequencing (WGS) allows non-targeted genomic interrogation across all 
populations18. Deeper coverage provided by WGS increases confidence in minor allele calls, improving 
power to detect associations with rare and low frequency variants, and to distinguish multiple signals in 
the same region19,20. Furthermore, deep large-scale WGS-based reference panels improve imputation 
quality, increasing power derived from genotyped samples in meta-analysis19,20. Incorporating more 
sensitive genomic approaches, such as whole genome sequencing (WGS), in genetic analyses of 
fibrinogen may reveal additional genetic associations across a range of allele frequencies and effect sizes 
in diverse populations. 

In this study, we performed genome-wide analyses integrating WGS data from NHLBI’s Trans-Omics for 
Precision Medicine (TOPMed) program21 and TOPMed-imputed genotyping data from the Cohorts for 
Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium22 to identify new genetic 
variants associated with circulating fibrinogen. To determine putative regulatory mechanisms and 
prioritize potentially causal genes, we performed in silico annotation, colocalization analyses, a 
transcriptome-wide association study (TWAS), and TWAS fine-mapping. Additionally, we tested the 
hypothesis that polygenic risk scores (PRS) for fibrinogen are also associated with coagulation and 
inflammation-related phenotypes in European-ancestry and African-American participants from the VA 
Million Veteran Program (MVP)23.  

 
Results 
Baseline Characteristics  
WGS and fibrinogen measures were available for 32,572 individuals across 13 TOPMed studies. Imputed 
genetic data and fibrinogen measures were available for 131,340 individuals and 39 additional studies 
(individuals without WGS from TOPMed studies, and CHARGE studies imputed to either the TOPMed or 
HRC reference panels). A total of 163,912 individuals were included in the multi-population meta-
analysis (Table 1). The mean fibrinogen value within TOPMed studies was 3.25 g/L (SD=0.96). Mean 
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values were slightly higher in African ancestry individuals compared to European ancestry individuals, 
but the confidence intervals overlapped [AFR=3.84 (0.98); EUR=3.26 (0.91)]. 

 
Single Variant Analysis & Aggregate Tests 
Multi-population, single-variant meta-analysis identified 54 genetic loci associated with fibrinogen levels 
(Figure 2, Supplemental Table 1). Among these, 18 loci have not been identified in prior genetic studies 
of fibrinogen (Table 2). The TM6SF2 locus has been identified in a multi-phenotype analysis leveraging 
fibrinogen and coronary artery disease variants24, but not in a GWAS of fibrinogen alone. Approximate 
conditional analysis in GCTA revealed 6 loci harboring conditionally distinct lead variants (Table 3; 
Supplemental Table 2). At 4 loci with previously reported fibrinogen associations - FGG, PDLIM4, 
RPL22L1, and RAB37 - we detected 7, 5, 3, and 2 distinct lead variants, respectively, exceeding the 
maximum at any prior report. The LD between conditionally distinct lead variants and previously 
published top SNPs is presented in Supplemental Table 3. Among newly associated loci, SOCS3 and HPN 
were found to harbor distinct lead variants. 

Among the 69 conditionally distinct lead variants associated with fibrinogen, 5 variants (rs10936662, 
rs28577061, rs11077357, rs7507218, rs1672981) have a minor allele at least 10% more frequent in 
African ancestral populations compared to European (Supplemental Table 2).  At the FGG locus, GCTA 
identified a conditionally distinct lead variant (rs28577061), which has not been associated with 
fibrinogen in prior studies and is common in African (MAF= 0.1801) but extremely rare (MAF= 0.008 in 
EUR) or absent in other ancestral populations in TOPMed. At 4 loci - RPL22L1, HPN, SOCS3, and SSPB4 - 
the primary lead variants are common in all assessed populations, but increased frequency in African 
ancestry populations. Together, the 69 independent variants discovered explain 4.8% of the phenotypic 
variance for circulating fibrinogen across populations.  
 
Aggregate tests using low-frequency and rare TOPMed WGS variants yielded associations in the 
fibrinogen gene cluster region – FGG was significant when aggregating (1) loss-of-function (LOF) 
variants, and (2) LOF and deleterious missense variants whereas FGA was only significant when 
aggregating LOF variants and FGB with LOF, deletions, and missense variants. No genes were significant 
when aggregating all low-frequency and rare variants in the coding, promoter, and enhancer regions 
(Supplemental Table 4). 

 
Variant annotation 
To characterize each genetic signal associated with fibrinogen, we queried all conditionally distinct 
variants and their LD proxies (r2>0.8 in TOPMed-based European and/or African ancestry reference 
panels)21,25, in multiple publicly available datasets. The majority of signals (defined as the conditionally 
distinct variant and LD-proxies) we identified contain previously reported lead variants for liver-enzyme 
measures, lipid measures, and/or blood-cell traits. Notably, 23 signals contain a previously reported lead 
variant for C-Reactive Protein (CRP).  

Variant effect prediction (VEP)26 shows that 18 signals contain at least one missense variant. 
Additionally, 13 signals contain variants with CADD PHRED scores exceeding 20, indicating variant status 
in the top 1% of predicted deleterious mutations. SERPINA1, ZFP36L2, and TLR10, stand out as newly 
associated loci in this category. We also observed that several signals overlap potential regulatory 
regions in liver. 52 signals (45 loci) contain at least 1 variant mapping to a “consensus” region of open 
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chromatin in liver tissue samples. 42 signals overlap a GeneHancer regulatory element reported active in 
HepG2 hepatocytes. 5 signals harbor previously reported liver chromatin accessibility quantitative trait 
loci (QTL) variants, 6 signals hold GTEx liver expression QTL, and the primary signal at the HPN locus 
contains a GTEx liver splice QTL variant. A summary of these annotations for each signal can be found in 
Supplemental Table 5. Full results of this analysis are in Supplemental Table 6. 

 
Colocalization  
Variant-level colocalization analysis in fastENLOC identified 153 variant-tissue pairs with evidence 
(SCP>0.1) for a shared genetic basis with GTEx expression QTLs for 93 distinct genes in aortic artery, 
tibial artery, coronary artery, liver, and/or whole blood (Supplemental Table 7). Regional analysis in the 
same set of tissues found 46 region-tissue pairs, implicated in regulation of 41 distinct genes, with 
evidence for statistical colocalization with fibrinogen regions (RCP>0.5) (Supplemental Table 8). We 
note that 5 of the 6 fibrinogen signals harboring sentinel GTEx liver eQTL variants statistically colocalize 
with the expression QTL signal in fastENLOC, while the PLEC eQTL signal was at the significance 
threshold (RCP = 0.5).  

 
Transcriptome-wide Association Study 
Gene-tissue pairs across 5 tissues (aortic artery, coronary artery, tibial artery, whole blood, and liver) 
were included in MetaXcan TWAS analyses for fibrinogen. Genetically determined expressions of 64 
gene-tissue pairs were significantly associated with fibrinogen levels after Bonferroni correction and 
filtering for models with at least 2 contributing SNPs (Supplemental Table 9). 15 gene-tissue pairs 
identified by TWAS were further prioritized via fine-mapping in FOCUS (Supplemental Table 10). TNKS 
was the only gene prioritized by both TWAS and fine-mapping in liver-analyses. Notably, this gene was 
further implicated in fibrinogen regulation through variant and region-based colocalization analysis 
using GTEx liver expression data (Supplemental Table 8). In whole blood analyses, TWAS and fine-
mapping prioritized AFT1, C5orf56, FGB, MS4A4E, SLC22A5. Of these, AFT1 was further supported by 
variant-level colocalization analysis (Supplemental Table 7).  

 
Phenomewide Association Study (PheWAS) 
Three fibrinogen PRSs were tested for association with 1,426 ICD-based PheCodes in EUR and 1,061 
PheCodes in AFR participants of the VA MVP (Supplemental Table 11). Each score reached Bonferroni 
significance with multiple thrombotic and inflammatory disease phenotypes (nEUR=13 PheCodes, nAFR=1 
PheCode; Table 4). Top associations included venous thromboembolism and gout.   
To further assess which variants within the PRS may drive individual associations, we queried each 
variant against the significant PheCodes (Supplemental Table 12). As anticipated, for “Circulatory 
System” and “Hematopoietic” PheCodes, most of the signal came from variants in the fibrinogen gene 
cluster, whereas significant variants across the PRS were associated with gout and dermatologic traits. 
Sensitivity analyses with PRS removing variants either in the FGG gene region (associated with gamma 
prime fibrinogen) or in the full fibrinogen gene cluster did not substantially change the odds ratio, but 
did impact the significance (Supplemental Table 13). PheCodes relating to gout (phe_274, phe_274_1) 
and superficial cellulitis and abscess (phe_1089) became more significant, whereas PheCodes relating to 
coagulation defects and hypercoagulable state (phe_286, phe_286_8, phe_286_81) became less 
significant.   
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Discussion 

Here, we used WGS and genotype data from diverse participants to identify 69 conditionally distinct 
genetic variants from 54 loci associated with circulating fibrinogen across populations. Our results 
corroborate previous reports that fibrinogen is highly polygenic and advance the field by identifying new 
variant associations, including rare variants and variants most prevalent in underrepresented 
populations. Based on results of in silico characterization, we suggest some of the new genetic 
regulators we identified may act directly to regulate coagulation factors (such as factor VII, factor XI), 
while some may impact fibrinogen broadly through pathways altering liver metabolism, inflammation, 
and immune function, as reflected in the broad overlap between fibrinogen associated signals and prior 
analyses for liver-related traits (such as lipids and CRP) and blood-cell and immune-cell counts.  

 
Population-differentiated variants among new associations  
We identified several novel genetic associations driven by variants with higher allele frequencies in non-
European populations, validating that our approach improved detection of putative genetic regulators 
which may be most common in underrepresented populations. To our knowledge, we identified the first 
common variant-fibrinogen association driven almost entirely by African ancestry participants at an 
intergenic region near FGG. Previous African ancestry driven variants were rare in African and not 
present in European populations17. Additionally, expanded representation of both African and European 
populations allowed us to detect 4 new signals of small effect, led by common variants substantially 
(>10%) more frequent in those with African ancestry. Detection of population-differentiated 
associations indicates that for variants with higher predicted effects, such as those within the fibrinogen 
gene cluster, expanded sample sizes are now reaching power to detect variant associations driven by 
underrepresented populations, although improved representation is still needed. We further identified 
4 common European-driven signals that are rare or uncommon in African ancestry populations, 
suggesting that genomic signals for circulating fibrinogen are not saturated in any ancestral 
population27,28, as reflected by the relatively modest variance explained (4.8%) versus estimates of total 
fibrinogen heritability (28-44%)10,11,15. With improved representation of all ancestries, genomic studies 
will likely identify additional common and rare genetic signals across all populations.  

 
Newly identified potential coagulation pathway interactors 
Three novel regions (SERPINA1, ZFP36L2, and TLR10) harbor deleterious missense variants in genes with 
plausible connections to coagulation and/or inflammation. In the SERPINA1 gene, we identified a rare 
missense variant (rs17580) with a high CADD PHRED score (32). SERPINA1 encodes alpha-1-antitrypsin, 
which protects other proteins and tissues from serine protease degradation via direct binding 
inhibition29. Like fibrinogen, alpha-1-antitrypsin is synthesized in hepatocytes in response to IL-6 and IL-1 
inflammatory pathways30. Severe alpha-1-antitrypsin deficiency is associated with liver dysfunction and 
fibrotic lung disease related to a lack of inhibition of neutrophil elastase31. The association of SERPINA1 
with fibrinogen levels may reflect SERPINA1 involvement in inflammatory pathways, or a more direct 
relationship between these proteins. While in vitro assays have suggested alpha-1-antitrypsin can bind 
to plasma fibrinogen and be incorporated into fibrin networks29, little is known about the functional 
implications of these interactions and whether it also influences fibrin(ogen) degradation.  
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ZFP36L2 and TLR10 are broadly linked to inflammatory pathways. Although ZFP36L2 is largely 
uncharacterized, the ZFP36L2 missense variant we observed has previously been associated with blood 
cell traits32–35, and studies in mice show ZFP36L2 regulates blood cell development and adipogenesis36. 
Proteins of the ZFP36 family regulate transcript abundance through binding AU-rich elements to target 
transcripts for decay37. Notably, ZFP36 (tristetraprolin) family proteins are known to modulate transcript 
abundance of the inflammatory cytokine TNF-a38, which induces both the coagulation cascade and 
complement system39,40. TLR10 encodes a toll-like receptor (TLR) protein. While TLR activation generally 
contributes to inflammation, immune responses, and activation of coagulation cascades, little is known 
about TLR10 specifically41. Although TLR10 may exert a protective effect against inflammation42,43, more 
work is needed to elucidate mechanistic links between this protein and coagulation. 

 
Putative fibrinogen regulatory signals 
While the missense variants highlight intriguing new gene targets for future functional studies, most 
signals we identified are driven by common non-coding variants with small effect sizes. Many of these 
non-coding signals overlap HepG2-active regulatory regions, and a subset of signals overlap liver 
chromatin accessibility, expression, and/or splice QTL signals, suggesting these variants may exert subtle 
regulatory effects on circulating fibrinogen levels. Notably, at 2 newly associated loci, HPN and SOCS3, 
we identified 2 conditionally distinct variants, each with distinct functional annotations. 

At the HPN locus, the primary signal, which maps to an intronic region of HPN, contains a liver splice QTL 
for HPN. HPN encodes hepsin, a type II transmembrane serine protease with “enhanced” expression in 
the liver (HPA), believed to function in macromolecular metabolism44. Interestingly, studies in zebrafish 
and mammalian cell lines suggest hepsin activates coagulation factor VII45,46. Although mouse studies 
have not conclusively demonstrated hepsin’s involvement in coagulation, these studies have established 
hepsin’s involvement in regulating liver metabolism via hepatocyte growth factor (HGF) and Met 
signaling pathways44,47–49. The secondary signal at this locus maps to an intergenic region and contains a 
liver expression QTL for a nearby gene, TMEM147. TMEM147, which was also prioritized in liver, whole 
blood, and aortic artery TWAS analyses, encodes a widely-expressed endoplasmic reticulum 
transmembrane protein implicated in various metabolic processes, including calcium transport50. 
Although it is unclear whether the two signals in this region influence fibrinogen through altered splicing 
and expression patterns of HPN and TMEM147 in the liver, these signals provide a compelling starting 
point for future functional studies.  

Similarly, among the two independent, common-variant signals in the SOCS3; PGS1 locus on 
chromosome 17, the secondary signal houses a previously identified sentinel variant for altered 
chromatin accessibility in liver tissue. This variant is of particular interest given its proximity to SOCS3, a 
“Suppressor of Cytokine Signaling” known to act upstream of IL-6 in the acute-phase response pathway 
that induces fibrinogen2. It is possible that the secondary signal at this locus is capturing genetic 
variation which modulates the accessibility of the SOCS3 gene, and potentially other nearby genes, in 
liver or other tissues, leading to downstream impacts on fibrinogen levels. SOCS3 methylation was 
recently associated with circulating fibrinogen levels in an epigenomewide association study in the 
CHARGE consortium51 with the associated probe within 11kb of our best SOCS3 GWAS SNP, reinforcing 
the idea that chromatin accessibility may be at play.  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.07.23291095doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.07.23291095


PheWAS  
Results of the PheWAS in MVP yielded expected associations with venous thromboembolism and 
several hematopoietic traits. However, the direction of the association within bleeding and thrombosis 
phenotypes was often opposite to the direction we expected given total fibrinogen’s procoagulant 
function (i.e., typically increased genetically-predicted fibrinogen is associated with decreased risk of 
bleeding and increased risk of thrombosis). Although surprising, this finding is in line with a previous 
Mendelian randomization study, which observed an inverse association between total fibrinogen levels 
with venous thromboembolism risk9. We tested the hypothesis that this inverse association in our 
PheWAS was driven by the alternatively-spliced gamma prime fibrinogen isoform, which has established 
anticoagulant properties52, but removing the FGG locus SNPs from the tested PRS did not alter the 
direction of effect we observed.  

Another unexpected finding from the PheWAS was a positive association between genetically-predicted 
total fibrinogen and gout. Interestingly, this finding is in line with emerging literature, which has shown 
that patients with active gout have increased thrombin generation markers53,54. Given the extensive 
overlap between our signals and previously reported GWAS signals for phenotypes reflecting liver health 
and inflammation - such as liver enzyme, lipid measures, and CRP measure - we suggest that this 
association may be capturing variant impacts on broader liver metabolic pathways.  

 
Conclusion 
In conclusion, we identified 18 novel loci, collectively harboring 20 distinct variants, associated with 
fibrinogen measure. We report the first African-variant driven fibrinogen association, and several 
additional associated variants with population-differentiated genetic architecture. Furthermore, we 
demonstrate overlap between these signals and liver regulatory elements, as well as GWAS phenotypes 
reflecting altered liver metabolism and inflammation. Future studies investigating co-regulation and 
epistatic effects will likely provide new insight on the shared genetic architecture, and biological 
interplay, of hemostasis and inflammation. 

 
Methods 
Design and Study Population 
To investigate the genetic architecture of circulating fibrinogen, we performed a multi-population 
genome wide association study, followed by transcriptome-wide (TWAS) and phenome-wide association 
(PheWAS) studies. An overview of the study design is in Figure 1. These analyses were undertaken 
within the setting of NHLBI’s TOPMed Program and the CHARGE Consortium Hemostasis Working 
Group. In total, 161,643 participants contributed to primary genomic analyses, including 11,283 African-
ancestry (AFR), 741 Asian-ancestry (ASN), 149,619 European-ancestry (EUR), and 2,061 Hispanic (HIS) 
participants. Assignment to 1 of these 4 groups was determined by each study internally. 

Studies often used some combination of self-reported race or ethnicity data (which in many cases was 
used for stratification at the genotyping stage, making future pooled analysis challenging) and 
comparison of ancestry PCs to commonly used reference panels such as 1000G (often with exclusion of 
any extreme outliers). We acknowledge that this is not concordant with the most up to date standards 
for defining ancestry clusters based on similarity to reference panels55 but do not have access to 
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individual level data for most participants and are thus reliant on these study assignments. Details of the 
40 participating studies are in Table 1 and the Supplemental Data. 

 
Phenotyping and Harmonization 
Fibrinogen was measured in g/L. Most studies measured clottable fibrinogen using the Clauss method56, 
while the remaining 7 studies used a variety of approaches to measure fibrinogen antigen, including 
nephlometry and ELISA. Study-specific phenotyping methods can be found in Table 1 and the 
Supplemental Data. Measures of plasma fibrinogen for TOPMed studies were harmonized to ensure 
they were in the same units (g/L) and did not have unexpected distributions or an excess of outliers. 
Data were then uploaded to Analysis Commons57 for centralized genetic analysis. 

 
Whole-genome Sequencing of TOPMed Participants 
TOPMed WGS methods were described previously21. Briefly, WGS was conducted at six sequencing 
centers (mean depth >30X, Illumina HiSeq X Ten instruments). Joint variant discovery and genotype 
calling were conducted by the TOPMed Informatics Research Center (IRC) across all TOPMed studies 
using the GotCloud pipeline, resulting in a single genotype call set encompassing all of TOPMed 
(TOPMed Freeze 6). Variant quality control was also performed centrally by the TOPMed IRC. Sample 
quality control was performed by the TOPMed Data Coordinating Center (DCC). Further details are in the 
Supplemental Data.  

 
Genotype Imputation of non-TOPMed Studies 
Genotype array data for CHARGE studies and for participants without WGS from TOPMed studies were 
imputed using standard methods to the densest available imputation panel. A total of 35 studies 
imputed to the TOPMed Freeze 5b reference panel21 and 4 to the Haplotype Reference Consortium 
(HRC) reference panel58.  

 
Genome-wide Association Analyses and Meta-analyses 
TOPMed WGS genetic analyses were conducted using inverse normalized and rescaled residuals 
adjusting for age, sex, population group*study, TOPMed sequencing phase, study-specific parameters, 
11 ancestry-informative principal components, and a kinship matrix. Single variant and aggregate gene-
based tests were implemented using the SMMAT function of GENESIS on the Analysis Commons cloud 
computing platform57,59. Aggregate tests included only variants with minor allele frequency (MAF) <5% 
and minor allele count (MAC) ≥1 and used 3 strategies for variant selection: (1) loss of function (LOF), (2) 
LOF and deleterious missense (LDM), and (3) coding, enhancer, and promoter variants. 

Studies without sequencing data undertook single variant analyses within each population group using 
their software of preference and the same model described for TOPMed genetic analyses. Summary 
statistics were provided for central meta-analysis. Quality control of the study-specific single variant 
GWAS summary statistics was undertaken using the EasyQC package60 for R. Variants were removed 
based on the following filtering criteria:  estimated minor allele count (minor allele count x imputation 
quality; eMAC) < 6, absolute effect size (beta) > 5, standard error > 10, sample size < 30, or imputation 
quality < 0.30. Meta-analysis was completed using GWAMA61 with genomic control applied to each 
study individually but not to the meta-analysis results. Meta-analysis was completed (i) within each 
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population group for just the studies with imputed data, (ii) just the TOPMed WGS studies, and then (iii) 
combined in a multi-population mega-analysis that included results from analysis of WGS and imputed 
data. Statistical significance was set at p<5.0E-0962. 

 
Conditional Analysis and Variant Explained 
For all genome-wide significant regions from the multi-population mega-analysis, conditional analyses 
were undertaken using cojo-slct63 within GCTA64 using all TOPMed WGS samples that contributed to the 
GWAS as the linkage disequilibrium (LD) reference panel. Percent variance explained was estimated with 
summary level data reported by GCTA64 for the 69 conditionally independent variants from the mega-
analysis, using the approximation derived by Shim et al65. See Supplemental Methods for more details.  
 

Functional Annotation of Fibrinogen-Associated Variants 
Variant Effect Prediction 
The Ensembl Variant Effect Predictor (VEP) (https://useast.ensembl.org/Tools/VEP)26 was used to 
determine nearest gene and top predicted consequence for each of the 69 conditionally independent 
variants and their linkage-disequilibrium (LD) proxies (as determined by r2>0.8 in TOP-LD European 
and/or African ancestry reference panels21,25). VEP was also used to annotate CADD PHRED66,67 and 
LoFtool68-predicted impact scores. For coding variants, SIFT69, and PolyPhen70,71 scores were obtained 
through VEP. InterPro was used to determine amino acid substitution72.  

 
Overlap of Fibrinogen Signals and GWAS Catalog Associations 
The NHGRI-EBI GWAS catalog v1.0.2, containing lead, significant (5.0E-08) variants from each uploaded 
GWAS study was downloaded October 29, 2022 (https://www.ebi.ac.uk/gwas/downloads). The same set 
of variants used for VEP annotation were queried in the GWAS catalog by rsID. Mapped traits 
corresponding to related quantitative measures were manually cataloged to broad categories (ie “liver 
enzymes”, “blood cell traits”, “lipids” etc). 

 
Colocalization 
We performed colocalization to support gene-trait associations using fastENLOC73,74. We took the pre-
computed GTEx multiple-tissue eQTL annotations and fibrinogen GWAS  PIP input to perform fastENLOC 
for each of the most relevant tissues: liver and whole blood. We considered RCP > 0.5 as strong evidence 
of colocalization. 

 
Transcription-wide Association Studies 
A transcriptome-wide association study (TWAS) was performed using S-PrediXcan75 to identify 
associations between cis-genetic components of gene expression and plasma levels of fibrinogen in 
mechanistically related tissues, namely artery (aorta, coronary, or tibial), liver, and whole blood76. We 
used the prebuilt prediction models that were based on GTEx v8 multivariate adaptive shrinkage in R to 
estimate variants’ weight on gene expression levels in chosen tissues75–77. Since the reference models 
were created based on the European-ancestry population, we limited the analysis to GWAS results of 
European-ancestry individuals only. S-PrediXcan results of the tissues were evaluated using S-
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MultiXcan78. We determined significant TWAS signals using Bonferroni correction for the total number 
of genes across all models. 

 
Fine-mapping 

To assist in the identification of the causal gene under the GWAS signal, we performed TWAS fine-
mapping using FOCUS.  FOCUS avoids false TWAS signals caused by co-regulation and pleiotropic effects 
of variants at GWAS risk loci79by modeling marginal TWAS z-scores of all genes in the same region 
considering variant LD correlations and tagged pleiotropic effects of variants on the trait. Given 
generated z-scores, posterior inclusion probability (PIP) for a gene to be causal is derived and then used 
to form a credible set of putative causal genes. In this analysis, we used GTEx v8 MASH-R models as the 
source of eQTL weights and the European-based PROCARDIS database as the reference for LD 
correlations. PIP ≥ 0.95 was used as the threshold to determine putative causal genes in FOCUS results. 

 
MVP PheWAS/Polygenic Risk Scores (PRS) analysis  
Polygenic risk scores (PRS) were derived using the independent variants identified by the GCTA analysis 
described above. Three scores were derived, (i) weighting by the variant beta from the multi-population 
mega-analysis, (ii) weighting by the variant beta from the European (EUR)-only meta-analysis, and (iii) 
weighting by the variant beta from the African (AFR) -only meta-analysis. PRS were then standardized to 
standard deviation units. A phenome-wide association study (PheWAS) was performed for each of the 3 
PRS within EUR and AFR participants of the VA Million Veteran Program23 (MVP), for ICD-based 
PheCodes80 with at least 500 cases. Logistic regression models were adjusted for age, sex, and the first 5 
population-specific principal components and significance determined based on Bonferroni correction 
for the number of independent PheCodes. EUR had 1,426 PheCodes analyzed with an estimated 965 
independent (pBonferroni = 0.05/965=5.18E-05) and AFR had 1,061 PheCodes with an estimated 690 
independent (pBonferroni = 0.05/690=7.25E-05) (see Supplemental Data). Additional sensitivity analyses 
were completed by creating the PRS removing variants in the FGG gene region, or the fibrinogen gene 
cluster region. 
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Figures 

 
Figure 1 – Study Design 
 
 

 
Figure 2 – Mega-Analysis Single Variant Results.  
Orange peaks are novel associated regions and are labelled with the names of genes in the region. Red line indicates genome-
wide significance (p<5E-09) and blue line indicates suggestive association (p<1E-07). 
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Figure 3 – Comparison of Mega-Analysis Single Variant Results to Previous Publications 
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