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Abstract

Objective: To develop and evaluate a multimodal machine learning-based objective pain 

assessment algorithm on data collected from post-operative patients.

Methods: The proposed method addresses the major challenges that come with using data from 

such patients like the imbalanced distribution of pain classes and the scarcity of ground-truth 

labels. Specifically, we extracted automatic features using a convolutional autoencoder (AE) 

along with data augmentation techniques like weak supervision and minority oversampling to 

improve our models' predictive performance. This method was used in conjunction with four 

different machine learning classifiers: Adaptive Boosting (AdaBoost), Random Forest (RF), 

Support Vector Machine (SVM), and K-Nearest Neighbors (KNN) to perform binary classification 

on three increasing levels of pain when compared to no pain.

Results: Our models are able to recognize different pain levels with an average balanced accuracy 

of over 80%.

Conclusion: This is the first multimodal pain recognition work done on postoperative patients 

and our proposed method provides valuable insights for automatic acute pain recognition in such 

patients.

Keywords: Pain intensity recognition, multimodal information fusion, signal processing, weak 

supervision, healthcare
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Introduction

Pain is defined by the International Association for the Study of Pain (IASP) as “an unpleasant 

sensory and emotional experience associated with actual or potential tissue damage or described 

in terms of such damage” [1]. Pain is a unique phenomenon that individuals experience and 

perceive independently. Younger et al. [2] stated that pain is a subjective experience for which 

there is no current objective measure. Pain may be classified as either acute or chronic; Kent et 

al. [3] described acute pain as encompassing the immediate, time-limited bodily response to a 

noxious stimulus that triggers actions to avoid or mitigate ongoing injury. Chronic pain was first 

defined loosely by Bonica [4] as pain that extends beyond an expected timeframe; currently, 

chronic pain is defined as “persistent or recurrent pain lasting longer than three months” [5]. The 

focus of this article is on acute pain.

Acute pain is a common experience in the post-anesthesia care unit (PACU) in the immediate 

period following surgery. According to Chou et al. [6], pain occurs in 80% of patients following 

surgery, and 75% of patients with pain report their pain as either moderate, severe, or extreme. 

Current guidelines for the assessment of pain in the PACU recommend using a Numerical Rating 

Scale (NRS) or Verbal Rating Scale (VRS) for patients who are sufficiently awake and coherent to 

reliably report pain scores [7]. However, Herr et al. [8] identified several patient populations who 

are at risk for being incapable of providing self-report scores of pain; specifically, these 

populations include the pediatric population who have yet to develop adequate cognition, 

elderly patients with dementia, individuals with intellectual disabilities, and those who are 

unconscious, critically ill, or terminally ill. In these patient populations, Small et al. [7] recommend 
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the use of behavioral pain scales, such as the Pain Assessment in Advanced Dementia (PAINAD), 

Critical Care Pain Observation Tool (CPOT), or Behavioral Pain Scale (BPS). Despite the pain 

assessment measures of self-report and behavioral pain scales, each of these methods may be 

prone to biases. For example, Craig et al. [9] discussed how self-report may be a means to obtain 

a particular goal that can be influenced by the individual reporting pain. Additionally, 

Hadjistavropoulos et al. [10] provided the Communications Model of Pain which provided a basis 

for how expressive behaviors are decoded by observers of individuals in pain, which are 

influenced by the message clarity transmitted by the individual in pain as well as the unique 

biases (e.g., knowledge level, assessment skills, and predisposing beliefs) of the individual 

assessing pain. The difficult nature of interpreting pain scores has resulted in disparities in pain 

management in minority populations, with research by Staton et al. [11] showing that the black 

race is a significant predictor of the underestimation of pain by physicians.

Multimodal pain assessment represents one potential method of circumventing the limitations 

of traditional self-report and behavioral pain assessment tools and an opportunity for enhancing 

pain assessment in vulnerable populations. Instead of having to rely on only one dimension of 

pain assessment, such as behaviors through the use of the CPOT or BPS scales, future multimodal 

pain assessment will incorporate physiological indicators, such as electrodermal activity (EDA), 

electrocardiogram (ECG), electroencephalogram (EEG) and electromyogram (EMG) as well as 

behaviors (e.g. facial expression), and perhaps other as-yet undiscovered parameters to capture 

pain assessment in patient populations that might not be best represented by current 

assessment strategies. For example, a study by Gélinas et al. [12] found that revisions to the CPOT 

were necessary because some brain-injured patients may not exhibit certain behaviors that are 
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contained in the CPOT. Similarly, for individuals diagnosed with dementia, Achterberg et al. [13] 

stated that there is a preponderance of observer-based pain assessment tools, however, these 

tools retain significant differences between them, as well as concerns for lack of reliability, 

validity, and sensitivity of change. Enhancing pain assessment through the combination of 

traditional pain assessment methods with novel multimodal approaches may serve to eventually 

enhance pain assessment in a greater majority of vulnerable patient populations.

With the advent of connected Internet-of-Things (IoT) devices and wearable sensor technology, 

automated data collection may achieve continuous pain intensity measurement. A significant 

amount of research has been conducted in recent years which has sought to develop methods of 

continuous, automatic, and multimodal pain assessment. For example, prior work conducted by 

Walter et al. [14] and Werner et al. [15] used skin conductance level (SCL), ECG, 

electroencephalogram (EEG), and EMG to monitor pain in response to thermal pain. Other works, 

such as Hammal et al. [16] and Werner et al. [17] have incorporated facial expression monitoring 

as an indicator of pain. While these studies were immensely beneficial to the scientific 

community in terms of their contributions to a better understanding of techniques to obtain 

continuous pain assessment, the setting of these experiments was in highly controlled laboratory 

environments from healthy participants. Collecting data in real-world situations as opposed to a 

laboratory setting would allow the researchers to assess a pain assessment technique’s potential 

in relation to actual pain brought about through a surgical procedure instead of induced pain.

To the best of our knowledge, this is the first work proposing a multimodal pain assessment 

framework for post-operative patients. It should be noted that a pain assessment study on real 
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patients is associated with several challenges (e.g., imbalanced label distribution, missing data, 

motion artifacts, etc.) since several parameters such as the intensity, distribution, frequency, and 

time of the pain as well as the environment cannot be controlled by researchers. Our main 

contributions are four-fold:

● We conducted a clinical study for multimodal signal acquisition from an acute pain unit 

of the University of California, Irvine Medical Center (UCIMC)

● We propose a multimodal pain assessment framework using our database (iHurt Pain 

DB) collected from postoperative patients while obtaining a higher accuracy compared to 

existing works on healthy subjects [17].

● We use both handcrafted (HC) and automatically generated features outputted from 

deep learning networks to build our models.

● We provide a novel method to mitigate the presence of sparse and imbalanced labels 

(due to the real clinical setting of the study) using weak supervision and minority 

oversampling.

The subsequent sections are organized as follows. Section three talks about related research on 

this topic. Section four gives a brief overview of our study design. Sections five, six, and seven 

explain our multimodal framework, the experiments we performed, and the discussion of their 

results. Finally, Section Eight concludes the article and outlines future research directions.

Background and Related Work

Current pain assessment (PA) methods rely on caregivers asking patients to self-report their pain 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.07.23291094doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.07.23291094
http://creativecommons.org/licenses/by/4.0/


7

levels or observing behavioral or physiological pain responses and using context from the causes 

of pain. This assessment is often subjective in nature and is affected by social and personal factors 

including anxiety, depression, disability, and medication. Therefore, there is a pressing need to 

build an objective pain monitoring system that can predict pain intensity based on physiological 

factors [18].

The first step in designing such a system is to objectively measure behavioral and/or physiological 

responses to pain. Behavioral responses are used as protective mechanisms to bring attention to 

the source of pain and are communicated through facial expressions, body movements, and 

vocalizations [19]. The use of facial expressions for pain assessment has been studied in depth 

and is typically examined using the Facial Action Coding System (FACS) [20], which breaks down 

expressions as movements of elementary Action Units (AUs) based on muscle activity. Facial 

expressions in response to pain are often varied and may co-occur with other emotions due to 

the subjective nature of pain experienced in a patient [21]. Such responses can be measured 

using EMG. Physiological responses to pain stimuli are reflected in the autonomic nervous 

system’s activities and can be measured through signals like ECG, EDA, and respiratory rate (RR) 

[22, 23, 24, 25, 26].

To build objective pain monitoring systems it is also very important to consider the type of 

subjects being recruited because the intensity of pain experienced is highly varied across 

different groups of people. Prior studies have focused on inducing pain in healthy subjects to 

reduce the impact of pre-existing conditions that might inject biases into the data (Biovid, BP4D, 

MIntPAIN, SenseEmotion, X-ITE Pain) [14, 27, 28, 29, 30], whereas some studies have focused on 
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patients with chronic pain (EmoPain, and UNBC McMaster database) [19, 31]. In clinical settings, 

many patients suffer from ongoing chronic pain without the involvement of external stimuli, but 

pain response is oftentimes intensified through necessary medical procedures like surgeries. An 

underrepresented population in pain studies is patients suffering from acute post-operative pain. 

Our prior work has focused on building pain assessment models on single modalities like ECG 

[29], EDA [33], and PPG [34] from our postoperative pain study. Even though the results we 

achieve for each of these single modalities are significant, we still do not leverage the multimodal 

nature of our collected dataset. Building models using a single modality might not be able to 

capture the full extent of a patient’s painful experience and often has caveats in some clinical 

contexts. Heterogeneous sources of data, on the contrary, could complement each other and 

lead to improved performance over any single modality. Therefore, building a multimodal pain 

assessment system that utilizes both physiological and behavioral responses to pain can prove to 

be vital for vulnerable patient populations.

Methods

iHurt Study design

We conducted a biomedical data collection study on 25 post-operative patients reporting various 

degrees of pain symptoms. Multimodal biosignals (ECG, EMG, EDA, PPG) were collected from 

patients likely having mild to moderate pain, who were asked to perform a few light physical 

activities while acquiring data. We also collected primary demographic information from each 

patient including height, weight, sex, and body mass index. All signals were collected using the 
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iHurt system.

iHurt system

iHurt is a system that measures facial muscle activity (i.e., changes in facial expression) in 

conjunction with physiological signals such as heart rate, heart rate variability, respiratory rate, 

and electrodermal activity for the purpose of developing an algorithm for pain assessment in 

hospitalized patients. The system uses the two following components to capture raw signals.

1) Eight-Channel Biopotential Acquisition Device:

Our team at the University of Turku, Finland developed a biopotential acquisition device 

to measure ECG and EMG signals. The device incorporates commercially available 

electrodes, electrode-to-device lead wires, an ADS1299-based portable device, and 

computer software (LabVIEW version 14.02f, National Instruments) to visualize data 

streaming from the portable device. Raw signals from the electrodes are sampled at 500 

samples per second and are sent to the computer software via Bluetooth for visualization 

[35].

2) Empatica E4:

We use the commercially available Empatica E4 wristband (Empatica Inc, Boston, MA, 

USA) [33] to measure EDA and PPG signals. The purpose of using a wristband was to allow 

our participants to move freely without any impediments. The Empatica E4 was 

connected to the participants’ phones over Bluetooth for visualization.
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This is the first claimed study that collected biosignals from postoperative adult patients in 

hospitals. All participants (age: 23 - 89 years) were recruited from the University of California, 

Irvine Medical Center after obtaining Institutional Review Board approval (IRB, HS: 2017-3747). 

The patients were recruited to the study from July 2018 to October 2019. We removed 3 

participants’ data from the final dataset due to the presence of excessive motion artifacts. We 

also excluded 2 additional patients since they were wearing the Empatica E4 watch on their arm 

that received IV (intravenous) medication. This resulted in unreliable EDA signals due to 

conditions like skin rash and itching. This left us with data from 20 patients to build our pain 

recognition system. The dataset also contains rich annotation with self-reported pain scores 

based on the 11-point Numeric Rating Scale (NRS) from 0 – 10. A detailed explanation of the 

dataset and the study design can be found in [37]. We intend to make the de-identified dataset 

available to the research community for further analysis and applications.

Data Processing Pipeline

The first step in building our multimodal pain assessment system was to process the raw signals 

collected during trials. The data processing pipeline consisted of the following steps:

● We filtered the signal to remove powerline interference, baseline wander, and motion 

artifact noise.

● We performed feature extraction on the filtered signals to obtain amplitude and 

variability features in the time domain. The time domain features were extracted using 

5.5-second and 10-second windows. The 5.5-second window size was extracted to 

compare with prior work [17].
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● In addition to HC features, we also used automatic features which were outputted from 

a deep neural network.

● Once the features were extracted, we tagged them with their corresponding labels 

based on the nearest timestamp of the label.

Each of these processing steps was applied individually to each of the four modalities. Processed 

data from each of the modalities were combined using either early fusion (EF) or late fusion (LF). 

The types of HC features extracted from each modality and the deep learning pipeline for 

extracting automatic features are described in detail.

ECG Handcrafted Features

The ECG channel was filtered using a Butterworth band-pass filter with the frequency ranges of 

[0.1,250] Hz. The HRV HC features were extracted with pyHRV, an open-source Python toolbox 

[38] using the R-peaks extracted from the ECG signal via a bidirectional long short-term memory 

network [39]. These features were extracted from two window sizes, 5.5 and 10 seconds. There 

were 19 time-domain (TD) features. The TD features extracted from NN intervals, or the time 

interval between successive R-peaks, comprised of the slope of these intervals, 5 statistical 

features (total count, mean, minimum, maximum, and standard deviation), 9 difference features 

(mean difference, minimum difference, maximum difference, standard deviation of successive 

interval differences, root mean square of successive interval differences, number of interval 

differences greater than 20ms and 50ms, and percentage of successive interval differences that 

differ by more than 20ms and 50ms), and 4 heart rate features (mean, minimum, maximum, and 

standard deviation).
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EMG Handcrafted Features

The preprocessing phase of EMG channels comprised of a 20Hz high pass filter and two notch 

filters at 50Hz and 100Hz all using a Butterworth filter. Like ECG features, we extracted EMG 

features from 5.5 and 10-second windows on 5 different channels for each major facial muscle.  

The 10 amplitude features extracted were 1) peak, 2) peak-to-peak mean value (p2pmv), 3) root 

mean squared (rms), 4) mean of the absolute values of the second differences (mavsd), 5) mean 

of the absolute values of the first differences (mavfd), 6) mean of the absolute values of the 

second differences of the normalized signal (mavsdn), 7) mean of the absolute values of the first 

differences of the normalized signal (mavfdn), 8) mean of local minima values (mlocminv), 9) 

mean of local maxima values (mlocmaxv), and 10) mean of absolute values (mav). The 4 

variability features were 1) variance, 2) standard deviation, 3) range, and 4) interquartile range. 

All 14 features were calculated for 5 different EMG channels resulting in 70 EMG features in total.

EDA Handcrafted Features

We used the pyEDA library [40] for pre-processing and feature extraction of EDA signals. In the 

pre-processing part, first, we used a moving average across a 1-second window to remove the 

motion artifacts and smooth the data. Second, a low-pass Butterworth filter on the phasic data 

was applied to remove the line noise. Lastly, preprocessed EDA signals corresponding to each 

different pain level were visualized to ensure the validity of the signals. In the feature extraction 

part, the cvxEDA algorithm [41] was employed to extract the phasic component of EDA signals. 

The EDA signals’ peaks or bursts are considered variations in the phasic component of the signal. 

Therefore, the clean signals and extracted phasic component of signals were fed to the statistical 
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feature extraction module to extract the number of peaks, the average value, and the maximum 

and minimum value of the signals. Moreover, these extracted features were further employed in 

the post-feature extraction module to extract 8 more features: (1) the difference between the 

maximum and the minimum value of the signal, (2) the standard deviation, (3) the difference 

between the upper and lower quartiles (4) root mean square, (5) the mean value of local minima, 

(6) the mean value of local maxima, (7) the mean of the absolute values of the first differences, 

and (8) the mean of the absolute values of the second differences. This resulted in 12 EDA 

features in total.

PPG-based Respiratory Rate Handcrafted Features

We pre-processed the PPG signal before extracting the respiratory rate from it. Two filters were 

used during the preprocessing. We first used a Butterworth bandpass filter to remove noises 

including motion artifacts. Then, a moving average filter was implemented to smooth the PPG 

signal. After that, we applied an Empirical Mode Decomposition (EMD) based method proposed 

by Madhav et al. [42] to derive respiration signals from filtered PPG signals. This method was 

proven to derive RR from a PPG signal with high accuracy (99.87%). Ten features were extracted 

from the respiratory signal including (1) the number of inhale peaks, (2) the mean value of the 

signal, (3) the maximum value (4) the minimum value (5) the difference between the maximum 

and the minimum value, (6) standard deviation, (7) the average value of the inhale peak intervals, 

(8) the standard deviation of the inhale peak intervals, (9) the root mean square of successive 

differences between adjacent inhale peak intervals, (10) standard deviation of inhale 

duration/average inhale duration. A visualization of the HC feature pipeline is shown in Fig 1.
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Fig 1. Handcrafted feature extraction pipeline.

Automatic Feature Extraction Pipeline

As the dimensionality of biomedical data increases, it becomes increasingly difficult to train a 

machine learning algorithm on the entire uncompressed dataset. This often leads to a large 

training time and is computationally more expensive overall. One possible solution is to perform 

feature engineering to get a compressed and interpretable representation of the signal. Another 

alternative approach, however, is to use the compressed or latent representation of that data 

obtained from deep learning networks trained for that specific task. Using automatic features 

helps in dimensionality reduction and can provide us with a sophisticated yet succinct 

representation of the data that HC features alone cannot provide. This automatic feature 

extraction is typically carried out by an autoencoder (AE) network, which is an unsupervised 

neural network that learns how to efficiently compress and encode the data into a lower-

dimensional space [43, 44]. Autoencoders are composed of two separate networks, an encoder, 

and a decoder. The encoder network acts as a bottleneck layer and maps the input into a lower-

dimensional feature space. The decoder network tries to reconstruct this lower-dimensional 

feature vector into the original input size. The entire network is trained to minimize the 

reconstruction loss (i.e., mean-squared error) by iteratively updating its weights and biases 

through backpropagation.

A convolutional AE from the pyEDA library was used to extract automatic features. Fig 2 shows 

the architecture of the AE. First, a linear layer (L1) is used to downsample the input signal with 
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Input Shape length to a length that is the closest power of 2 (CP2). This was done to make the 

model scalable to an arbitrary input size. The encoder half of the network consists of three 1-D 

convolutional layers (C1, C2, and C3) and a linear layer (L2) which flatten and downsamples the 

input vector to a lower-dimensional latent vector. The number of dimensions of this latent vector 

(Feature Size) corresponds to the number of automatic features extracted and was set prior to 

training the network. A total of 32 features were extracted from ECG, EDA, and RR signals. 

Whereas a total of 30 features were extracted from the EMG signal (6 features from each of the 

5 channels). The decoder half of the network consists of three 1-D de-convolutional layers (DeC1, 

DeC2, and DeC3) to reconstruct the input signal from the latent vector. A final linear layer (L3) is 

then used to flatten and reconstruct the signal to its original dimension. Both encoder and 

decoder networks have ReLU (Rectified Linear Unit) activation between layers. Window sizes of 

both 5.5 and 10 seconds were applied to the filtered signals. This was done to compare the 

performance with HC features. After signals from each of the modalities were normalized, they 

were trained on separate AE models for each modality. In addition to the convolutional AE, we 

also extracted features from an LSTM (long-short-term memory) AE network. This resulted in two 

different feature extraction methods (convolutional and LSTM) that spanned two different 

window lengths (5.5 and 10 seconds).

Fig 2. The architecture of the pyEDA convolutional autoencoder.

The batch size was set to 10, the number of training epochs was set to 100, and the ADAM 

optimizer [42] was used with a learning rate of 1e-3. A total of 126 feature vectors across all 4 

modalities were extracted from each AE network. A visualization of our automatic feature 
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extraction pipeline is shown in Fig 3.

Fig 3. Automatic feature extraction pipeline.

Data Augmentation

There were several inherent challenges in the distribution of labels as NRS values recorded during 

the clinical trials of this study were collected from real postoperative patients. This problem bears 

less significance while studying healthy participants since the stimulated pain can be controlled 

during the experiments. Consequently, occurrences of some pain levels far exceeded those of 

others. For example, among all patients, there were only 4 reported occurrences of pain level 10, 

whereas there were more than 80 reported occurrences of pain level 4. This imbalanced 

distribution was inevitable due to the subjective nature and the different sources of pain among 

the participants. Therefore, while downsampling our pain labels to 4 classes, thresholds for each 

downsampled class were carefully chosen to ensure a more evenly distributed set of labels. The 

pain levels ranged from a baseline level of pain (BL) or no pain to 3 increasing intensities of pain 

(PL 1-3). The thresholds for the pain levels were as follows - 1) PL1 ranged from 0 to 3, 2) PL2 

ranged from 4 to 6, and 3) PL3 ranged from 7 to 10. All the ranges here are inclusive.

 Since we asked patients to report their pain levels only while they performed pain-inducing 

activities, the number of labels generated was sparse. Both HC and automatic features were 

combined with the corresponding labels using timestamps that were within the nearest 5.5 or 10 

seconds (labeling threshold) of the reported NRS value. This depended on the window size of the 

features extracted.  Because of having sparse labels, many of the feature windows were not 

assigned a corresponding label. To mitigate the problem of having an imbalanced and sparse 
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label distribution, two techniques were exploited.

1) Minority Oversampling:

The first technique, called Synthetic Minority Oversampling (Smote), is a type of data 

augmentation that over-samples the minority class [46]. Smote works by first choosing a 

minority class instance at random and finding its k nearest minority class neighbors. It 

then creates a synthetic example at a randomly selected point between two instances of 

the minority class in that feature space. The experiments involving Smote were 

implemented using the imbalanced-learn Python library [47].

2) Weak Supervision:

The second technique we utilized is weak supervision using the Snorkel framework [48]. 

Rather than employing an expert to manually label the unlabeled instances, Snorkel 

allows its users to write labeling functions that can make use of heuristics, patterns, 

external knowledge bases, and third-party machine learning models. Weak supervision is 

typically employed to label large volumes of unlabeled data when there are noisy, limited, 

or imprecise sources. For our pain assessment algorithm, we decided to use third-party 

machine learning models to label the remaining unlabeled instances. All the data points 

that were within the labeling threshold were considered as “strong labels”, or ground-

truth values collected from patients during trials. The remaining unlabeled data points 

were kept aside for Snorkel to provide a weakly supervised label. The strong labels were 

fed into Snorkel’s labeling function consisting of three off-the-shelf machine learning 

models: (i) a Support-Vector Machine (SVM) with a radial basis function kernel, (ii) a 
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Random Forest (RF) classifier, and (iii) a K-Nearest Neighbor (KNN) classifier with uniform 

weights. Once each model was trained on the strong labels, it was used to make 

predictions on the remaining unlabeled data. The predictions from these three models 

were collected and converted into a single confidence-weighted label per data point using 

Snorkel’s “LabelModel” function. This function outputs the most confident prediction as 

the label for each data point. To perform a fair assessment of the reliability and accuracy 

of our algorithm, we used Smote and Snorkel only while training our machine learning 

models. The performance of these models was measured solely on ground-truth (strong) 

labels collected during trials. This way, there is no implicit bias introduced from 

mislabeling or upsampling certain data points to skew model predictions.

Multimodal Machine Learning Models 

To compare the performance of our multimodal machine learning models with the prior work, 

we performed binary classification using a leave-one-subject-out cross-validation approach [49]. 

In this method, a model’s performance is validated over multiple folds in such a way that data 

from each patient is either in the training set or in the testing set. The purpose of using this 

method is to provide generalizability to unseen patients and to avoid overfitting by averaging the 

results over multiple folds. The eventual goal of this study is to build personalized models that 

make predictions on a single patient but learn from data collected from a larger population of 

similar patients. The following machine learning models were used to evaluate the performance 

of our pain assessment algorithm: (1) K-nearest neighbors, (2) Random Forest classifier, (3) 

AdaBoost (Adaptive Boosting), (4) and an SVM (Support Vector Machine). The models were then 
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evaluated using leave-one subject-out cross-validation. Four separate models were trained for 

each of the three pain intensities (e.g., BL, no pain versus PL1, the lowest pain level, or BL vs PL3, 

the highest pain level).

Fusing Modalities

Two fusion approaches were used while combining features across different modalities. The first 

one is early or feature-level fusion which concatenates feature vectors across different modalities 

based on their timestamps. The resulting data that is now higher in dimension than any one single 

modality is then fed into our classifier to make predictions. While concatenating features across 

different modalities, a threshold of either 5.5 or 10 seconds was used to combine the modalities 

depending on the features extracted. The second approach was late or decision-level fusion 

where each modality is fed to a separate classifier and the final classification result is based on 

the fusion of outputs from the different modalities [50].

Feature Selection

Since there were a lot of features generated during the data processing phase, we had to select 

a subset of the most informative features to build our models with. Therefore, to reduce the 

complexity and training time of the resulting model, feature selection using Gini importance was 

performed. Gini importance is a lightweight method that is simple and fast to compute. Since we 

extracted a relatively large number of features in our method, it made sense to use a 

computationally low-cost algorithm for feature selection. We computed the Gini importance of 

the features from the data in the training fold with the help of a random forest classifier and 
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selected the top 25 features.  We then trained our model on these top 25 features and evaluated 

them in the validation fold. Our proposed multimodal pain recognition system is shown in Fig 4.

Fig 4. Proposed multimodal pain recognition system.

Results

Experimental Settings

The goal of our experiments was to compare the performance of using only a single modality to 

build our models over using a combination of multiple modalities. We trained several different 

models for each of the pain intensities that varied in the types of modalities, data augmentation 

techniques, machine learning models, and fusion techniques used. Fig 5 shows the general 

pipeline of the experiments we conducted. We first select the type of modalities to train on, 

which varied from only using each of the single modalities separately to using a combination of 

all 4 modalities. Moreover, these modalities varied on the types of features used, like HC or 

automatic features. In the case of using multiple modalities, we had two choices of fusion: early 

(Fig 5 left) and late (Fig 5 right). These architectures varied in how the modalities were combined, 

either before training (early), or at the decision level (late) after training using majority voting. 

The data preparation process involved feature selection and data augmentation. These models 

could either be trained with no data augmentation, with just Smote or Snorkel, or a combination 

of both. The last step of the pipeline before making predictions involved choosing the type of 

machine learning algorithms, like SVM, Random Forest (RF), Adaptive Boosting (AdaBoost), or K-

Nearest Neighbors (KNN). Due to the lack of space, only the best-performing single and 
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multimodal model configurations are mentioned in the section below.

Fig 5. Our proposed general multimodal pipeline based on early fusion (left) and late fusion 

(right).

Experimental Results

Tables 1 and 2 present the best-performing single-modal and multimodal models for each of the 

three pain intensities. For comparison, the best multimodal results from Werner et al. [17], 

Martinez et al. [24], Wang et al. [25], and Subramaniam et al. [26] are also mentioned. We use 

balanced accuracy as an evaluation criterion because our dataset had an imbalanced class 

distribution. Balanced accuracy is defined as the average of the true positive rate and the true 

negative rate.

Table 1. Best scores: single modality and multiple modalities

Pain Levels ECG Scores EMG Scores EDA Scores RR Scores Multiple 
Modality

BL vs. PL1 82.14 86.0 79.18 84.62 82.14

BL vs. PL2 86.11 84.53 82.94 88.24 86.11

BL vs. PL3 75.0 78.12 75.0 76.23 75.0
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Mean 81.08 82.88 79.04 83.03 81.08

Classifier 
Config.

LSTM AE 
(10s), Strong, 
SVM

HC (10s), 
Snorkel, SVM

CNN AE (10s), 
Strong, SVM

HC (10s), 
Strong, SVM

EF, LSTM AE 
(10s), Strong, 
SVM

Table 2. Multiple modalities: comparison with other methods

Werner et al. 
[17]

Martinez et 
al. [24]

Wang et al. 
[25]

Subramaniam 
et al. [26]

Our Method

Mean Scores 65.27 66.84 70.28 76.28 81.08

Modalities Video, ECG, 
EMG, EDA

ECG, EMG, 
EDA

ECG, EMG, 
EDA

ECG, EDA ECG, EMG, 
EDA, RR

Discussion

Principal Results

From the single modality results (Table I), it is evident that RR models outperform all other 

modalities, especially for the BL vs PL1 and BL vs PL2 models. Overall, models from all modalities 

have relatively lower scores in the BL vs PL3 category. The comparatively lower performance of 

EDA models over other modalities suggests that variations in EDA signal response to different 

pain levels are more difficult to distinguish. From our experiments, the best-performing 

multimodal model was trained on automatic features outputted from our LSTM network with 

10-second window size. This model made use of strong labels without any data augmentation 
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techniques. It should be noted that the best-performing ECG and multimodal models have the 

same results and share identical configurations. It is very likely that the ECG features influenced 

the performance of the multimodal model.

The relatively poor performances of the BL vs PL1 and BL vs PL3 models across both single and 

multimodal models are also understandable because they lie at the extremes of the pain 

threshold. The BL vs PL1 models might find it more challenging to distinguish between baseline 

levels and the lowest pain intensity due to the subtlety of the physiological responses collected 

while experiencing this pain level. The BL vs PL3, however, might find it challenging to distinguish 

pain levels due to the scarcity of such labels collected during trials. Data augmentation can help 

mitigate this problem, but there is no substitute for real data. On the contrary, the BL vs PL2 

models performed better due to the relative abundance of such labels reported during trials.

In terms of modalities, the best-performing model uses RR alone. However, for the last pain 

category, the EMG model outperformed all the other models.  One justification for these results 

could be due to the dynamic nature of these signals in response to pain stimuli. Since we were 

able to effectively isolate and capture periods of higher pain intensity with smaller window sizes, 

this could help the models better distinguish between baseline and other pain levels.

The best-performing multimodal models use early fusion or feature-level fusion. One intuition as 

to why early fusion might perform better overall is due to the detection of correlated features 

across modalities obtained after using feature selection [51]. Late fusion, on the contrary, builds 

independent models for each modality and fuses them based on their predictions using majority 

voting. Therefore, by treating each modality as independent, there is a potential loss of 
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correlation in the combined feature space.

Overall, the single modality results, specifically RR, outperform the multimodal models in all 

categories. This has not been the case in prior studies done on healthy subjects. But our 

experiments suggest that a combination of multiple modalities in data collected from 

postoperative patients has the potential to skew results. Since there is a risk of missing data and 

noise in our signals, it is imperative to carefully align them when combining the modalities. 

Multiple modalities certainly have the potential to add more useful information over a single 

modality and can be used to introduce complementary information and resiliency when any one 

modality fails or is too noisy [52]. They are also more robust and can improve generalizability 

when patients experience different types of pain and in varying degrees. However, there are also 

advantages to using a single modality. They are simpler and easier to interpret when measuring 

each feature’s contribution to the output. This also reduces computational complexity and 

training time. While comparing our results to [17, 24, 25, 26], it can be observed that our models 

outperform their models in mean pain assessment scores. However, this is not entirely a fair 

comparison because we use 3 pain levels instead of 4 and our patients are not healthy.

One of the main research directions we would like to explore in the future is to build real-time 

multimodal pain assessment systems using deep learning architectures. In such scenarios, it is 

quite possible to have missing or incomplete data from or more modalities. Moreover, real-time 

systems are limited by their computational complexity and power constraints. Therefore, with 

the help of the experiments performed in this study, we hope to build models that can 

dynamically determine which modalities to use in an energy-efficient manner without 
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compromising performance given the clinical context.

Limitations

The main limitation of our algorithm is the presence of noise in the form of motion artifacts 

produced while collecting physiological signals. Since we obtained data from real postoperative 

patients in a clinical setting, they were allowed to move more freely in comparison to 

experiments performed in laboratory settings. The presence of these motion artifacts diminished 

the quality of our data, and thus negatively impacted our machine-learning algorithms. We also 

must acknowledge the more complicated facets of pain that are not fully captured by our 

algorithm like the number of days post-surgery, the amount of pain medication dosing, the 

location, and the type of pain experienced. We would like to account for these factors while 

conducting future studies.

Conclusion

In this article, we presented a multimodal machine-learning framework for classifying pain in real 

post-operative patients from the iHurt Pain Database. Both traditional handcrafted features and 

deep learning-generated automatic features were extracted from physiological signals (ECG, 

EDA, EMG, PPG). We conducted several experiments to perform binary classification among 

three different pain intensities vs baseline levels of pain. Models for each of these intensities 

were varied based on the modalities used, the different types of data augmentation techniques 

(Smote, Snorkel, or both), the machine learning algorithms used, and the type of modality fusion 

used. Our results showed that binary pain classification greatly benefits from using data 
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augmentation techniques in conjunction with automatic features. The single-modality models 

from RR and EMG outperformed the multimodal models. The BL vs PL3 model with the best 

results was trained on EMG data alone, which suggests that facial muscle activation can play a 

vital role in distinguishing higher pain intensities from baseline levels of pain. This is consistent 

from a clinical perspective because higher pain intensities are more commonly associated with 

acute pain.

However, since pain is a subjective experience that tends to have a large inter-individual 

variability, building a monolithic model for all patients might not be a viable solution. A promising 

future direction for this research study is to build personalized machine learning models that can 

benefit from using data from groups of similar patients, but which are finetuned to make 

predictions on a single person. Prior research has used multitask machine learning (MTL) to 

account for inter-individual variability and build personalized models for the task of mood 

prediction [53]. This is a feasible future research direction that would be applicable to the domain 

of pain assessment, not only for the acute pain of surgery but also for patients that experience 

chronic pain. We believe that personalized modeling will be a vital step in creating clinically viable 

pain assessment algorithms.
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