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Abstract  32 

Comprehensive lipidomic studies have demonstrated strong cross-sectional associations between the blood 33 
lipidome and late-onset Alzheimer’s disease (AD) and its risk factors. However, the longitudinal relationship 34 
between the lipidomic variations and progression of AD remains unknown. Here, we employed longitudinal 35 
lipidomic profiling on 4,730 plasma samples from 1,517 participants of the Alzheimer's Disease 36 
Neuroimaging Initiative (ADNI) cohort to investigate the temporal evolution of lipidomes among diagnostic 37 
groups. At baseline, there were 1,393 participants including 437 cognitively normal (CN), 713 with mild 38 
cognitive impairment (MCI), and 243 AD cases. During follow up, 329 individuals (29 CN and 300 MCI) 39 
developed clinical AD (AD converters). We developed an AD-CN classification model to stratify the non-40 
converting MCI group into AD-like and non AD-like MCI based on their lipidomics profiles at baseline. 41 
Longitudinal analysis identified associations between the change in ether lipid species (including 42 
alkylphosphatidylcholine, alkenylphosphatidylcholine, lysoalkylphosphatidylcholine, and 43 
lysoalkenylphosphatidylcholine) in converters relative to non-converting CN and MCI groups. Further, the 44 
AD-CN model efficiently classified MCI into low AD risk and high AD risk, with the high AD risk group having 45 
two times higher risk of conversion to AD than the low risk group.   These findings suggest that the lipidomic 46 
profile can serve as a potential biomarker to identify individuals at higher risk for progressing to AD. 47 

Introduction 48 
Late-onset Alzheimer’s disease (AD) is the leading cause of dementia, characterised by the progressive 49 
death of neurons and loss of brain structure, usually presenting with memory loss1,2. Many risk factors 50 
have been identified to collectively modulate risk for AD, with advanced age (≥ 65 years) being the 51 
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strongest risk factor. Moreover, common genetic risk factors are associated with increased risk3, such as 52 
the APOE ε4 allele and sex, with females being more likely to develop AD (especially at age ≥80 years)4. 53 

Spanning a period of 15-25 years, individuals with AD progress from cognitively normal(CN) through mild 54 
cognitive impairment (MCI) to overt dementia2. As a transitional state between CN and dementia, MCI has 55 
mixed aetiologies with different pathologies, neuropsychological profiles, or biomarker anomalies, often 56 
presenting with subtle to mild clinical symptoms5,6. The transition from MCI to dementia can take a varying 57 
length of time, with some individuals remaining stable or reverting to CN. The underlying molecular 58 
mechanisms contributing to this heterogeneity remain unknown.  Accurate stratification of MCI using the 59 
molecular level information (such as lipidomic profiling) has the potential to improve the prognostic accuracy 60 
at the early stages of disease7,  which is critical for streamlining clinical trials to shorten drug development 61 
cycle and avoid negative results due to this heterogeneity.   62 

A growing number of studies have defined an intimate link between the plasma lipidome, measured at a 63 
single point in time, and AD8-11 or AD-related risk factors12-17. Besides, baseline lipid metabolic changes in AD 64 
patients were also demonstrated to be closely related with cerebrospinal fluid pathology markers, imaging 65 
features, and cognitive performance18. However, the plasma lipidome is highly dynamic, varying in response 66 
to environmental exposures (diet, physical activity)19-21 and over the longer term with age22-25. Similarly, the 67 
progression of cognitive impairment may predispose individuals to lifestyle changes (unbalanced diet or 68 
physical inactivity)26,27. These changes will influence peripheral lipid metabolism and may therefore appear 69 
to be associated with disease in a cross-sectional analysis (referred to as reverse causation). Longitudinal 70 
studies can minimise the impact of reverse causation by defining the relationship between changes in the 71 
plasma lipidome prior to AD, during the progression to AD, and in response to AD.  72 

In this study, we performed longitudinal analysis of plasma lipidomic profiles in the Alzheimer's Disease 73 
Neuroimaging Initiative (ADNI)-1, -GO and -2 cohorts to delineate the relationships between peripheral lipid 74 
metabolism and progression to AD. Using this complex data, we also assessed the utility of plasma lipids to 75 
identify MCI individuals at high risk of converting to AD. 76 

Results 77 

For this study, we profiled a total of 4,730 longitudinal plasma samples from 1,517 participants of ADNI -1, -78 
GO and -2 cohorts examined from baseline up to the 13th time point (10th years follow up period), with three 79 
major time points of baseline, 12 months, and 24 months that include the largest number of individuals 80 
(Figure 1). After quality control, the lipidomics profiles on all these measurements consist of 749 lipid species 81 
from 48 lipid classes (Supplementary Table 1). 82 

Longitudinal definition of diagnostic groups  83 

We defined individuals as AD converters if they had a baseline diagnosis of cognitive normal (CN) or mild 84 
cognitive impairment (MCI) at the time that they entered the study but progressed to AD at a later time 85 
point. In total, there were 363 AD converters progressing from CN or MCI to AD at specific time points. In 86 
Supplementary Table 2, we detailed the distributions of AD converters across different time points. At 87 
baseline, after removing 25 missingness (detailed in the Method), we had 1,393 individuals with 437 CN, 713 88 
MCI, and 243 AD cases. Out of these, there were 29 CN and 300 MCI who converted to AD at later time 89 
points (termed as AD converters). We also observed that 71 CN converted to MCI and remained MCI at 90 
subsequent time points, which we termed as MCI converters.   91 

In Table 1, the difference in the demographics, numbers and distributions of the key risk factors (covariates) 92 
among diagnostic classifications were examined on three main time points (Baseline, 12 months, and 24 93 
months), using Fisher’s exact test for categorical variables or ANOVA for continuous variables.  94 

Metabotype conservation over time among AD state groups 95 

To globally assess changes in lipidomic profiles over time, we calculated metabotype conservation indices 96 
(Ic) for a subset of 755 participants that had lipidomics data available at baseline as well as at follow up visits 97 
after 12 and 24 months. The Ic reflects the lipidomics-based self-similarity of an individual over time 98 
compared to all other individuals. To avoid potential bias introduced by the strong correlation structure 99 
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observed in lipidomics data, we clustered highly correlated lipids and calculated eigenlipids for each of the 100 
205 obtained clusters. Eighty lipids were not assigned to a cluster and retained as separate variables. Based 101 
on these 285 variables, we calculated the Ic. As expected, the Ic after 24 months was overall significantly 102 
lower than after 12 months (paired t-test p = 1.06 x 10-3, Wilcoxon test p = 4.56 x 10-6); Figure 2 and 103 
Supplementary Table 3). Ic between baseline and 24-month follow-up showed overall high stability of the 104 
lipidome, with more than half of individuals reaching the maximum Ic of 1 (n = 401). There was no significant 105 
difference in the proportion of individuals with an Ic < 1 between diagnostic groups (Supplementary Table 106 
4).  However, comparing distributions of the Ic values smaller than one between diagnostic groups showed 107 
the highest conservation in the CN group, with significantly lower levels (Wilcoxon test p = 0.0039) observed 108 
in cases with AD (Figure 2b).  109 

Consistent cross-sectional associations of individual lipid species with AD at different time points  110 

At baseline, we observed 192 nominally significant associations between lipid species and AD, relative to CN, 111 
after FDR corrections (Figure 3, Supplementary Table 5).  The majority of these associations were consistent 112 
with previous findings28. Using the 24-month data, there were 181 significant associations, whereas only 52 113 
lipid species were significantly associated with the 12-month data (Figure 3). Among 192 associations 114 
identified at baseline, we observed that all of these associations were in the same direction as the ones 115 
identified at 24 months and only 2 out of 192 were different from the directions at 12 months. Pearson 116 
correlations between the beta coefficients (the associations between lipid species and AD state) among 117 
three time points were generally quite large (0.78 – 0.84). 118 

Across the three time points, 35 lipid species were consistently associated with AD status. These lipid species 119 
originated from the ceramide (Cer(d)), dihexosylceramide (Hex2Cer), trihexosylceramide (Hex3Cer), GM3 120 
ganglioside (GM3), sphingomyelin (SM), lysophosphatidylcholine (LPC), lysoalkylphosphatidylcholine 121 
(LPC(O)), lysoalkenylphosphatidylcholine (LPC(P)), alkylphosphatidylethanolamine (PE(O)), 122 
phosphatidylinositol (PI). There were two strongest associations observed between two novel lipid species 123 
from the dehydrodesmosterol ester (deDE) class, and AD across all three time points. In detail, they were 124 
deDE(18:2) (p=7.02x10-25 at baseline; 1.06x10-17 at 12 months; 8.80x10-12 at 24 months) and deDE(20:4) 125 
(p=7.48x10-14 at baseline; 2.32x10-14 at 12 months; 2.79x10-12 at 24 months). As shown in Supplementary 126 
Table 6, t-test results showed anticholinesterase medication usage was significantly different between AD 127 
and CN groups (0.0 % vs 87.2 %; CN vs AD; p-value<1.0x10-04).  In the later analysis, we identified that both 128 
deDE lipid species showed the strongest associations with anticholinesterase medication at baseline 129 
(p=7.13x10-18 for deDE(18:2), p= 9.68x10-12 for deDE(20:4); Supplementary Table 7), indicating that they 130 
might be driven by the anticholinesterase medication usage (AD-related medication). 131 

The AD-CN model classified AD and stratified the non-converting MCI group into AD-like and non AD-like 132 

An AD-CN model was developed using a ridge regression model within a 5-fold cross-validation framework 133 
on the AD and CN sub-cohort at baseline using all the lipid species (except the two deDE lipid species which 134 
were affected by the anticholinesterase medication usage) to predict AD status. The AD-CN model was 135 
applied to baseline profiles of individuals in the non-converting MCI and AD converter groups (the 136 
combinations of individuals converted from both MCI and CN groups; treated as true positives). The model 137 
could classify non-converting MCI and AD converters with an AUC of 0.69 (Figure 4). Relative to the basic 138 
model using four predictors – age, sex, BMI, and APOE 4ߝ (AUC=0.65; Supplementary Figure 1), our AD-CN 139 
model using the linear combination of the whole lipidome, age, sex, BMI, and APOE 4ߝ as the predictors 140 
showed better predictive power. 141 

The predicted values from the model indicate the individual’s risk of developing AD.  Using a cut-off point of 142 
0.37 (illustrated in Supplementary Figure 2), the whole group (the combination of non-converting MCI and 143 
AD converters) was divided into low and high AD risk groups. The Kaplan-Meier plot (Figure 5a and 5b) 144 
showed the proportion of participants converted to AD in the high AD risk group across different time points 145 
was higher than in the low AD risk group. The Fisher’s exact test (p=4.85 x10-15, Odd Ratio=3.14, 95% CI=2.30-146 
4.31) also demonstrated that the model could efficiently stratify the group with most AD converters enriched 147 
in the high AD risk subgroup (59%).   148 
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Among 432 non-converting MCI, we further defined 271 individuals in the low AD risk group as non AD-like 149 
MCI and 142 individuals in the high AD risk group as AD-like MCI. We investigated the distribution of selected 150 
medications between the two non-converting MCI groups (Supplementary Table 8). Usage of Omega-3 was 151 
greater in the non-AD like MCI group (20.4 % vs 36.9 %; p =9.0x10-04), while anticholinesterase usage was 152 
greater in the AD-like MCI group (35.9 % vs 17.0 %; p<1.0x10-04). 153 

The performance of AD-CN model validated across the time points was stable  154 

We further applied the AD-CN model built on the baseline AD and CN data to the whole data set (excluding 155 
AD converters) across different time points. To evaluate the prediction performance of the model on each 156 
single time point, we re-defined the AD diagnosis status of each individual as a binary variable – AD and non-157 
AD status (combination of CN and MCI). The predictive performance at the three main time points was AUC: 158 
0.71 (0.68 – 0.74) at baseline, AUC: 0.68 (0.64 – 0.71) at 12 months, and AUC: 0.72 (0.68 – 0.77) at 24 months 159 
(Figure 6). The model demonstrated consistent and robust prediction performance at each time point.  160 

Trajectories of individual lipid species 161 

The trajectories of individual lipid species were assessed using separate linear mixed-effects models. 162 
Significant interactions between AD status and time were observed for 1) the AD converter group versus the 163 
non-converter group (combination of non-converting CN and MCI); 2) AD-like versus non-AD-like MCI groups 164 
after excluding AD converters; and 3) non AD-like MCI vs CN after excluding AD converters. 165 

When comparing AD and CN, only two lipid species (from the sphingosine class) were significant following 166 
FDR correction (Figure 7a; Supplementary Table 9).  167 

Comparing AD-like and non AD-like MCI groups, more than 121 lipid species from 26 lipid classes showed 168 
signficantly different trajectories after FDR correction (Figure 7a; Supplementary Table 9). A majority of these 169 
were from the SM, GM3, acylcarnitine (AC), alkylphosphatidylcholine (PC(O)), alkenylphosphatidylcholine 170 
(PC(P)), LPC, LPC(O), LPC(P), and dehydrocholesterol ester (DE) classes. Of these lipid species, we observed 171 
13 lipid species from the lipid classes of GM3, LPC(O), AC, SM, CE and DE also appeared in the top 50 172 
predictors in the AD-CN model.  173 

The trajectories for 33 lipid species (after FDR correction) were found to significantly differ between AD 174 
converters vs non-converters (non-converting CN and MCI) (Figure 7b, Supplementary table 10). These lipids 175 
were primarily composed of the LPC(O), LPC(P), and PC(O) classes. The trajectory for all these lipid species 176 
were diametrically opposed with those between AD converters and non-converters. As a sensitivity analysis, 177 
we grouped MCI converters with AD converters and evaluated the associations of the trajectories of lipid 178 
species with the combination of AD and MCI converters (Supplementary Figure 3, Supplementary table 10). 179 
Compared to the associations with the AD converters group, we observed slightly more lipid species showing 180 
significantly altered trajectories in the combined AD- and MCI-converter group.  181 

We selected several lipid species that showed differential trajectories as case studies to examine the 182 
trajectory over all time points (Figure 7C). AD and CN showed trajectories in opposite direction for several 183 
lipid species, including GM3(d18:1/24:1), Cer(d18:1/18:0), PE(P-16:0/22:6), and PI(18:0_22:6).  By contrast, 184 
PC(O-16:0/16:0), AC(12:0), deDE(18:2), the oxidised lipid, PC(36:4) [+OH], the dimethyl-cholesteryl ester, 185 
dimethyl-CE(18:1), the bile acid dxCA, and CE(24:1) showed trajectories in the same direction. Interestingly, 186 
the trends of these lipid species in the converter group transitioned from CN concentrations at baseline to 187 
AD group concentrations by the end of the study. 188 

AD-related medications affect the trajectory of lipid species over time 189 

The aforementioned, t-test results showed that anticholinesterase medication usage was significantly 190 
different between AD and CN groups. Further, longitudinal random forest backward selection analysis was 191 
performed to examine whether medications affect the trajectory of lipid species. The results showed that 192 
the trajectory of four lipid species deDE(18:2), deDE(20:4), GM3(d18:1/22:0), and PE(P)(18:1/22:4) were 193 
significantly (variable importance > 30) associated with these anti-dementia drugs (Supplementary Figure 4; 194 
Supplementary Table 11. Further, we also found that there were 91 and 160 lipid species (Supplementary 195 
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Figure 4; Supplementary Table 11), whose trajectories were significantly affected by the medications of 196 
omega-3 and statins respectively.   197 

Trajectory of AD-CN scores varied among AD diagnosis groups 198 

After evaluating the AD-CN model across all timepoints, we dervied the risk scores for each particiant. The 199 
distributions of AD-CN scores at each time point is shown in Supplementary Figure 5. We examined the 200 
association of the trajectories of the risk scores with AD status (non-converting CN, non AD-like MCI, AD-like 201 
MCI, AD converters, and AD) (Table 2). The cross-sectional associations of the lipidomic score with AD-like 202 
MCI versus non-converting CN (p=3.23x10-26) and AD converters versus the combination of non-converting 203 
CN and MCI groups (p=3.20x10-16) were signficant (Table 2). When we examined the changes of the overal 204 
AD-CN lipidomic scores among these groups, the AD-like MCI versus non-converting CN behaved signficantly 205 
different (p=3.78x10-04). The changes of AD converters and the non-converting CN and MCI groups were 206 
signficant different (p=3.27x10-03). The AD group behaved similarly as the CN group.  207 

The trajectory of the AD-CN score for all groups is shown in Figure 8. The trajectory of CN and AD groups 208 
showed minor trends in the oppostie direction. Compared to CN and AD groups, AD-like and non AD-like MCI 209 
showed much larger changes in oposing directions with the AD-like group showing a decrease and the non-210 
AD like showing an increase in the AD-CN score. The trajectory of AD converters and non converters was also 211 
in oposing directions with the AD converters showing a slight decrease in the AD-CN score and the non-212 
converters showing a slight increase.  213 

Discussion  214 

We performed comprehensive cross-sectional and longitudinal analyses of lipidomic data in the ADNI cohort 215 
to identify the associations of the lipid species trajectories with AD diagnosis. Of note, there were many MCI 216 
participants in the ADNI study presenting with mixed aetiologies. While some progressed to AD over the 217 
follow-up period, others appeared to be stable but displayed heterogeneity in their plasma lipidome, and 218 
this was used to stratify these individuals into AD like and non-AD like MCI participants.   219 

Previous research5,6,29-36 has also recognised this heterogeneity, with some studies implementing machine 220 
learning methods on neuroimaging data29-34 or plasma metabolites35,36 to predict MCI participants at high-221 
risk of converting to AD. These studies showed promising results but were limited by small sample size.  In 222 
this study, we developed an AD-CN lipidomic model, using ridge regression, within a 5-fold cross validation 223 
framework, on the large training dataset (AD and healthy groups; n=651). The prediction accuracy of the 224 
lipidomic model was assessed within the cross-validation framework of the training dataset and gave an AUC 225 
of 0.75 for the separation of CN and AD participants. Further, the AD-CN model efficiently classified MCIs 226 
(including AD converters) into low AD risk and high AD risk, with the high AD risk group having two times 227 
higher risk of conversion to AD than the low AD risk group.  Using the model to stratify the non-converting 228 
MCI group showed 142 out of 413 MCI participants were defined as AD-like MCI (participants with high 229 
“lipidomic similarity” to AD).  230 

The later trajectory analysis of lipid species between AD-like and non AD-like MCI groups delineate the 231 
heterogeneity of the MCI groups. We also observed that the AD-like MCI group had a significantly larger 232 
proportion of individuals taking anticholinesterase inhibitors, indicating that our AD-CN classification model 233 
could efficiently capture individuals in the MCI group who had started to develop AD symptoms. 234 

The metabotype conservation index showed that overall, the lipidome was stable across time (the first two 235 
years).  However, the conservation index in clinical AD was significantly lower than the CN group indicating 236 
greater variation in the lipidome over the two years of this analysis. While AD converters and the non-237 
converting MCI group were not significantly different to the CN group.   238 

In contrast to the conservation index calculated over two years, the lipid trajectories (calculated over 10 239 
years) showed multiple lipid species with trajectories that associated with AD converters relative to the non-240 
converting CN and MCI groups. We identified a greater decrease of (LPC(O), LPC(P)), LPC, and PC(O) species 241 
in the converter group. In particular, PC(O-38:5) and PC(O-40:5) decreased during the progression to AD. 242 
There was consistent evidence of decreasing ether lipids for participants in the transition to AD28, which may 243 
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reflect changes in the biosynthetic pathway i.e. a gradual deterioration in peroxisome function, leading to 244 
decreased ether lipids in circulation37. AD converters also showed a strong decrease in lysophospholipids 245 
species (containing 16:0, 18:0, 18:1, 20:0, 22:0, 22:1 and 24:0 fatty acids) during the progression to AD. In 246 
support of this observation, several cross-sectional studies have reported that plasma levels of LPC were 247 
decreased in the AD patients compared with healthy group38 and the LPC-to-PC ratio were also inversely 248 
associated with AD39,40, suggesting decreasing phospholipase activity as the disease progresses. In humans, 249 
LPC(O) and LPC(P) are metabolised by both these metabolic pathways – 1) these lipids are synthesised as 250 
ether lipids, originating in the peroxisomes; and 2) these lipids are produced by a plasmalogen specific 251 
phospholipase A2 (PLA2), which cleaves the fatty acid from the sn-2 position. Therefore, we hypothesise that 252 
both pathways – peroxisome dysfunction37 and decreased PLA241,42 – result in the scarcity of 253 
lysophospholipids in participants transitioning to AD. A better understanding of the altered activity of PLA2 254 
and ether lipid metabolism could help to identify novel therapeutic targets in AD43. 255 

The lipidomic score provides a global view of the changes in the lipidome over time among AD diagnosis 256 
groups. The lipidomic score for non-converting CN and AD groups were stable across time, with AD showing 257 
a higher level than the CN group. Consistent with the differences in the trajectories of the lyso and ether 258 
lipid species observed between AD converters and non converters (Figure 7b), the overall lipidomic score 259 
between the two groups showed significant changes in opposite directions (Figure 8b). Further, we observed 260 
differences in the lipidomic score between the AD-like and non AD-like MCI groups and this agreed with the 261 
greater number of individual lipid species trajectories showing a significant difference between these groups 262 
(Figure 7a).  Perhaps surprisingly the AD-like MCI group showed a downward trend in the lipidomic score 263 
towards the CN value, suggesting the lipidome may be normalising in this group, while the non AD-like MCI 264 
group showed an increase in the lipidomic score crossing the CN value. Clearly these two groups represent 265 
different metabolic phenotypes with the AD-like MCI being stable and resilient to progression to AD over the 266 
10 year follow up period. This may be associated with a normalisation of their metabolic phenotype as 267 
measured by the AD-CN score. In contrast, the non-AD like group which starts with a low AD-CN score 268 
appears to progress as evidenced by an increasing AD-CN score but not to the point of conversion (Figure 269 
8a).  These global and individual lipid species trajectories may provide useful biomarkers to monitor disease 270 
progression and better target MCI participants at greatest risk of progression to AD for clinical trials or 271 
treatment. However, further studies are required to define the outcomes for the AD-like and non AD-like 272 
metabolic phenotypes identified in this study. 273 

There were several limitations in this study. Although the follow-up time of the ADNI study extends to 10 274 
years, the majority of records are from baseline to 24 months. The metabotype conservation index under 275 
two years framework has limited ability to capture the variations of each individual among different AD 276 
diagnosis groups. And, the power of the longitudinal analysis on the cohorts within a 2-year period is limited.  277 
In addition, a second cohort is needed to externally validate the performance of our AD-CN classification 278 
model. 279 

In conclusion, we have performed comprehensive lipidomic analyses using the longitudinal ADNI -1, -2 and 280 
-GO cohorts. At baseline, we have developed a novel AD-CN classification model to characterise the 281 
heterogeneity of MCI participants, providing the potential of using lipidomics to efficiently distinguish high-282 
risk subjects within the MCI group. The subsequent longitudinal analysis using the data set across all the time 283 
points highlighted significant changes in the lipidome over time in AD converters relative to CN and AD-like 284 
MCI relative to non AD-like MCI groups. These highlight the potential of lipidomic studies to improved our 285 
understanding of the relationships between lipid metabolism and progression to AD. Lipidomic biomarkers 286 
also show promise to improve clinical risk assessment and management of older individuals at risk of AD.  287 

Methods 288 

Participants 289 

Alzheimer's Disease Neuroimaging Initiative (ADNI)-1, -2 and -GO (http://adni.loni.usc.edu/) is a longitudinal 290 
study, recruiting 1,517 individuals over 55 years old at baseline. At intervals of 6-12 months, blood and 291 
clinical data were collected from each individual, up to a maximum of 10 years. Lipidomic profiling was 292 
performed on all blood samples, with 4,873 plasma samples examined from baseline up to the 13th time 293 
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point (at 10 years followed up). After filtering 143 missingness, we ended up with 4,730 samples in total. At 294 
baseline, there were originally 1,418 individuals, of which we excluded 25 individuals with missing values (10 295 
missing cognitive scores, 3 missing fasting information, and 12 missing BMI). Thereby, there remained 1,393 296 
participants at baseline in the study.  297 

The definition of probable AD in ADNI followed the NINDS-ADRDA criteria44. In brief, individuals with Mini-298 
Mental State Exam (MMSE) scores between 20 and 26 (inclusive) and a Clinical Dementia Rating Scale (CDR) 299 
of 0.5 or 1.0 were classified as AD patients45. Participants were defined as MCI if they had MMSE scores 300 
between 24 and 30, a memory complaint, objective memory loss measured by education-adjusted scores on 301 
Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence of significant levels of impairment in other 302 
cognitive domains, and essentially preserved activities of daily living46.  303 

We further defined the longitudinal status of AD diagnosis group. At baseline, there were 437 CN, 713 MCI, 304 
and 243 AD cases. Among all these 1,393 participants, we defined two categories according to their changes 305 
of diagnosis status over time: 1) AD converters – 329 participants whose status were CN/MCI at baseline but 306 
converted to AD later; 2) MCI converters – 71 CN progressed to MCI and stayed as MCI at the following time 307 
points. Additionally, we also observed there were 53 MCI reverted back to CN. And, there were 39 individuals 308 
(10 CN, 5 AD, and 24 MCI at baseline) whose status varied across time points. We treated these unstable 309 
individuals as undefined (might be affected by the medication usages) and removed them from the 310 
longitudinal analysis (though in our cross-section analysis such as AD-CN modelling, we still keep them in the 311 
analysis).   312 

Lipidomic profiling 313 

Lipidomic profiling was performed on all plasma samples (n=4,730) using our recently expanded, targeted 314 
lipidomic profiling strategy using reverse phase liquid chromatography coupled to an Agilent 6495C QqQ 315 
mass spectrometer. The lipid extraction and LC-MS/MS methodology, using scheduled multiple reaction 316 
monitoring (MRM), was as previously described15 with the addition of approximately 200 novel lipid species 317 
from 17 lipid classes24. Further details about our latest methodology to measure these lipids are described 318 
on our laboratory website (https://metabolomics.baker.edu.au/method/).  319 

Overall, there were 781 lipid species from 49 lipid classes quantified. Single ion monitoring (SIM) and neutral 320 
loss (NL) are two types of measurements for the same TG lipid species, with NL measurements more specific 321 
and sensitive. To avoid the redundancy and improve the accuracy in our modelling analysis, we excluded 32 322 
TG[SIM] lipids, retaining 749 lipid species from 48 lipid classes in this study. The details for all the lipid species 323 
and classes were listed in Supplementary Table 1.  324 

Statistical analysis 325 

In the following analysis, log10 transformation followed by a standard normalisation (zero mean and one-326 
unit standard deviation) was performed on individual lipid species across repeated measurement of all 327 
participants. We introduced the covariate set including age, sex, BMI, HDL-C, total cholesterol, triglycerides, 328 
fasting status, cohort (a categorical variable indicating ADNI 1, GO, and 2 phases), omega-3, and statin status 329 
for the following models.  330 

Development of an AD-CN model. We sought to use the normalised lipidomic data on AD subjects (n=243) 331 
and cognitive normal individuals (CN; n=408) at baseline to build the classification model. Further, we applied 332 
the model to stratify non-converting MCI (n=413) from AD converters (n=329). Ridge regression models were 333 
created to stratify AD from CN, optimizing C-statistic using the R package ‘glmnet v4.1-4’. Five models were 334 
created from an external 5-fold cross-validation framework (Figure 1). All these models were adjusted for 335 
age, sex, BMI, APOE 4ߝ, HDL-C, total cholesterol, triglycerides, fasting status, cohort (a categorical variable 336 
indicating ADNI 1, GO, and 2 phases), omega-3, and statin status. Since we identified that two deDE lipid 337 
species (deDE(18:2) and deDE(20:4)) were strongly associated with dementia-related medication, in the 338 
models, we used the whole lipidomes except the two deDE lipid species as the main predictors.  339 

Beta coefficients from each cross-validation fold were averaged. This model was then applied to the non-340 
converting MCI group to generate the probabilities of the MCI individuals being “AD-like” or “non AD-like”. 341 
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In addition, the weights were separately applied to the whole dataset across different time points to 342 
generate overall AD risk scores for each individual at each time. 343 

The metabotype conservation index. As changes in metabolic phenotypes (metabotype) over time can be 344 
indications for disease onset or progression47, we used the metabotype conservation index described by 345 
Yousri et al.48 to quantify the stability of the metabotype of ADNI participants over time. This analysis was 346 
restricted to comparisons between baseline and follow up visits after 12 and 24 months, which had 755 347 
common participants with samples across baseline, 12 month and 24 months. 348 

As pairwise correlation-based metrics can be distorted by the strong correlation structure observed for lipid 349 
measurements, we first aggregated strongly correlated lipids into representative variables (“eigenlipids”). 350 
To this end, we first clustered lipid concentrations at baseline using weighted correlation network analysis 351 
using the R packages WGCNA (version=1.71)49 and dynamicTreeCut (version=1.63.1)50. We used a soft 352 
threshold of 0.86, which was closest to the recommended threshold of 0.9 51 and corresponded to a power 353 
of 10 used for the calculation of the adjacency matrix. We then calculated the topological overlap matrix 354 
(TOM) using the adjacency matrix. The resulting distance matrix was used for hierarchical clustering and the 355 
dendrogram was cut using the hybrid method of the cutTreeDynamic-function using the following 356 
parameters: deepSplit=3, pamDendroRespect=TRUE, and minClusterSize = 2. The latter was chosen to 357 
sensitively extract clusters that capture all strong correlations down to at least two lipids. We then calculated 358 
one eigenlipid for each individual cluster by extracting its first principal component. Metabolites in the 359 
outgroup were retained as separate features. We additionally provide results for several other values of the 360 
parameter minClusterSize (5, 10, and the default value of 20). Cluster assignments for each lipid across 361 
settings is provided in Supplementary Table 12, with results for higher values of the minimum cluster size (5, 362 
10, and 20) in Supplementary Figure 6 and Supplementary Table 3.  363 

Projecting the cluster and outgroup assignment from baseline to 12 months and 24 months, we obtained 364 
longitudinal measures to calculate the metabotype conservation index ܮ௖ሺݔሻ for subject ݔ as 365 ܮ௖ሺݔሻ = 1 − ሻݔሺ݇݊ܽݎ − 1ܰ − 1 , 366 

where ݇݊ܽݎሺݔሻ = ܰ − ݖ and ݖ = ห൛ݕ ∈ ۥܰ,1ۤ ≠ ௫௕௟ܮ௣൫ߩ | ݔ , ௫௙௨൯ܮ ≥ ௫௕௟ܮ௣൫ߩ ,  ௬௙௨൯ൟห, with ܰ being the 367ܮ
number of subjects, ܮ௜௕௟  being the aggregated lipidomics profile of subject ݅ at baseline, ܮ௜௙௨ being the 368 
aggregated lipidomics profile of subject ݅ at follow up, and ߩ௣൫ܮ௜௕௟ ,  ௝௙௨൯ being the Pearson correlation 369ܮ
coefficient of the lipidomics profile of subject ݅ at baseline and the lipidomics profile of subject ݆ at follow 370 
up for ݔ, ݅, ݆ ∈  ሻ  ranges between 0 and 1, with 0 meaning no conservation and 1 371ݔ௖ሺܮ The resulting .ۥܰ,1ۤ
meaning maximal conservation. We compared proportions of individuals with Ic = 1 and Ic < 1 per diagnostic 372 
group using Fisher’s exact test, considering the stable CN group as reference. The resulting distribution of Ic 373 
values smaller than 1 (i.e., individuals whose lipid profiles change over the two-year period) were compared 374 
across diagnostic groups using the Wilcoxon rank sum test. For assessing changes in the Ic distribution 375 
globally between baseline to 12 months and baseline to 24 months, we used both paired t-tests and the 376 
Wilcoxon test. 377 

Longitudinal analysis using linear mixed models. We calculated linear mixed models using repeated 378 
measurements across 13 time points to examine the associations between AD diagnosis state and trajectory 379 
of lipid species (either species level or overall lipidomic scores) over time using the interaction between time 380 
points and AD state. In the model, we treated normalised individual lipid species or overall lipidomic scores 381 
as the independent variables, and AD diagnosis state (the category variable) as the main predictor and 382 
adjusted the models with a list of covariates of age (at baseline), sex, BMI, HDL-C, total cholesterol, 383 
triglycerides, fasting status, cohort, time point (treated as continuous variable), omega-3, and statin status. 384 
The interaction between time point and AD diagnosis was introduced into the model, which is the key term 385 
for examining the trajectory of lipid species over time among AD states.  In the model, we perform two sets 386 
of longitudinal analyses on different subsets of the population to: 1) examine the difference in the trajectory 387 
of lipid species among AD patients, CN, and non-converting MCI group (AD-like or non AD-like) using the 388 
whole population (excluding the converters); 2) use the changes in lipid species to predict the AD converters 389 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.07.23291081doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.07.23291081


on the population excluding all prevalent AD cases. The lme4 package in software R 3.6.2 was used to 390 
perform the linear mixed models. 391 

Sensitivity analysis. We performed sensitivity analysis to examine whether the cross-sectional associations 392 
between AD state (AD cases vs CN) and lipid species are consistent across the major time points (baseline, 393 
12 months, and 24 months). To perform this, we used linear regression with lipid species as the independent 394 
variable, and AD state as the main predictor. 395 

To assess whether anticholinesterases were associated with specific lipid trajectories, random forest 396 
backward selection52 was performed using the Boruta function implemented within the Boruta R package 397 
(version 7.0.0). The calculated predictive value (termed as variable importance, calculated across 100 398 
permutations of the original dataset) reflects the strength of the association between medications and the 399 
changes in lipid species.  Predictive values of medication (grouped by ATC codes) on lipids with importance 400 
larger than 30 (mean + 4 standard deviations) were chosen as highly relevant52.  401 

We performed another sensitivity analysis to evaluate whether the trajectories of lipid species within MCI 402 
converters behaved similarly as those within AD converters. To do this, linear mixed models was carried out 403 
to examine the associations of trajectory of lipid species with the combination of MCI converters and AD 404 
converters relative to non-converting CN and MCI groups.  405 

Data Availability 406 

The results published here are in whole or in part based on data obtained from the AD Knowledge Portal.  407 
ADNI associated data is also available from the Laboratory of Neuro Imaging Image and Data Archive at 408 
https://ida.loni.usc.edu/login.jsp. 409 
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Tables 573 
Table 1. The basic characteristic of participants at Baseline, 12m and 24m. 574 

Baseline 
 Stratified by AD disease status  

n 
CN MCI AD Converters AD P values* 
408 413 329 243  

age (mean (SD)) 74.14 (5.99) 71.85 (7.67) 74.22 (6.85) 74.93 
(7.64) 1.32x10-08 

Sex= Male (%) 202 (49.3) 234 (56.7) 195 (59.6) 137 (56.4) 3.04x10-02 
HDL-C (mean (SD)) 1.54 (0.38) 1.51 (0.37) 1.55 (0.37) 1.54 (0.36) 5.01x10-01 
chol (mean (SD)) 4.91 (0.94) 4.98 (0.95) 5.02 (0.96) 5.03 (0.99) 3.70x10-01 
trig (mean (SD)) 1.18 (0.56) 1.17 (0.53) 1.17 (0.52) 1.17 (0.48) 9.84x10-01 
fasting = Yes (%) 393 (95.4) 398 (96.4) 311 (94.8) 230 (95.0) 7.50x10-01 

BMI (mean (SD)) 27.25 (4.85) 27.37 (4.77) 26.59 (4.73) 25.78 
(4.12) 9.15x10-05 

APOE4 (%)     2.81x10-36 
0 302 (73.3) 240 (58.1) 120 (36.6) 77 (31.8)  
1 99 (24.0) 140 (33.9) 161 (49.1) 115 (47.5)  
2 11 (2.7) 33 (8.0) 47 (14.3) 50 (20.7)  

12 months 
 Stratified by AD disease status 

n CN MCI AD Converters AD P values* 
334 397 208 249  

age (mean (SD)) 74.86 (6.24) 73.39 (7.54) 74.76 (7.09) 76.12 
(7.56) 2.22x10-05 

Sex= Male (%) 166 (49.7) 237 (59.7) 112 (53.8) 141 (56.6) 5.28x10-02 
HDL-C(mean (SD)) 1.55 (0.37) 1.51 (0.38) 1.61 (0.37) 1.56 (0.39) 7.60x10-03 
chol (mean (SD)) 4.90 (0.88) 4.97 (0.98) 5.19 (1.00) 5.06 (1.09) 1.53x10-02 
trig (mean (SD)) 1.15 (0.54) 1.23 (0.53) 1.16 (0.54) 1.19 (0.49) 3.90x10-02 
fasting = Yes (%) 312 (93.4) 377 (94.7) 196 (94.7) 235 (93.6) 7.83x10-01 

BMI (mean (SD)) 26.99 (4.57) 27.35 (4.74) 26.56 (5.07) 25.68 
(4.18) 1.71x10-04 

APOE4 (%)     3.98x10-30 
0 247 (74.0) 234 (58.8) 77 (37.2) 83 (33.1)  
1 79 (23.7) 131 (32.9) 100 (48.3) 117 (46.6)  
2 8 (2.4) 33 (8.3) 30 (14.5) 51 (20.3)  

24 months 
 Stratified by AD disease status 

n CN MCI AD Converters AD P values* 
380 341 220 148  

age (mean (SD)) 75.58 (6.13) 74.12 (7.63) 75.78 (6.95) 77.13 
(7.48) 1.00x10-04 

Sex= Male (%) 184 (48.4) 199 (58.4) 131 (59.5) 82 (55.4) 1.85x10-02 
HDL-C (mean (SD)) 1.56 (0.37) 1.54 (0.40) 1.55 (0.37) 1.48 (0.36) 1.30x10-01 
chol (mean (SD)) 4.94 (0.92) 4.95 (0.96) 4.98 (0.95) 4.96 (0.98) 9.71x10-01 
trig (mean (SD)) 1.16 (0.57) 1.16 (0.52) 1.24 (0.61) 1.24 (0.51) 6.17x10-02 
fasting = Yes (%) 349 (92.3) 322 (94.4) 206 (94.1) 136 (91.9) 5.91x10-01 

BMI (mean (SD)) 27.16 (4.88) 26.93 (4.68) 26.46 (5.18) 25.68 
(3.53) 6.70x10-03 

APOE4 (%)     6.06x10-34 
0 279 (73.4) 204 (59.8) 77 (35.0) 44 (29.7)  
1 92 (24.2) 113 (33.1) 103 (46.8) 73 (49.3)  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.07.23291081doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.07.23291081


2 9 (2.4) 24 (7.0) 40 (18.2) 31 (20.9)  
*P values were obtained using either Fisher’s exact test for categorical variables or ANOVA for continuous 575 
variable.  576 
 577 
Table 2. The association of overall lipidomic scores with AD diagnosis (Intercept and trajectory). 578 

AD diagnosis 
groups 

Associations in intercept Associations in trajectory 

Beta* 95% CI  
(Lower) 

95% CI  
(Upper) P value Beta# 95% CI  

(Lower) 
95% CI  
(Upper) P value 

non AD-like MCI 
vs. non-converting 

CN 
-0.192 -0.306 -0.077 1.07x10-03 0.049 0.026 0.072 2.63x10-05 

AD-like MCI vs. 
non-converting CN 0.759 0.621 0.897 3.23x10-26 -0.046 -0.071 -0.021 3.78x10-04 

AD vs. non-
converting CN 0.699 0.575 0.823 2.73x10-27 -0.003 -0.033 0.026 8.39x10-01 

AD converters vs. 
non-converters 

(CN+MCI) 
0.531 0.405 0.657 3.20x10-16 -0.026 -0.044 -0.009 3.27x10-03 

*Mean difference in intercept. 579 
#Mean change in slope over time. 580 
 581 
 582 
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Figures. 583 
 584 

 585 
Figure 1. Study design.  586 
This study had three parts. Part 1 involved the development of an AD-CN risk model, using baseline data, to 587 
characterise the heterogeneity of the non-converting MCI group and to calculate lipidomic risk scores for 588 
individuals across different time points. A ridge regression model, built within a five-fold cross-validation 589 
framework was used to stratify the non-converting MCI group into AD-like and non AD-like sub-groups. In 590 
the development of the model, we treated AD-CN status as outcome with the predictors including all the 591 
lipid species, age, sex, BMI, and APOE 4ߝ. Part 2 involved the calculation of a metabotype conservation index 592 
to quantify the stability of the lipidome over time. Part 3 was the longitudinal analysis on the repeated 593 
measurements across 13 time points to examine the associations of changes in lipid species and lipidomic 594 
risk scores with AD status. Associations of the trajectories of individual lipid species and disease outcomes 595 
were examined using linear mixed models to undercover the difference of trajectories of lipid species 596 
between different groups. The covariates included age, sex, BMI, HDL-C, triglycerides, cholesterol, fasting 597 
status, omega-3, and statin status. Thereafter, global lipidomic scores combing all lipid species derived from 598 
the AD-CN model were fitted into a linear mixed model to define the associations with disease outcomes. 599 
Similarly, the covariate set included age, sex, BMI, clinical lipids, fasting status, omega-3, and statin status. 600 
 601 
 602 
 603 
 604 
 605 
 606 
 607 
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 608 

 609 
Figure 2. Metabotype conservation index. a. Comparison of metabotype conservation index (Ic) across two 610 
time intervals (baseline to 12 and 24 months, respectively). b. Boxplot comparing the distribution of Ic 611 
values < 1 between diagnostic groups after 24 months. P-values are calculated using the Wilcoxon rank 612 
sum test and show a significantly lower Ic in the AD group compared to the CN group. For visualization 613 
purposes, we transformed the index using -log10(1 - Ic). 614 
 615 

 616 
Figure 3. The associations of lipid species with AD state (AD vs CN).  617 
a. The associations of lipid species with AD versus CNl at different time points; b. Pearson correlations of 618 
beta coefficients among baseline, 12 months, and 24 months. Linear regression models of lipid species 619 
against AD adjusted for age, sex, BMI, clinical lipids, fasting status, cohort, omega-3, and statin status were 620 
performed on each time point (baseline, 12 month and 24 months). The coefficients were exacted from plot 621 
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a  and compared in the scatter plot  b.  Grey dots = not significant; blue dots = uncorrected p < 0.05; red dots 622 
= BH corrected p < 0.05, whiskers showed 95% confidence intervals. 623 
 624 

 625 
Figure 4. Prediction performance on training set (left) and testing set (right).  626 
Ridge regression model under 5-folds CV framework was performed using the disease status (training set - 627 
AD and CN group) as the binary outcome with a list of covariates including age, sex, BMI, fasting status, 628 
clinical lipids, cohort, omega-3, and statin status. The models were validated on non-converting MCI and 629 
converter groups with converters treated as true positives.  630 
 631 
 632 
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 633 
Figure 5.  The proportion of converters in stratified non-converting MCI and converter groups.  634 
a. The proportions of individuals converted to AD at different time points between high AD and low AD risk 635 
groups (combination of non-converting and AD converters) were plotted in the Kaplan-Meier plot. The 636 
fisher’s exact test showed the distribution of converters in the high and low AD risk groups.  b. The exact 637 
numbers of converters out of the total number of individuals at each time point were detailed in brackets.  638 
 639 
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 640 
Figure 6. The performance of Lipidomic scores from AD-CN model across baseline, 12 months), and 24 641 
months.  642 
a ROC AUC curves across baseline (red), 12 months (blue), and 24 months (green); b The AUC and 95% 643 
confident interval across baseline (red), 12 months (blue), and 24 months (green). The weights were first 644 
generated from ridge regression models on AD-CN data set at baseline using five-folds cross-validation. 645 
Then, the weights were separately applied to baseline, 12 months, and 24 months to generate the 646 
lipidomic scores at different time points. Further, the AUC was calculated on the lipidomic scores and the 647 
AD diagnosis status of each individuals (binary variable - AD and non-AD status that was the combination of 648 
CN and MCI). 649 
  650 
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   651 

 652 

 653 
Figure 7. Trajectory of lipid species between different AD diagnosis groups.  654 
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The linear mixed model was performed to examine the association of the changes of individual lipid species 655 
with AD diagnosis state: a. After excluding the AD converters, we compared trajectory of lipid species 656 
between the AD (652) vs non-converting CN (1,049), AD-like MCI (433) vs non-converting CN (1,049), and 657 
non AD-like MCI (781) vs non-converting CN (1,037); b. Using the similar model in the data sets excluding AD 658 
cases, we compared the converters (1,353) vs non-converter groups (the combination of non-converting CN 659 
and two non-converting MCI groups; 2,283). The covariates included age, sex, BMI, fasting status, HDL-C, 660 
total cholesterol, triglycerides, cohort, omega-3, and statin status; c. The trajectory of selected individual 661 
lipid species was further examined among the diagnosis groups of non-converting CN, AD converters, and 662 
AD using the above linear mixed model on the data set excluding MCI. 663 
 664 
 665 

    666 
Figure 8. Trajectory of AD-CN scores between different AD diagnosis groups.  667 
a. The change of scores among non-converting CN, non AD-like MCI, AD-like MCI, and AD; b. The change of 668 
scores between AD converters and non converters (the combination of non-converting CN and MCIs).  669 
Linear mixed model was used to examine the changes of AD-CN scores among AD diagnosis groups 670 
adjusted by age, sex, BMI, fasting status, AD diagnosis status at baseline, total cholesterol, HDL-C, 671 
triglycerides, cohort, omega-3, and statin status.  672 
 673 
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