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Abstract 1 

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established therapy in 2 

advanced Parkinson’s disease (PD). Motor and non-motor outcomes, however, show 3 

considerable inter-individual variability. Morphometry-based metrics have recently received 4 

increasing attention to predict treatment effects. As evidence for the prediction of non-motor 5 

outcomes is limited, we sought to investigate the association between metrics of voxel-based 6 

morphometry and short-term non-motor outcomes following STN-DBS in this prospective 7 

open-label study. 49 PD patients underwent structural MRI and a comprehensive clinical 8 

assessment at preoperative baseline and 6-month follow-up. Voxel-based morphometry was 9 

used to assess associations between cerebral volume and non-motor outcomes corrected for 10 

multiple comparisons using a permutation-based approach. We replicated existing results 11 

associating atrophy of the superior frontal cortex with subpar motor outcomes. Non-motor 12 

outcomes, however, were not associated with morphometric features, limiting its use as a 13 

marker to inform patient selection and holistic preoperative counselling. 14 

  15 
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Introduction 1 

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established therapy for 2 

the treatment of motor and non-motor symptoms in advanced Parkinson’s disease (PD).1-3 3 

Despite its well-established effects at the group level, individual symptom relief varies 4 

significantly, complicating preoperative patient selection and counselling.4 To predict 5 

outcomes and support preoperative management, neuroimaging-based biomarkers using 6 

advanced imaging technologies, such as tractography and functional MRI, have proven 7 

useful.4,5 Their widespread clinical application, however, is limited by the need for additional 8 

and sometimes time-consuming scanning protocols and the expertise to analyse and translate 9 

their results.6 Therefore, the association of postoperative outcomes with metrics based on T1-10 

weighted sequences obtained in clinical routine during surgical planning has been 11 

investigated. Particularly, analyses focussing on morphometric tissue features, such as voxel-12 

based morphometry (VBM), have lately received increasing attention to monitor clinical 13 

progression and treatment effects.6 In a recent meta-analysis including 1253 patients enrolled 14 

in 24 studies, Wang and colleagues identified specific areas whose morphometric features 15 

were associated with outcomes following STN-DBS.6 Here, atrophy of the motor cortex and 16 

thalamus was associated with below-average improvement in motor symptoms. On the other 17 

hand, outcome prediction of non-motor symptoms has received little attention, with studies 18 

focusing on cognitive decline and immediate psychiatric alterations such as postoperative 19 

confusion, delirium, and impulsivity.6 Poor outcomes in verbal memory were associated with 20 

hippocampal atrophy at baseline, while immediate psychiatric complications were related to 21 

caudal middle frontal cortex atrophy.6 As STN-DBS is associated with beneficial short-term 22 

outcomes in a range of non-motor symptoms such as sleep/fatigue, attention/memory, and 23 

mood/apathy,7,8 in the present study, we sought to explore the association between a large 24 

spectrum of non-motor symptoms and volumetric properties. 25 
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Results 1 

Clinical outcomes 2 

Forty-nine patients with PD (31 males, mean age 64.5 ± 8.2 years) were enrolled. At the six 3 

month follow-up, the following scales improved: NMSS total score (p=.006, Cohen’s d=.46), 4 

PDQ-8 SI (p<.001, Cohen’s d=.52), UPDRS III (p=.023, Cohen’s d=.45), SCOPA-M 5 

activities of daily living (p<.001, Cohen’s d=.56), SCOPA-M motor complications (p<.001, 6 

Cohen’s d=.85), and LEDD (p<.001, Cohen’s d=1.06). Analysis of NMSS domains revealed 7 

beneficial effects of STN-DBS on sleep/fatigue (p=.003, Cohen’s d=.55), perceptual 8 

problems/hallucinations (p=.023, Cohen’s d=.39), urinary symptoms (p=.023, Cohen’s 9 

d=.35), and miscellaneous symptoms (p<.001, Cohen’s d=.68). Longitudinal changes of 10 

clinical outcomes are reported in Table 1. 11 

 12 

Association of morphometry surrogates and postoperative motor symptom 13 

change 14 

A multiple regression analysis assessed the relationship between motor response to STN-DBS 15 

and morphometry surrogates. Following a threshold-free cluster enhancement (TFCE) 16 

approach to correct for multiple comparisons, a cluster within the bilateral superior frontal 17 

cortex showed a positive association with changes in postoperative motor function. 18 

 19 

Association of morphometry surrogates and postoperative non-motor symptom 20 

change 21 

No significant associations were observed between morphometry surrogates and change 22 

scores of NMSS-T and NMSS-domains, following a TFCE approach to correct for multiple 23 

comparisons.  24 

 25 
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Discussion 1 

In the present study, we investigated the association between brain morphometric features and 2 

changes in clinical outcomes following STN-DBS in PD. We replicated findings that impaired 3 

integrity of the frontal cortex is associated with subpar improvement in motor symptoms 4 

following STN-DBS. In contrast, changes in non-motor symptoms were not associated with 5 

features of brain morphometry. 6 

Employing a whole brain voxel-based morphometry analysis, we identified an association 7 

between reduced volume of the bilateral superior frontal cortex and poor motor outcomes 8 

after neurostimulation in PD. This finding is consistent with previous studies demonstrating 9 

an association between poor motor outcomes and reduced cortical thickness and a diminished 10 

volume of this region.9,10 Importantly, the superior frontal cortex comprises the critical 11 

structures of the motor network for movement generation and control.9,11,12 Information 12 

processing within this network is altered in PD and modulated by dopaminergic replacement 13 

therapy and DBS, resulting in improved motor function.13,14 In STN-DBS, this modulation is 14 

in part elicited by antidromic conveyance of stimulation signals via the hyperdirect pathway 15 

that directly links the subthalamic nucleus to structures of the motor network.15 Consequently, 16 

integrity of the frontal cortex seems crucial for STN-DBS to exert its effects and might serve 17 

as a marker to predict motor response after DBS surgery. In future studies, larger sample sizes 18 

in multicentre cohorts are needed to define patient-specific thresholds and thus implement 19 

bilateral superior frontal cortex volume as a biomarker for individual outcome prediction. 20 

Contrary to our expectations, there were no associations between morphometric features and 21 

postoperative changes in non-motor symptoms. The effect sizes of postoperative motor and 22 

non-motor symptom change were similar and we observed the aforementioned association 23 

between motor symptoms and brain morphometric features. Therefore, we reason that our 24 

findings for non-motor symptoms genuinely reflect the absence of an effect rather than being 25 
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attributed to low sensitivity. As non-motor symptoms constitute a heterogeneous group of 1 

symptoms,16,17 several aspects have to be considered when interpreting the present findings.  2 

First, this study investigated the brain areas associated with postoperative changes in a wide 3 

range of non-motor symptoms assessed by the NMSS total and its domain scores. Previous 4 

studies found limited evidence of an association between cortical atrophy and postoperative 5 

changes in various cognitive functions.18 Lower hippocampal volume, however, has been 6 

associated with a postoperative decline in verbal memory.18,19 In the present study, lower 7 

hippocampal volumes were associated with less postoperative changes in the attention and 8 

memory domains, although these results did not survive TFCE correction. The lack of 9 

significant results in this domain might be attributed to the presumably low sensitivity of the 10 

NMSS to detect subtle changes in a single cognitive domain. The NMSS is a clinician-rated 11 

scale investigating a wide range of NMS across nine domains whereby symptoms are rated 12 

according to severity and frequency. Thus, it is not intended to evaluate specific cognitive 13 

domains but global cognition and to assess the progress or treatment response of a wide range 14 

of non-motor symptoms.20  15 

Second, the present study investigated the association between brain morphometry and short-16 

term non-motor outcomes, not the development or worsening of pre-existing non-motor 17 

symptoms, which may result from progression of Parkinson’s disease rather than from 18 

neurostimulation. In this context, Aybek and colleagues identified hippocampal volume as a 19 

marker to predict postsurgical conversion to dementia in a long-term, i.e., 25 months, follow-20 

up.21 Patients with Parkinson’s disease dementia had smaller preoperative hippocampal 21 

volumes than patients without conversion. The authors concluded that hippocampal atrophy is 22 

a potential clinical marker to predict postoperative conversion to dementia, but that the 23 

postsurgical development is due to the disease progression rather than the procedure itself.21 24 

As the present study investigated short-term outcomes only, further studies investigating the 25 

relationship between brain morphometry and long-term non-motor outcomes are needed.  26 
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Third, it is now widely accepted that the DBS effects are mediated via mechanisms on 1 

multiple levels, encompassing the micro- (e.g., local spiking activity), meso- (e.g., local field 2 

potentials), and macro-scale (e.g., interregional networks).22 In particular, network effects of 3 

DBS have received increasing attention in recent years, and it has been postulated that 4 

integrating a patient’s connectome into surgical planning could facilitate personalised DBS 5 

therapy.4 Non-motor outcomes following STN-DBS depend on the location of 6 

neurostimulation.22 Furthermore, previous studies have associated the stimulation of specific 7 

fibre tracts with postoperative outcomes such as depression and impulsivity.23,24 In summary, 8 

neuromodulation of subcortical brain regions and connected functional brain networks is 9 

associated with non-motor outcomes, whereas cortical atrophy evident in routine MRI scans is 10 

not. The clinical implication of our study is that atrophy in the prefrontal cortex should be 11 

considered as an MRI biomarker of subpar motor outcome of STN-DBS, whereas cortical 12 

atrophy may not indicate worse non-motor outcomes. Compared to these metrics of 13 

morphometry based on routine MRI examinations, it is conceivable that more advanced 14 

imaging techniques, e.g., markers of cerebral microstructure, such as neurite density, and 15 

connectivity measures are more sensitive to map non-motor treatment effects.25 16 

 17 

Limitations 18 

First, despite being one of the largest cohorts of its kind, the sample size is relatively small. 19 

Nonetheless, it is unlikely that our sample was underpowered because the effect size of 20 

postoperative changes of motor and non-motor symptoms was comparable (Cohen’s d: .45, 21 

respectively .46) and we observed an association between metrics of morphometry and motor, 22 

but not non-motor outcomes. Second, we did not employ scales that specifically measure 23 

certain motor and non-motor symptoms, such as the Bain and Findley tremor scale for tremor, 24 

the Parkinson’s disease Sleep Scale (PDSS) for sleep, or the Montreal Cognitive Assessment 25 

(MoCA) for cognitive symptoms as we were interested in the association between brain 26 
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morphometry and global motor and non-motor symptom burden. Therefore, we chose the 1 

UPDRS-III and the NMSS-T, which represent composite scores for motor and non-motor 2 

symptom severity. Furthermore, we wanted to ensure consistency with prior studies 3 

employing the UPDRS-III as an outcome parameter. Third, the exact scanning parameters 4 

(e.g., repetition-time (TR) and echo-time (TE)) differed slightly across the sample. In a 5 

previous study, however, our group demonstrated that results remained consistent even after 6 

integrating scanning parameters into the regression analysis.26 7 

 8 

Conclusion 9 

Our study supports the importance of intact superior frontal cortex integrity as a predictor for 10 

motor outcomes in PD patients undergoing STN-DBS. Despite several advantages, including 11 

being based on scans implemented as a standard preoperative procedure, the short scanning 12 

time, and established pipelines in analysing and interpreting findings, our results indicate that 13 

the use of VBM as a measure to inform the patient selection and preoperative counselling is 14 

limited to motor effects and does not extend to non-motor effects of STN-DBS. 15 

 16 

Methods 17 

Participants 18 

Patients were enrolled in this prospective, observational, ongoing study upon written informed 19 

consent in a single centre (University Hospital Cologne). Clinical diagnosis of PD was based 20 

on the UK Brain Bank Criteria, and indication for DBS surgery was established according to 21 

international guidelines.27,28 Exclusion criteria comprised pathological MR imaging, clinically 22 

relevant cognitive impairments, and impaired visual and auditory function. The study was 23 
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carried out following the Declaration of Helsinki and approved by the University of Cologne 1 

ethics committee (study no.: 12-145; German Clinical Trials Register: DRKS00006735). 2 

 3 

Clinical Assessment 4 

Clinical assessments were conducted at the preoperative baseline in the ON-medication state 5 

(MedON) and six months after DBS surgery in the ON-medication/ON-stimulation state 6 

(MedON/StimON). Standardised case report forms were used to collect demographic and 7 

clinical data on both study visits, including a comprehensive neuropsychological assessment 8 

which comprised the following scales:  9 

 10 

(1) The Non-motor Symptoms Scale (NMSS) is a scale evaluated by clinicians that 11 

consists of 30 items, which assess nine domains of non-motor symptoms, including (1) 12 

cardiovascular, (2) sleep/fatigue, (3) mood/apathy, (4) perceptual 13 

problems/hallucinations, (5) attention/memory, (6) gastrointestinal tract, (7) urinary, 14 

(8) sexual function, and (9) miscellaneous. The miscellaneous category includes 15 

questions regarding pain, the ability to smell/taste, weight change, and excessive 16 

sweating. The NMSS has been frequently used in DBS studies for PD.29-31 The score 17 

on this scale ranges from 0, indicating no impairment, to 360, indicating maximum 18 

impairment, while the symptoms are evaluated over the past four weeks.20  19 

(2) The PD Questionnaire (PDQ)-8 is a self-reported short form of the PDQ-39 that 20 

assesses eight dimensions of quality of life (QoL) in patients with PD. The PDQ-8 has 21 

been frequently used in DBS studies for PD.32-34 The scale is reported as a summary 22 

index (SI) and ranges from 0, indicating no impairment, to 100, indicating maximum 23 

impairment. 2,35,36  24 
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(3) The Unified Parkinson’s Disease Rating Scale part III (UPDRS-III) is a clinician rated 1 

scale evaluating motor symptom severity. The UPDRS-III ranges from 0 (no motor 2 

impairment) to 108 (maximum motor impairment).{Fahn, 1987 #602} 3 

(4) The Scales for Outcomes in PD – Motor Function (SCOPA-M) is a scale evaluated by 4 

clinicians that assesses different dimensions of function in PD patients, including 5 

activities of daily living and motor complications. The subscale scores range from 0 6 

(no impairment) to 21 for activities of daily living and 12 for motor complications.37  7 

The levodopa equivalent daily dose (LEDD) was calculated based on the method described by 8 

Jost et al.38 Demographic and clinical characteristics are outlined in Table 1.  9 

 10 

MRI Data Acquisition 11 

MRI acquisitions were performed on a 3 T MRI system (Ingenia 3.0T, Philips Healthcare) in 12 

a single centre (Cologne). Each PD patient in the MedON underwent a 3D T1-weighted 13 

Magnetization Prepared - RApid Gradient Echo sequence (MPRAGE) at baseline. 14 

At the time of image acquisition, images were investigated to be free of motion or ghosting 15 

and high frequency or wrap-around artefacts.  16 

 17 

Image Processing  18 

Voxel-based morphometry was performed within the Computational Anatomy Toolbox 19 

(CAT) analysis suite (CAT12.8.2, University Hospital Jena, Jena, Germany)39 implemented in 20 

Statistical Parametric Mapping 12 (SPM12, Wellcome Department of Cognitive Neurology, 21 

London, United Kingdom). All steps were conducted in MATLAB R2022a (The MathWorks 22 

Inc., Natick, MA, USA), as reported previously by Jergas et al.26 In short, processing included 23 

spatial registration to a template brain, segmentation into cortical grey matter, white matter, 24 

and cerebrospinal fluid, calculation of total intracranial volume (TIV), and empirical quality 25 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 10, 2023. ; https://doi.org/10.1101/2023.06.07.23291019doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.07.23291019
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

control (QC) using default parameters. QC was performed within the QC framework of 1 

CAT12 with scans not rating lower than B-. Finally, data smoothing was performed using an 2 

8 mm full-width half-maximum isotropic Gaussian kernel.  3 

 4 

Statistical analysis  5 

Statistical analysis of clinical outcomes was performed using MATLAB R2018b. We 6 

employed the Shapiro-Wilk test to assess the assumption of normality. Subsequently, 7 

Wilcoxon signed-rank- or t-tests, when parametric test criteria were fulfilled, were employed 8 

to analyse changes between baseline and 6-month follow-up. The Benjamini-Hochberg 9 

method was used to control the false discovery rate and effect sizes were calculated according 10 

to Cohen.40,41 Reported p-values are two-sided and were accepted as significant where p<.05. 11 

Statistical voxelwise analysis of image data was performed using SPM12. Here, clinical 12 

outcomes were represented as change scores in UPDRS-III, NMSS-T, and NMSS-Domains 13 

and calculated according to the following equation:  14 

������������� � ������	��	
�� 

Associations between surrogates of brain morphometry and motor and non-motor outcomes 15 

were assessed using a multiple regression analysis with age, sex, and total intracranial volume 16 

as covariates. A threshold-free cluster enhancement (TFCE) was applied to correct for 17 

multiple comparisons as implemented in the TFCE Toolbox. Results were accepted as 18 

significant where family-wise error corrected p<.05. 19 

 20 
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Tables  1 

Table 1: Baseline characteristics and outcomes at baseline and 6-month follow-up 2 

 N M SD     
  

 

  

Age [y] 49 64.47 8.23 
 

      

Disease duration [y] 49 9.99 4.35 
 

      

Sex (female/male) [%] 49 18/31 [36.7/63.3] 
 

      

 
 

Baseline 
 

 
6-MFU 

 
 

Baseline vs.  
6-MFU 

 n M SD  n M SD  p Cohen’s d 

NMSS total score 49 51.1 25.2 
 

49 39.2 26.3 
 

.003 .46 

Cardiovascular 49 1.8 3.0 
 

49 1.4 2.0 
 

.656 .13 

Sleep / fatigue 49 13.2 9.1 
 

49 9.0 5.9 
 

.001 .55 

Mood / apathy 49 5.3 5.7 
 

49 6.6 12.1 
 

.409 -.13 

Perceptual problems / 
hallucinations 

49 1.9 3.9 
 

49 .7 2.1 
 

.012 .39 

Attention / memory 49 4.6 4.8 
 

49 3.7 4.1 
 

.201 .20 

Gastrointestinal 49 4.3 4.6 
 

49 5.0 5.8 
 

.733 -.12 

Urinary 49 9.8 8.9 
 

49 6.9 7.2 
 

.015 .35 

Sexual function 49 2.3 4.0 
 

49 1.6 2.9 
 

.111 .21 

Miscellaneous 49 8.1 6.5 
 

49 4.4 4.0 
 

<.001 .68 

PDQ-8 SI 43 33.0 16.3  48 24.9 14.5  <.001 .52 

UPDRS-III 49 24.4 10.7  45 19.7 10.0  .014 .45 

SCOPA-M activities of 
daily living 

49 8.0 2.7  49 6.3 3.2  <.001 .56 

SCOPA-M motor 
complications 

49 4.0 2.8  45 1.8 2.3  <.001 .85 

LEDD [mg] 49 1102 590.3  48 588.6 341.9  <.001 1.06 

Table 1: Demographic characteristics and outcome parameters at baseline and 6-month 3 

follow-up. Reported p-values are corrected for multiple comparisons using Benjamini-4 

Hochberg’s method (six scales). Bold font highlights significant results, p<.05.  5 

Abbreviations: 6-MFU = 6-month follow-up; LEDD = Levodopa equivalent daily dose; 6 

LEDD-DA: LEDD of dopamine agonists; NMSS = Non-Motor Symptom Scale; PDQ-8 SI = 7 
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8-item Parkinson’s Disease Questionnaire Summary Index; SCOPA-M = Scales for Outcomes 1 

in Parkinson’s disease-Motor; SD = Standard deviation, UPDRS III = Unified Parkinson’s 2 

Disease Rating Scale Part III 3 

 4 

 5 

Table 2: Association between brain morphometry and UPDRS-III 6 

Cluster Location p-Value MNI152-
Coordinates 

  X Y Z 

1 Left superior frontal cortex .029 -14 
 

51 
 

17 
 

2 Right superior frontal cortex .036 12 
 

41 
 

48 
 

Table 2. Characteristics of clusters with an association between metrics of voxel-based 7 

morphometry and postoperative change in UPDRS-III. “Cluster” denotes clusters with a 8 

significant association between grey matter loss and poor motor response to deep brain 9 

stimulation (DBS). “Location” indicates the anatomical landmark comprising the majority of 10 

voxels of a cluster, according to the Desikan-Killiany Atlas. P-Values are clusterwise p-values 11 

corrected for multiple comparisons. “MNI152-coordinates” describe the coordinates of the 12 

cluster’s center of gravity in MNI152-space.  13 

 14 

 15 
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Figures 1 

 2 

Figure 1. Visualisation of baseline and 6-month follow-up values of the Unified Parkinson’s 3 

Disease Rating Scale-part III (A) and Non-Motor Symptom Scale-total score (B).  4 

 5 
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 1 

Figure 2. Clusters with an association between metrics of voxel-based morphometry and 2 

postoperative change in UPDRS-III as revealed by the whole brain analysis. Results are 3 

displayed as surface overlays. Clusters denote regions of grey matter loss significantly 4 

associated with poor motor response to deep brain stimulation. P-Values were corrected for 5 

multiple comparisons using a permutation-based approach and thresholded at p<.05, family-6 

wise error-corrected.  7 
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