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Key points 

Question: How effective are image-based, computer-aided diagnostic models that use deep learning methods to 
predict the malignancy risk of pulmonary nodules as compared with other methods used in clinical practice? 

Findings: This systematic review and meta-analysis identified 20 observational studies (47,832 patients; 87,976 
pulmonary nodules) from which pooled analyses found deep learning-based models to have a sensitivity of 0.87, 
specificity of 0.80, and summary area under the curve of 0.90 in predicting malignancy in pulmonary nodules. 
This was superior or comparable to other methods routinely used in clinical practice. 

Meaning: Deep learning-based models are already being used in clinical practice in certain settings for nodule 
management. The results show their diagnostic performance justifies wider and more routine deployment. 

 

Abstract 

Importance. There has been growing interest in the use of artificial intelligence (deep learning) to help achieve 
early diagnosis of prevalent diseases. None moreso than in lung cancer, where a combination of factors, including 
the high prevalence of nodules, the low prevalence of malignant nodules, and the indeterminacy of many nodules 
mean that it is fertile ground for the deployment of accurate, high-throughput deep learning (DL)-based tools.  

Objective. To survey the landscape of externally validated DL-based CADx models, and assess their diagnostic 
performance for predicting the risk of malignancy in computed tomography (CT)-detected pulmonary nodules. 

Data sources. An electronic search was performed in the MEDLINE (PubMed), EMBASE, Science Citation Index, 
Cochrane Library databases (from inception to 10 April 2023). 

Study selection. Studies were deemed eligible if they were peer-reviewed experimental or observational articles 
that analysed the diagnostic performance of externally validated DL-based CADx models for the prediction of 
malignancy risk, with a direct comparison to models widely used in clinical practice. 

Data extraction and synthesis. PRISMA guidelines were followed for the identification, screening, and selection 
process. A bivariate random-effect approach for the meta-analysis on the included studies was used. Quality 
Assessment of Diagnosis Accuracy Studies 2 (QUADAS-2) was used to assess risk of bias and applicability. 

Main outcomes and measures. Main outcomes included sensitivity, specificity, and AUC. 

Results. After screening, 20 studies were included, comprising 47,832 patients and 87,976 nodules, of which 
4,147 were malignant. DL-based CADx models were 17.6% more sensitive than physician judgement alone, and 
33.8% more than clinical risk models alone. They had a similar pooled specificity as physician judgement alone 
(0.80 [95% CI: 0.72 –0.86] v 0.82 [95% CI: 0.76 –0.87], respectively), but were 9.6% more specific than clinical 
risk models alone. Accounting for threshold effects, DL-based CADx models had superior summary areas under 
the receiver operating characteristic curve (sAUROC), with relative sAUROCs of 1.06 (95% CI: 1.03–1.09) and 
1.22 (95% CI: 1.19–1.25), as compared to physician judgement and clinical risk models alone, respectively. 

Conclusions and relevance. DL-based models show superior or comparable diagnostic performance when 
externally validated against widely used methods, such as the Brock and Mayo models. They have the potential 
to fulfil an unmet clinical-management need alongside experienced physician image readers. The included studies 
reported a high degree of heterogeneity, with threshold effects particularly prominent. Future research may 
consider more prospective studies and human-experimental studies.  
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Introduction 

Five-year survival rates in the US for lung cancer fall from 73% at stage I to just 9–13% at stages IIIB and IV.1 
Hence, diagnosing lung cancer early is critical to reducing lung cancer mortality rates. Lung cancer is 
predominantly asymptomatic in its early stages, with pulmonary nodules often being the first sign.2 Pulmonary 
nodules are discrete lung lesions, measuring ≤30 mm in size (average of axial diameters). Approximately 5% of 
these nodules are malignant.3 Nodules, both benign and malignant, are detected in approximately 1.6 million 
people in the US each year.3 The majority of these are detected by computed tomography (CT) scans, of which 
more than 12 million are performed in the US each year.4 These facts combine to show that the detection and 
discrimination of pulmonary nodules are the most important means of diagnosing lung cancer early, and CT 
scans the most important modality. 

Pulmonary nodules are easy to detect, but difficult to discriminate. Assessing the risk of indeterminate nodules 
– nodules without obvious signs of benignity (such as calcification) or obvious signs of malignancy (such as 
spiculation) – pose a particular challenge.5 Multiple clinical risk prediction models are used to aid the physician 
in assesing nodules in order to diagnose lung cancer or refer high-risk cases for further, more invasive 
investigation. Most validated clinical risk models apply multivariable logistic regression to clinico-demographic 
predictors (such as age, family history, and smoking history) and radiological predictors (such as nodule size, 
morphology, and location). Externally validated models in clinical use include the Mayo model, Brock (or PanCan) 
model, and the Peking University People’s Hospital (PKUPH) model.6–8 

Recently, image-based artificial intelligence (AI) models that use deep learning (DL) methods have emerged to 
predict this malignancy risk.9 One of the advantages of image-based computer-aided diagnostic (CADx) models 
is their ease and speed of use versus traditional risk tools, which require manual entry of input data. This manual 
entry leads to low adoption rates, which may fall even further as the number of patients entering the care pathway 
increases. As such, adding DL capability to image-based CADx models has the potential to fulfil an unmet clinical-
management need, providing they produce comparable diagnostic performance.  

The objective of this systematic review and meta-analysis was to survey the landscape of externally validated 
DL-based CADx models, and assess their diagnostic performance for predicting the risk of malignancy in CT-
detected pulmonary nodules. Two previous systematic reviews have been conducted on studies of DL-based 
CADx models that diagnose lung cancer from pulmonary nodules,10,11 but none have conducted pooled analysis 
on models that have been externally validated against models currently used in clinical practice. External 
validation in populations other than the populations used to develop the new model is essential to ensuring 
they are sufficiently robust to stand alongside existing, validated, and widely used models. This is the first 
systematic review to provide such a pooled analysis of studies, in that it considers only those studies that directly 
compare DL-based CADx models with physician judgement, clinical risk models, or Lung-RADS-based models. 
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Methods 

Search strategy and screening 

An electronic search was performed in the MEDLINE (PubMed), EMBASE, Science Citation Index, and Cochrane 
Library databases (from inception to 10 April 2023). Relevant English-language studies only were sought. 
Duplicate studies, case reports & series, non-systematic review articles, non-peer reviewed studies, non-human 
studies, meeting abstracts & proceedings, and unpublished studies were all excluded. The full set of keyword 
search terms may be found in eTable 1 in the Supplementary Material. Reference lists of key studies and domain-
related systematic reviews were investigated for further studies that the search may have missed. This study 
followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting 
guidelines.12 

A total of 7,116 studies were found after removing duplicates (Figure 1). After screening out ineligible studies 
from their title and abstract, the full text of 69 studies were retrieved for final screening. Two reviewers (JB and 
RK) independently reviewed each text.  

Studies that met the following criteria were included: 

Data extraction and quality assessment 

From the included studies, the following information was extracted and tabulated independently by two reviewers 
(JB and RK): author; publication date; funding source; study type; study population country(ies); setting; outcome 
type(s); index test(s); reference test; number of participants in each validation dataset; number of nodules in each 
validation dataset; prevalence of malignancy among nodules; age range; sex; patient exclusions; proportion of 
smokers (current and former); nodule diameter range; median nodule diameter; nodule type(s); threshold 
(operating cut-off point); route of detection; and the outcomes reported. The data were subsequently checked 
for quality (AA, WW, and JW). 

• Study type. Studies should be human experimental studies or human observational studies 

• Index tests.  

o Index test being described and investigated should use AI or DL methods (DL-based model) – 
defined as the self-reported use of AI or DL – to classify or otherwise predict the risk of 
malignancy in pulmonary nodules detected via CT scans 

o External validation of the DL-based CADx model should be performed on datasets not used for 
the initial development of the DL-based CADx model and compared with other methods that are 
in widespread clinical use, the categories of which are:  

 Physician judgement (radiological image readers) 

 Clinical risk models (multivariable statistical models that use clinico-demographic and 
radiological variables as inputs) 

 Lung-RADS-based models (that allow computers or humans to automatically classify 
nodules based on nodule size, type, and stability over time)13 

• Reference tests. Studies should confirm malignancy diagnosis via histopathological (biopsy) within the 
follow-up period after initial nodule detection 

• Target condition and population. Study participants should be ≥18 years old, with at least one solid or 
part-solid pulmonary nodule (0–30 mm), as identified via CT scan (i.e. studies on ground-glass nodules 
[GGNs] only are excluded) 

• Outcomes. Studies should report at least one of: sensitivity, specificity; areas under the curve (AUC); 
diagnostic odds ratios; or the number of true-positive, false-negative, true-negative, or false-positive 
cases (as confirmed by histopathological analysis) 

Risk of bias and applicability was independently assessed by AA, JB, and JW using the Quality Assessment of 
Diagnostic Studies 2 (QUADAS-2) tool (eFigure 1 in the Supplementary Material).14 

Statistical analysis and quantitative synthesis 

A meta-analysis of all included studies reporting diagnostic performance outcomes was conducted. For each of 
the index test types (DL-based CADx models; physician judgement alone; clinical risk models alone; Lung-RADS-
based models alone), pooled estimates of sensitivity, specificity, and AUC were calculated using a bivariate, 
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random-effects approach, along with their respective 95% confidence intervals (CIs). Summary AUROC curves 
were plotted.  

To assess heterogeneity and inconsistency among the studies, χ2 statistic and I2 index values were calculated. 
An I² value greater than 75% was considered indicative of substantial heterogeneity.  

The Deeks funnel plot asymmetry test was performed to test for publication bias. A two-sided p < 0.05 result 
was assumed to be statistically significant.  

For the data available for extraction, we explored the sensitivity of the main pooled estimates to the study and 
population-outcome characteristics by conducting sub-group analyses. Once again, pooled sensitivity, specificity, 
and AUC estimates, along with χ2 statistic and I2 index values, were calculated. The data were stratified by sub-
group such as prevalence, route of detection, and median nodule size. This also helped uncover sources of 
heterogeneity.  

Review Manager (RevMan) version 5.4 and Stata software, version 18 (StataCorp LLC) were used to conduct the 
statistical analyses.15,16 
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Figure 1. Literature search flow diagram 
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Results 

Study characteristics 

The literature search identified 20 studies for inclusion (Figure 1), comprising 38 validation datasets, 
representing 47,832 patients and 87,976 pulmonary nodules. Of these nodules, 4,147 were confirmed to be 
malignant (histopathological ground truth) within the follow-up period (on average, 24 months). A summary of 
the included studies is provided in Table 1.  

All the studies save two were retrospective cohorts, with one prospective cohort and one case-control study.17,18 
The studies spanned continents and regions, with datasets taken from populations in North America (12 studies), 
Europe (7 studies), and East Asia (5 studies) (Table 1). Six of the studies used datasets taken from more than 
one country. 

The outcome types in the studies included primarily assessed diagnostic performance. Some studies reported 
clinical utility measures, such as diagnostic re-classification.19,20 However, due to the inconsistency in the 
outcomes reported, it was not possible to conduct a meta-analysis on clinical utility outcomes. The main 
outcomes sought were sensitivity and specificity, for which 17 of the 20 studies reported outcomes, and AUC, 
for which 13 studies reported outcomes (Table 1). 

Seventeen DL-based CADx models were identified from the included studies. The commonest type of learning 
algorithm used in the DL-based models was a Convolutional Neural Network (CNN). Fourteen of the 17 models 
and 16 of the 20 included studies used a CNN algorithm as the basis for their DL malignancy prediction score.  

For the external validation, the commonest validation was physician readers (17 of 38 datasets, from 12 studies). 
The majority of these readers were radiologists with ≥3 years’ experience. Among the non-radiologists, thoracic 
surgeons comprised the majority.  

With the clinical risk models, the Brock model was the commonest validation method (13 datasets from nine 
studies), followed by the Mayo model with eight datasets from four studies. This accords somewhat with the 
clinical risk models used in clinical practice. The Mayo model is considered the most externally validated model,21 
but the Brock model has been shown to perform better than the Mayo model in screening populations.22,23 

The majority of studies considered participants in the 50–75 age bracket, with very few examples of younger 
participants. All studies included both female and male participants. For the five studies that conducted external 
validation on datasets from the US National Lung Screening Trial (NLST), participants were all current or former 
heavy smokers.  

Two studies excluded calcified nodules, and two studies excluded GGNs.19,20,24 The studies spanned the range 
of nodule sizes, with one study focussing only on malignancy risk prediction for large nodules >15 mm.25 

In terms of prevalence of nodular malignancy, datasets ranged from as low as 1% up to 67%, with an average 
prevalence across all datsasets of 4.7%, which coincidentally roughly accords with real-world baseline prevalence 
in CT-detected nodules among US patients.3 A number of studies adjusted their dataset populations so that the 
number of malignant nodules matched the number of benign nodules. Despite this matching, most incidentally 
detected nodule populations had prevalence at or higher than 20%, whereas most screening populations had 
prevalence under 20%. This is reflected in real-world populations, where screening populations tend to have 
lower rates of nodular malignancy as compared to nodules that have been incidentally detected.3 

Diagnostic performance 

For the DL-based CADx models, sensitivity ranged from 0.37 (95% CI: 0.25–0.50) for a 0.98 (95% CI: 0.95–
0.99) specificity,19 to 1.00 (95% CI: 0.98–1.00) for a 0.28 (95% CI: 0.26–0.31) specificity (Figure 2A and Figure 
3A).26 Pooled receiver operating characteristic (ROC) analysis of all DL-based CADx model results gave a pooled 
AUC of 0.90 (95% CI: 0.87–0.93), sensitivity of 0.87 (95% CI: 0.81–0.92) and specificity of 0.80 (95% CI: 
0.72–0.86) (Figure 2A, Figure 3A, and Figure 4A). Pooled studies had an I2 index of 95.62% (95% CI: 94.63–
96.60) for sensitivity and 99.38% (95% CI: 99.31–99.45), corresponding to very high statistical heterogeneity. 
The Deeks funnel plot showed no significant asymmetry, indicating no evidence of publication bias (eFigure 2). 

Separate pooled analysis for physician readers gave a pooled AUC of 0.85 (95% CI: 0.82–0.88), sensitivity of 
0.74 (95% CI: 0.65–0.81) and specificity of 0.82 (95% CI: 0.76–0.87) (Figure 2B, Figure 3B, and Figure 4B). 
Pooled studies had an I2 index of 83.53% (95% CI: 75.18–91.88) for sensitivity and 98.01% (95% CI: 97.47–
98.54), indicating high statistical heterogeneity.  
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Table 1. Characteristics of included studies 

ID Citation Country Deep learning-based index 
test 

Non-deep learning-based 
index test 

Number of 
participants in 
validation 

Number of nodules 
in validation 

Prevalence of 
malignant nodules 
/ scans 

Route of detection Outcomes reported 

01 Adams et al 
202127 

USA Patient management 
informed by DL CNN model 
fed by 3D CNN full-volume 
detection and ROI detection 
output 

• Physician readers (6
radiologists) 3,197 3,197 

• 1.1%
Screening 

• Sensitivity
• Specificity

02 Adams et al 
202328 

USA 

Canada 

RevealAI-Lung supervised ML 
classifier CADx (mSI) and 
Lung-RADS 

• LUNG-RADS criteria
retrospectively applied

• Mayo model
• Brock model

963 1190 
• 49.4%
• 11.7%
• 32.1%

Screening; Incidental 
• Sensitivity
• Specificity

03 Ardila et al 
201929 

USA DL CNN model fed by image-
based 3D CNN full-volume 
detection and ROI detection 
output 

• LUNG-RADS criteria
retrospectively applied

• Physician readers (6
radiologists)

7,531 7,531 
• 1.3%
• 16.4%
• 13.0%

Screening 
• Sensitivity
• Specificity
• AUC

04 Baldwin et al 
202026 

UK DL CNN model (LCP) 
• Brock model

1,187 1,397 
• 17%

Incidental 
• Sensitivity
• Specificity
• AUC

05 Chae et al 
202030 

China DL CNN model (CT-LungNet) 
• Physician readers (2

radiologists)
• Physician readers (4 non

radiologists)

208 60 
• 50%

Screening 
• Sensitivity
• Specificity

06 Chen et al 
202118 

China 

South Korea 

DL non-CNN XGBoost-based 
model (PKU-M) 

• Brock model
• Mayo model
• Physician readers

(radiologist and 3 thorac
surgeons)

520 783 
• 55%
• 63%

Incidental 
• Sensitivity
• Specificity
• AUC

07 Chen et al 
202224 

China DL CNN model (Deepwise 
Healthcare) 

• Physician readers (2
radiologists) 104 148 

• 57%
Incidental 

• Sensitivity
• Specificity

08 Çoruh et al 
202131 

Turkey DL CNN model 
• Physician readers (2

radiologists) 158 158 
• 49%

Incidental 
• Sensitivity
• Specificity

09 Gao et al 
202132 

USA Co-learning model fed by 
image-based DL model 
output and CDE 

• PLCOM2012

• Brock model
23,652 64,898 

• 2%
• 18%

Screening 
• AUC

10 Gao et al 
202233 

USA Co-learning model fed by 
image-based DL model 

• Mayo model
• Brock model

387 387 
• 50%
• 49%
• 54%

Incidental 
• AUC
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output, biomarker output and 
CDE (M3Net) 

11 Huang et al 
201817 

USA DL model 
• Physician readers (3

radiologists) 186 46 
• 43%

Screening 
• Sensitivity
• Specificity

12 Huang et al 
201934 

Canada DL model (DeepLR precursor) 
• LUNG-RADS criteria

retrospectively applied 2,294 2,294 
• 4%

Screening 
• Sensitivity
• Specificity
• AUC

13 Hunter et al 
202225 

UK DL- and radiomics-based
model (LN-RPV)

• Physician readers (3
radiologists)

• Brock model
• Herder model

252 369 
• 63%
• 63%

Incidental 
• Sensitivity
• Specificity
• AUC

14 Jacobs et al 
202135 

USA 

Denmark 

Canada 

• DL CNN model (grt123;
Liao et al 2019)36

• DL CNN model (JWDH)
• DL CNN model (Aidence)

• Physician readers (11
radiologists) 300 300 

• 33%
• 33%

Screening 
• AUC

15 Kim et al 
202220 

USA 

UK 

DL CNN model (LCP) 
• Physician readers (6

radiologists)
• Physician readers (6

pulmonologists)

300 600 
• 50%
• 50%

Screening; Incidental 
• Sensitivity
• Specificity
• AUC

16 Liu et al 
202037 

China DL CNN model 
• Physician readers (6

radiologists) 153 168 
• 67%

Incidental 
• Sensitivity
• Specificity
• AUC

17 Massion et al 
202019 

USA 

UK 

DL CNN model (LCP) 
• Brock model
• Mayo model

2,505 926 
• 14%
• 14%

Incidental 
• Sensitivity
• Specificity
• AUC

18 Trajanovski 
et al 202138 

USA DL CNN model (N-Net) 
• Brock model
• Physician readers (6

radiologists)

3,286 854 
• 2%
• 21%
• 12%

Screening 
• Sensitivity
• Specificity
• AUC

19 Venkadesh 
et al 202139 

USA 

Netherlands 

Belgium 

DL CNN model 
• Brock model
• Physician readers (11

physicians) 

599 1,235 
• 7%
• 34%
• 33%

Screening 
• Sensitivity
• Specificity
• AUC

20 Zhang et al 
201940 

China DL 3D CNN model 
• Physician readers (25

physicians) 50 50 
• 50%

Incidental 
• Sensitivity
• Specificity
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Pooled analysis for clinical risk models gave a pooled AUC of 0.74 (95% CI: 0.70–0.78), sensitivity of 0.65 (95% 
CI: 0.28–0.90) and specificity of 0.73 (95% CI: 0.36–0.93) (Figure 2C, Figure 3C, and Figure 4C). Pooled studies 
had an I2 index of 98.17% (95% CI: 97.64–98.70) for sensitivity and 99.47% (95% CI: 99.38–99.57), indicating 
very high statistical heterogeneity. 

Lastly, pooled analysis for Lung-RADS-based models gave a pooled AUC of 0.67 (95% CI: 0.63–0.71), sensitivity 
of 0.57 (95% CI: 0.37–0.75) and specificity of 0.69 (95% CI: 0.51–0.82) (Figure 2D, Figure 3D, and Figure 4D). 
Pooled studies had an I2 index of 95.62% (95% CI: 93.15–98.09) for sensitivity and 99.75% (95% CI: 99.70–
99.80), indicating very high statistical heterogeneity. 

Sub-group analyses revealed that DL-based CADx models displayed significantly higher sensitivity on incidentally 
detected nodules than on screening-detected nodules, 0.91 (95% CI: 0.81–0.96) versus 0.84 (95% CI: 0.76–
0.90), respectively (eFigure 3). This increased reliability in detecting lung cancer came at the cost of specificity 
with screening-detected nodules having 0.86 (95% CI: 0.79–0.90) as compared to incidentally detected nodules 
at 0.70 (95% CI: 0.55–0.81). There was no significant difference for physician readers between screening and 
incidental detection. However, clinical risk models showed significantly poorer specificity for incidentally detected 
nodules as compared to screening-detected nodules, 0.86 (95% CI: 0.77–0.92) versus 0.59 (95% CI: 0.11–
0.95) (eFigure 4). 

Further sub-group analyses were carried out on prevalence. To do this, we took the baseline prevalence of 
malignancy in CT-detected pulmonary nodules in the US, ~5%,3 and multiplied it by a factor of 4, and used this 
as the threshold for classifying a study’s prevalence as high or low. Our reasoning was that if a study’s prevalence 
was 4 times as high as the baseline population prevalence, it could safely be considered high. Thus, our threshold 
for defining studies as having high or low prevalence was 20%. DL-based CADx models performed significantly 
better in low-prevalence studies than in high-prevalence studies: sensitivity of 0.90 (95% CI: 0.79–0.95) and 
specificity of 0.83 (95% CI: 0.69–0.91) as compared to sensitivity of 0.85 (95% CI: 0.77–0.91) and specificity 
of 0.76 (95% CI: 0.68–0.83), respectively. 

Quality assessment 

The results of the quality assessment using QUADAS-2 are shown in eTable 2 in the Supplementary Material. 
Overall, a low-to-moderate risk of bias was found in most studies.  
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Figure 2. Pooled sensitivity analyses of the included studies and their datasets 

Included studies for deep learning-based models         Included studies for physician reader models alone 
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I2 = 95.62 [95% CI: 94.63–96.60]   I2 = 83.53 [95% CI: 75.18 – 91.88] 
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Figure 3. Pooled specificity analyses of the included studies and their datasets 

       Included studies for deep learning-based models           Included studies for physician reader models alone 

Q = 4198.50, df = 26.00, p = <0.05   Q = 552.32, df = 11.00, p = <0.05 
I2 = 99.38 [95% CI: 99.31 – 99.45]   I2 = 98.01 [95% CI: 97.47 – 98.54] 

Included studies for clinical risk models alone          Included studies for Lung-RADS-based models alone 
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Figure 4. Summary ROC curve analyses of included diagnostic models 

B. Included studies for physician reader models aloneA. Included studies for deep learning-based models

C. Included studies for clinical risk models alone D. Included studies for Lung-RADS-based models alone
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Discussion 

A systematic review and meta-analysis that investigated the diagnostic performance of DL-based CADx models 
in predicting the risk of malignancy in pulmonary nodules versus methods currently used in clinical practice was 
performed. DL-based CADx models were significantly more sensitive than physician judgement alone, 17.6% 
(0.87 v 0.74), and clinical risk models alone, 33.8% (0.87 v 0.65). They had approximately the same pooled 
specificity as physician judgement alone (0.80 [95% CI: 0.72 –0.86] v 0.82 [95% CI: 0.76 –0.87], respectively), 
but were 9.6% (0.80 v 0.73) more specific than clinical risk models alone.  

Accounting for threshold effects, DL-based CADx models had significantly superior sAUROC, with relative 
sAUROCs of 1.06 (95% CI: 1.03–1.09), 1.22 (95% CI: 1.19–1.25), and 1.34 (95% CO: 1.31–1.37) as compared 
to physician judgement alone, clinical risk models alone, and Lung-RADS-based models alone, respectively. 

This study attempted to exhaustively search the literature for all studies and models relevant to the research 
question. During screening, two of the commonest reasons for ineligibility were that the study did not conduct 
any direct external validation of the DL-based CADx model being analysed (28 studies with no direct external 
validation at the final screening stage) and that the study’s model was for detection of pulmonary nodules, not 
classification or diagnosis of them (11 studies with ineligible index tests at the final screening stage) (Figure 1). 

In order to evaluate their performance when applied to different populations, it is crucial to conduct external 
validation of DL-based risk prediction models in populations independent of those used during model 
development.41 The majority of studies considered were on the development of the DL-based model, and not on 
external validation.  

On the second commonest exclusion, CAD solutions for pulmonary nodule management can be broadly 
categorised into two types: computer-aided detection (CADe) and CADx (diagnosis). CADe involves a module 
designed to detect suspicious lung nodules and segment them for further analysis. Its purpose is to assist in the 
identification of potential abnormalities. CADx, on the other hand, goes beyond detection. It provides a nodule-
level and, possibly, patient-level classification of the risk of malignancy. Only CADx is considered in this 
systematic review and meta-analysis. In broad terms, detection of pulmonary nodules is relatively easy. 
Distinguishing malign nodules from benign ones is not.2,5 

Two previous systematic reviews have studied this issue,10,11 albeit without the direct comparison between DL-
based CADx models and external validation with methods used in clinical practice. Forte et al 2022 was the only 
one to conduct a meta-analysis, considering six studies, all of which are also included in this review and analysis. 
Pooled sensitivity and specificity were 0.94 (95% CI: 0.86–0.98) and 0.69 (95% CI: 0.51–0.83), respectively, 
both with significant heterogeneity, while sAUROC was 0.90 (95% CI: 0.86–0.92).10 No quantitative comparisons 
against physician reader or clinical risk models alone were performed, and nor were any sub-group analyses 
performed. The authors noted that DL-based CADx models performed well and that as non-invasive methods, 
they could provide support to clinics in detecting and diagnosing lung cancer early. 

Limitations 

Although these results strongly support the use of externally validated DL-based CADx models, two primary 
limitations were noted. Only observational studies could be found, and of these only one was prospective. No 
randomised controlled trials or other interventional studies were found. This is to be expected given that 
evidentiary requirements for diagnostic tools are not set as high as therapeutic interventions (drugs and 
biologics), and the difficulty in conducting such studies with diagnostic tools.42 The second limitation was the 
high heterogeneity found among studies.  

Sources of heterogeneity were investigated by conducting sub-group analyses. Prevalence was found to be a 
weak source of heterogeneity for clinical risk models in particular. Age range of the study population was another 
moderate source of heterogeneity across all models. However, the strongest source of heterogeneity was likely 
the threshold or operating cut-off point used by researchers in testing the models. The types of thresholds used 
varied considerably from study to study. They included fixing the specificity of models to 0.90,39 to setting rule-
out (definite benignity) malignancy scores at 0.05 (out of 1.0) or rule-in (definite malignancy) malignancy scores 
to 0.65 (out of 1.0).19,20 Sensitivity to threshold effects was not investigated due to these inconsistent methods. 
However, the inclusion of AUC and its concordance with the sensitivity and specificity for each index test type 
helped alleviate this concern. Additionally, the low-to-moderate risk of bias found in most studies, and no 
significant publication bias demonstrated the findings were robust, in spite of the high heterogeneity. 

Placing it further in context, the high heterogeneity in DL-based CADx models makes sense given the very 
different models under consideration, and the further work required on calibrating these models. However, as 
more validation in clinical practice occurs, and certain models become standard use in clinical practice – as has 
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happened with the Mayo and Brock models for clinical risk models – heterogeneity may reduce.6,7 On this point, 
it important to note that use in clinical practice is important. Other clinical risk models, such as the Gurney model 
and the Bayesian Inference Malignancy Calculator (BIMC),43–45 both of which use Bayesian analysis of clinico-
demographic variables rather than logistic regression, have undergone external validation but are not used in 
clinical practice. Taking excellent diagnostic performance into clinical practice is the next step to ensuring 
improved patient outcomes are fully realised. 

Conclusion 

These results demonstrate that DL-based CADx models have superior or comparable diagnostic performance as 
compared to methods currently used in clinical practice. The results support the use of DL-based CADx models 
alongside physician readers in clinical practice, especially for the management of incidentally detected nodules. 
While further research is required before they become an essential and routine part of the physician’s toolkit, 
recommendation for use in clinical practice as an option in the physician’s tookit is justified by our findings. 
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eTable 1. Keyword search terms 

Term Component Operator 

Computer-aided Index test(s) set #1 AND 

Computer aided OR 

Computer-assisted OR 

Computer assisted OR 

CADx OR 

Artificial intelligence OR 

Machine intelligence OR 

Co-learning OR 

Colearning OR 

Machine learning OR 

Deep learning OR 

Predict* Index test(s) set #2 AND 

Diagnos* OR 

Classif* OR 

Estimat* OR 

Evaluat* OR 

Risk OR 

Compute* tomograph* Index test(s) set #3 AND 

Axial tomograph* OR 

CT scan* OR 

CAT scan* OR 

Cancer* Target condition set #1 AND 

Carcinoma* OR 

Neoplas* OR 

Tumour* OR 

Tumor* OR 

Malignan* OR 

Nodule* OR 

Lung* Target condition set #2 AND 

Pulmonary OR 
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