- 1 Original article
- 2 TITLE: THE DISTRIBUTION OF KERATOMETRY
- 3 READINGS, CORNEAL POWER AND CORNEAL
- 4 ASTIGMATISM AMONG MALAWIAN YOUNG ADULTS.
- 5 RUNNING TITLE: KERATOMETRY READINGS AND
- 6 CORNEAL ASTIGMATISM AMONG MALAWIANS
- 7 Kenneth Gondwe¹, Thokozani Mzumara^{1,2,} &Joseph Afonne¹,
- 8 Affiliations
- 9 1. Mzuzu university
- 10 Private bag 201
- 11 Mzuzu, Malawi
- 12 2. Mzimba North District Hospital
- 13 P. O Box 219
- 14 Mzuzu, Malawi
- 15 Corresponding author* Joseph Afonne
- 16Mzuzu University17Private bag 201
- 18 Mzuzu, Malawi
 - drchinkatan@gmail.com
- 20

24 ABSTRACT

Background/objectives: keratometry and corneal measurements
differ among populations. The aim of the study was to assess the
distribution of keratometric values and corneal astigmatism and
examine the association with age and gender among normal
Malawian adults.

Methods: This was a cross-sectional study conducted among Mzuzu university students in Malawi. Participants were selected using systematic sampling techniques. K readings were measured using a manual keratometer. Data was entered in SPSS v 26. Chisquare was used to assess association, spearman to assess correction, and an independent t-test to compare the mean.

36	Results: We recruited 98 participants, of whom 59 (60.2%) were
37	male and 39 (39.8%) were female. The Mean age of participants
38	was 27.13 years (SD=5.616). Based on gender, it was 27.97
39	(SD=5.860) among males and 25.87 (SD=5.038) among females.
40	But an independent t-test showed no significant difference in age
41	according to gender(t(96)= 1.8, p=0.71). On average, the flat and
42	steep K reading was 44.93D (SD=1.49) and 45.40D (SD=1.53)
43	respectively. The mean K was 45.17D (SD=1.47). With regards to
44	gender, the mean K was 45.17D (SD=1.38) and 45.18D (SD=1.62)
45	among males and females respectively, but it was not statistically
46	significant. (t(96)=-0.045, p=0.96). Spearman test showed that the
47	correlation between mean K and age was statistically non-
48	significant mean

49 Conclusion: Corneal astigmatism is relatively tiny among this 50 population group hence surgeons can use techniques to correct and 51 other techniques to achieve greater visual rehabilitation. This 52 study confirms that Environment and genetics play a major role in 53 corneal changes.

54 Keywords: Corneal Astigmatism, keratometer, Toric Inra Ocular55 Lens, Cataract Surgery, ocular surface

56

57

58 INTRODUCTION

59	Uncorrected refractive error is the leading cause of visual
60	impairment worldwide. [1] The two major components of
61	refractive error include spherical and astigmatism. [2] Astigmatism
62	can further be classified into lenticular and Corneal Astigmatism
63	(CA).[1] CA is defined as the difference in radius of curvature
64	between two principal meridians., the steep (stronger meridian)
65	and the flat (weaker meridian) meridian. Besides, increased CA is
66	a risk factor for other conditions such as amblyopia and
67	strabismus. Generally, CA is larger among white-skinned people.
68	[1]
69	Astigmatism greatly contributes to the visual acuity of pseudo-
70	aphakic patients. [3] Accordingly, CA greater than 1 D could
71	prevent optimal vision. [4] Fortunately, toric implantation can
72	correct about O.8 D of CA.[5] Hence, analysis of corneal
73	Astigmatism is relevant for IOL manufacturers. Since the advent
74	of modern cataract surgery techniques enables the correction of
75	astigmatism. [6,7] Knowledge regarding the distribution of CA is
76	crucial for the reduction of post-operative astigmatism during
77	cataract surgery by selecting appropriate methods such as limbal
78	relaxing incisions, opposite clear corneal incisions, and excimer
79	laser refractive procedures. [5] In theatre, different degrees of CA,

- 80 including magnitude and axis, call for varying approaches to
- 81 surgical corrections. [6]
- 82 Globally, Different populations have varying corneal parameter
- values. Accordingly, different factors such as genetics, age,

gender, and environment have a huge effect on corneal anatomy.

85 [2] For instance, keratometric values are similar among Caucasians

and slightly lower in the Far eastern populace. [8] Moreover,

- 87 values vary according to measuring techniques since various
- instruments range from manual to automatic devices. [1,8]

89 Nevertheless, to the best of our knowledge there is a paucity of

90 information for the Malawian populace. Hence, this study aims at

- 91 assessing the distribution of keratometric readings and corneal
- 92 astigmatism and examine the association with age and gender
- among normal Malawian adults. The study employed affordable
- 94 equipment and hence can be useful for optometry and

95 ophthalmology practitioners in the region as a reference.

- 96
- 97
- 98
- 99

100

101

102 METHODS

- 103 We conducted a cross-sectional quantitative study among students
- aged between 18 and 50 years. Based on a sample size
- determination proposed by Yamane, [9] we recruited 98
- 106 participants The study employed stratified systemic sampling
- 107 where the population was stratified according to faculty. Then,
- 108 within each faculty participants were recruited considering the nth
- 109 term. As an exclusion criterion, we included all non-contact lens
- 110 wearers and excluded participants with a history of ocular surgery
- and trauma, corneal scar and keratoconus eyes inflammatory eye
- 112 disease, and other corneal disorders.
- 113 Procedures
- 114 We used a Bausch and Lomb keratometer to measure the anterior
- 115 vertical and horizontal corneal curvature. [10] First, the patient was
- sat in a standard optometric examination room at room
- 117 temperature. Prior to collecting demographic information on age
- and sex, we explained the procedure to the participants. We
- disinfected the keratometer chin and headrest in between patients.
- 120 We measured both the right and left eyes. The right eye was
- 121 measured first, then the left eye. The keratometric parameters
- included the flat (K1) and steep (K2) and recorded the results in

- 123 Diopters (D). Each variable was measured 5 times and the average
- 124 was considered the final value which was recorded on a preform.
- 125 Corneal astigmatism, mean K and axis of astigmatism
- 126 We defined CA as the 3 mm steep meridian power minus the 3 mm
- 127 flat meridian. The axis of the astigmatism was derived from the
- steep meridian. The CA was considered With the Rule (WTR)
- 129 when the axis was between 60 and 119 while Against the Rule
- 130 (ATR) when the axis was between 0 to 29 or 150 to 180 otherwise
- 131 it was considered oblique. (1) Mean K was computed as the
- average of the two meridians. Astigmatism was considered a
- 133 cylinder power of more than 0.5 D. (2)
- 134 Analysis
- 135 We entered the data in SPSS version 26. We employed descriptive
- 136 statistics to describe frequencies and we graphically illustrated the
- 137 data using graphs, boxplots, and tables. In addition, we execute an
- 138 independent t-test to compare the mean values of two variables.
- 139 Whereas, we utilized one-way ANOVA to compare the mean of
- 140 variables more than two. Furthermore, we applied the Spearman
- 141 rank test to explore correlations. Accordingly, we considered the
- 142 value of p < 0.05 statistically significant.
- 143 Ethics

144	The study adhered to the declaration of Helsinki. In particular, we
145	obtained ethical approval from the faculty of health sciences
146	research committee. Moreover, we obtained informed consent
147	from each participant and maintained the anonymity of subjects
148	throughout the process. And participant was injured during the
149	study.
150	
151	
152	RESULTS
153	To select the appropriate statistical tools for analysis, a Shapiro-
154	Wilk test was conducted to determine the distribution of the flat
155	and steep K. The test showed K901 (W = 0.989, $p < 0.571$) and
156	K1802 (W = 0.984, $p < 0.268$) were normally distributed.
157	Demographic and clinical features of study participants
158	We recruited 98 participants, out of which 59 (60.2%) were male
159	and 39 (39.8%) were female representing a 1.5 to 1 male-to-female
160	ratio. The Mean age of participants was 27.13 years (SD=5.616).
161	Based on gender, it was 27.97 (SD=5.860) among males and 25.87
162	(SD=5.038) among females, but the independent t-test showed no
163	significant differences in age according to gender($t(96)=1.8$,
164	p=0.71). The K readings in the left and right eye were strongly

165 correlated, hence we considered the results of the right eye only.

166	On average,	flat and steep	o K reading was	s 44.93D ((SD=1.49)) and

- 167 45.40D (SD=1.53) respectively. The mean K was 45.17D
- 168 (SD=1.47). With regards to gender, the mean K was 45.17D
- (SD=1.38) and 45.18D (SD=1.62) among males and females
- 170 respectively, but it was not statistically significant. (t(96)=-0.045,
- p=0.96). Spearman test showed that the correlation between mean
- 172 K and age was statistically non-significant (p=0.245). Figure 1
- 173 CA was present in 89 eyes (90.8%). On average the magnitude of
- 174 CA was 0.7D (SD=0.53). According to gender, the mean CA was
- 175 0.6 D (SD=0.51) among males and 0.8 D (SD=0.54) among
- 176 females. An independent t-test showed that CA was higher among
- 177 females and the difference was statistically significant (t (96) =-
- 178 0.24, p=0.02). About 67 eyes (69.8%) had corneal astigmatism of
- 179 less than 1 D. (Figure 2). According to age Highest CA (0.76, SD=
- 180 0.55) was recorded among the age group 25-29 while the lowest
- 181 (0.57, SD=0.53) was registered by the 40-44 age group. (Figure 3).
- 182 Nevertheless, A one-way ANOVA test showed that age group has
- 183 no impact on CA. F(5,92)=0.34,P=0.812.
- 184 Regarding the type of CA, WTR astigmatism was found in 72
- (73.5%) participants, and ATR in 17 (17.3%). Out of the 72 eyes
- with WTR, 45 (62.5%) were males compared to 27 (37.5%)
- 187 females. While out of the 17 eyes with ATR, 8 (47.1%) Were
- males and 9 (52.9%). A chi-square test examined the relationship

- 189 between gender and type of CA and found that the association was
- not statistically significant, X2 (1, N = 98) = 1.4, p = 0.243.
- 191 (Figure 4)
- 192 DISCUSSION

193	Understanding the distribution of corneal values is critical not only
194	for the management of refractive errors but also decision-making
195	in the clinical diagnosis of pathologies such as keratoconus. [11]
196	In the present study, the mean K was similar to a study in Central
197	China,[5] however Iran[12] found a lower mean K (43.48D), The
198	high mean k in our study could be attributed to higher incidences
199	of myopia in the populace. A recent study [11] found a strong
200	association between myopia and corneal power. Likewise, Thom
201	and colleagues, [13] found that myopia unlike hyperopia is the
202	main cause of reduced vision in Malawi.
203	With regards to gender, our study found no significant difference
204	between K reading among males and females similar to previous
205	reports. [8,14] Nevertheless, Hashemi [11] found that males have
206	flatter corneas than females. Worldwide there is a general
207	consensus about the gender differences in K readings. The inter-
208	gender difference is explained by anatomical variations in the
209	structure of eyelids and physiological functions mainly due to
210	hormones. [15] The results of our study can be attributed to the

211	ethnicity and	genetics of the	population grou	p as well as

- environmental and lifestyle factors [5] Our study included
- 213 participants of African descent while others included participants
- of Asian descent. In agreement with previous reports, [16,17] Age
- 215 had no correlation with K reading in our study. Nevertheless,
- others [11] found that mean K increases linearly up to the seventh
- 217 decade of life. The results of our study could be attributed to the
- 218 narrow age range. Overall, there is strong evidence suggesting an
- 219 increase in corneal power with age mainly due to physiological
- changes in corneal biomechanics. [11]
- In the current review, the Mean CA was 0.7 D which is lower than
- in other studies. [8,11] The difference could be attributed to the
- 223 instrument used. This study used a manual technique while others
- [8] used an optical refractometer which has relatively more

accuracy, precision, and repeatability in biometry measurements.

- 226 The majority of participants had CA lesser than 0.5 D similar to
- reports elsewhere. [5] in disagreement, others found a large
- 228 majority with CA greater than 1 D elsewhere. [18] The low
- 229 magnitude of CA in our study could be due to ethnicity.
- 230 Accordingly, Pontikos and colleagues reported that CA was larger
- among whites and light skin.[1]
- According to gender, CA was strongly associated with females
- more than males similar to previous reports. [1,19] On the
 - 12

234	contrary, elsewhere, [11,17,21] found no relationship between
235	gender and CA. We cannot explain the findings of our study. With
236	respect to gender, we found that age has no effect on CA similar to
237	previous studies. [11,20] Nevertheless, others have reported that
238	CA decreases according to age. [21] On the other hand, previous
239	studies [3,22] found that CA decreases with age. Astigmatism is
240	associated with younger age. [1] the wide disparity can be
241	explained by the fact that genetics and environmental factors play a
242	major role in corneal structural changes. [11]
243	Our study found that the majority of eyes had WTR astigmatism
244	similar to the previous study. [23] However, other authors [5,11]
245	found that a majority of eyes had ATR astigmatism. We attribute
246	the variation to the age composition of the two studies. Apparently,
247	we recruited a relatively younger group (mean age= 27 years)
248	compared to Ferreira and colleagues. [8] (mean age=60 years).
249	Globally, It is generally accepted that WTR Astigmatism decreases
250	while ATR increases with age due to anatomical changes in the
251	eyelids and cornea. [11] Our study did not find a relationship
252	between age and orientation of CA in contrast to other authors who
253	suggest that ATR astigmatism increased with age while WTR
254	astigmatism decreased with age, [8,11,13,23,24] Our review found
255	no association between the orientation of CA and gender similar to
256	studies elsewhere. [3] In contrast, others [11] reported that WTR is

- associated with the female gender whereas, ATR is greater in male
- 258 eyes. [12]
- 259 Limitations
- 260 Our study is not without limitations. First, we employed a narrow
- age range which could mask the effect of age on the parameters. In
- addition, the current review did not take into account the posterior
- 263 corneal surface measurements underestimating total corneal
- astigmatism. We propose a large-scale study probably at a national
- level to further investigate this phenomenon. Furthermore, our
- study results could be overestimated since they used manual
- 267 measurements of k readings. Our study did not assess the
- 268 correlation between refractive status and K readings.
- 269 CONCLUSION
- 270 The study provides normal ocular biometric measurements with
- 271 regard to K readings and anterior corneal astigmatism and the
- effects of age. The study found that Age and gender are not related
- to keratometry readings. CA was found to be associated with the
- female gender but not age. The majority have CA < 1.00D, which
- 275 can be corrected by low-cost procedures like steep axis phaco,
- 276 limbal relaxing incisions, and opposite clear corneal incisions,
- 277 especially in developing countries like Malawi. In addition, less
- 278 percentage of candidates would require expensive toric IOLs. The

- 279 Majority of eyes are WTR astigmatism. Our study suggests that
- 280 ocular biometry should be considered as a pre-operative routine
- 281 procedure to help improve visual outcomes and reduce the
- dependency on glasses for this underprivileged population.
- 283 Conflict of interest: None
- 284 Funding: None

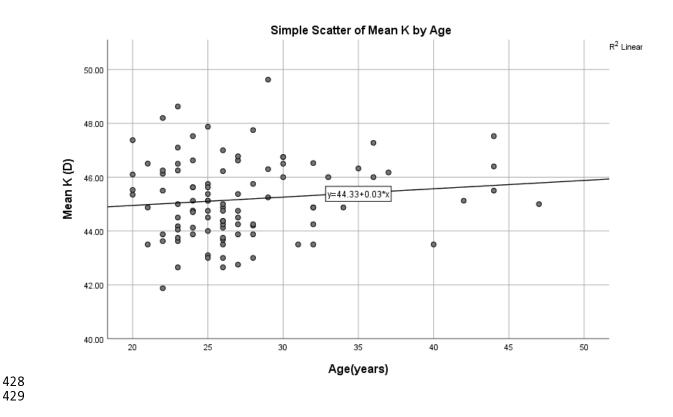
298		REFERENCE
299	1.	Pontikos N, Chua S, Foster PJ, Tuft SJ, Day AC; UK
300		Biobank Eye and Vision Consortium. Frequency and
301		distribution of corneal astigmatism and keratometry
302		features in adult life: Methodology and findings of the UK
303		Biobank study. PLoS One. 2019 Sep 19;14(9):e0218144.
304		doi: 10.1371/journal.pone.0218144. Erratum in: PLoS One.
305		2020 Feb 27;15(2):e0229866. PMID: 31536508; PMCID:
306		PMC6752876.
307	2.	Hashemi H, Rezvan F, Yekta AA, Hashemi M, Norouzirad
308		R, Khabazkhoob M. The prevalence of astigmatism and its
309		determinants in a rural population of Iran: the "Nooravaran
310		Salamat" mobile eye clinic experience. Middle East Afr J
311		Ophthalmol. 2014 Apr-Jun;21(2):175-81. doi:
312		10.4103/0974-9233.129772. PMID: 24791111; PMCID:
313		PMC4005184.
314	3.	Nemeth G, Hassan Z, Szalai E, Berta A, Modis L Jr.
315		Analysis of age-dependence of the anterior and posterior
316		cornea with scheimpflug imaging. J Refract Surg. 2013
317		May;29(5):326-31. doi: 10.3928/1081597X-20130301-01.
318		Epub 2013 Mar 8. PMID: 23459157.
319	4.	Ferreira TB, Hoffer KJ, Ribeiro F, Ribeiro P, O'Neill JG.
320		Ocular biometric measurements in cataract surgery

- 321 candidates in Portugal. PLoS One. 2017 Oct
- 322 5;12(10):e0184837. doi: 10.1371/journal.pone.0184837.
- 323 PMID: 28982150; PMCID: PMC5629012.
- 324 5. Yu JG, Zhong J, Mei ZM, Zhao F, Tao N, Xiang Y.
- 325 Evaluation of biometry and corneal astigmatism in cataract
- 326 surgery patients from Central China. BMC Ophthalmol.
- 327 2017 Apr 26;17(1):56. doi: 10.1186/s12886-017-0450-2.
- 328 PMID: 28446167; PMCID: PMC5405481.
- 329 6. Gohari M, Noorizaheh F, Salimpur S, Aghayi M, Besharati
- 330 MR. Prevalence of Corneal Astigmatism before Cataract
- 331 Surgery in Yazd Province, Iran. J Ophthalmol Opto Sci .
- 332 [Internet]. 2016Sep.24 [cited 2022Jul.26];1(1):14-8.
- 333 Available from:
- 334 https://journals.sbmu.ac.ir/basir/article/view/14313
- 335 7. Mohammadi M, Naderan M, Pahlevani R, Jahanrad A.
- 336 Prevalence of corneal astigmatism before cataract surgery.
- 337 Int Ophthalmol. 2016 Dec;36(6):807-817. doi:
- 338 10.1007/s10792-016-0201-z. Epub 2016 Feb 24. PMID:
- **339 26909501**.
- 340 8. Ferreira TB, Ribeiro P, Ribeiro FJ, O'Neill JG. Comparison
- 341 of Methodologies Using Estimated or Measured Values of
- 342 Total Corneal Astigmatism for Toric Intraocular Lens
- 343 Power Calculation. J Refract Surg. 2017 Dec 1;33(12):794-

344 800. doi: 10.3928/1081597X-20171004-03. PM	ID:
--	-----

- 345 29227506.
- 346 9. Yamane, T. (1967) Statistics: An Introductory
- 347 Analysis. 2nd Edition, Harper and Row, New York
- 348 10. Cordero I. Verifying the calibration of a manual one-
- 349 position keratometer. Community Eye Health.
- 350 2013;26(84):77. PMID: 24782588; PMCID: PMC3936693.
- 351 11. Hashemi H, Yekta A, Shokrollahzadeh F, Aghamirsalim
- 352 M, Ostadimoghaddam H, Hashemi A, Heydarian S,
- 353 Khabazkhoob M. The Distribution of Keratometry in a
- 354 Population Based Study. J Curr Ophthalmol. 2021 Mar
- 355 26;33(1):17-22. doi: 10.1016/j.joco.2019.06.004. PMID:
- 356 34084952; PMCID: PMC8102948.
- 357 12. Hayashi K, Sato T, Sasaki H, Hirata A, Yoshimura K. Sex-
- 358 related differences in corneal astigmatism and shape with
- age. J Cataract Refract Surg. 2018 Sep;44(9):1130-1139.
- doi: 10.1016/j.jcrs.2018.06.020. Epub 2018 Aug 1. PMID:
- **361 30077353**.
- 362 13. Thom L, Jogessar S, McGowan SL, Lawless F. The
 363 prevalence and causes of decreased visual acuity a study
- 364 based on vision screening conducted at Enukweni and
- 365 Mzuzu Foundation Primary Schools, Malawi. Clin Optom
- 366 (Auckl). 2016 Dec 19;9:1-10. doi:

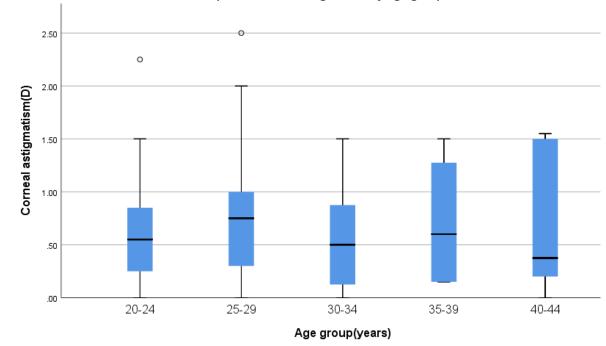
367	10.2147/OPTO	.S110097.	PMID:	30214354;	PMCID:


- 368 PMC6095573.
- 369 14. Agrawal, J., Kumar, P., & Jain, P. (2018). Anthropometric
- 370 Measurement Of Corneal Curvature By Keratometry In
- Adult Central Indian Population. *Int J Anat Res*, 6(2.3),
- **372** *5346-50.*
- 373 15. Orucoglu F, Akman M, Onal S. Analysis of age, refractive
- error and gender related changes of the cornea and the
- anterior segment of the eye with Scheimpflug imaging.
- 376 Cont Lens Anterior Eye. 2015 Oct;38(5):345-50. doi:
- 377 10.1016/j.clae.2015.03.009. Epub 2015 Apr 21. PMID:
- 378 25910463.
- 16. De Bernardo M, Zeppa L, Zeppa L, Cornetta P, Vitiello L,
- 380 Rosa N. Biometric Parameters and Corneal Astigmatism:
- 381 Differences Between Male and Female Eyes. Clin
- 382 Ophthalmol. 2020 Feb 28;14:571-580. doi:
- 383 10.2147/OPTH.S219912. PMID: 32184545; PMCID:
- 384 PMC7053823.
- 17. Kim JH, Kim M, Lee SJ, Han SB, Kong YT, Yang HK,
- 386 Hyon JY. Age-related differences in ocular biometry in
- adult Korean population. BMC Ophthalmol. 2016 Aug
- 388 22;16(1):146. doi: 10.1186/s12886-016-0328-8. PMID:
- 389 27549766; PMCID: PMC4994275

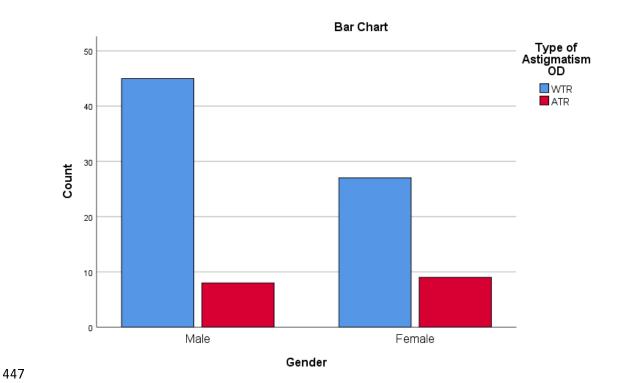
	390	18. Hoffmann PC, Hütz WW. Analysis of biometry and
--	-----	--


- 391 prevalence data for corneal astigmatism in 23,239 eyes. J
- 392 Cataract Refract Surg. 2010 Sep;36(9):1479-85. doi:
- 393 10.1016/j.jcrs.2010.02.025. PMID: 20692558.
- 19. Sanfilippo PG, Yazar S, Kearns L, Sherwin JC, Hewitt
- 395 AW, Mackey DA. Distribution of astigmatism as a function
- of age in an Australian population. Acta Ophthalmol. 2015
- 397 Aug;93(5):e377-85. doi: 10.1111/aos.12644. Epub 2015
- 398 Jan 13. PMID: 25585855.
- 399 20. Huang Q, Huang Y, Luo Q, Fan W. Ocular biometric
- 400 characteristics of cataract patients in western China. BMC
- 401 Ophthalmol. 2018 Apr 17;18(1):99. doi: 10.1186/s12886-
- 402 018-0770-x. PMID: 29665792; PMCID: PMC5904982.
- 403 21. Wu Z, Liu C, Chen Z. Prevalence and Age-Related
- 404 Changes of Corneal Astigmatism in Patients Undergoing
- 405 Cataract Surgery in Northern China. J Ophthalmol. 2020
- 406 Sep 29;2020:6385098. doi: 10.1155/2020/6385098. PMID:
- 407 33062314; PMCID: PMC7542495.
- 408 22. Ma R, Liu Y, Zhang L, Ma J, Cui T, Lei Y, Hou J, Shen Z,
- 409 Yi X, Liang G, Wang Y. Changes in Corneal Morphology
- 410 with Age in Asian Population: A Multicenter Study of
- 411 30,618 Cases. Adv Ther. 2021 Dec;38(12):5763-5776. doi:

412 10.1007/s12325-021-01922-4. Epub 2021 Oct 10. PMI	D:
---	----


- 413 34704192; PMCID: PMC8572190.
- 414 23. Chaudhary M., Dahal HN, Prevalence and types of corneal
- 415 astigmatism in patients undergoing cataract surgery.
- 416 Journal of Institute of Medicine. 2017 Apr 1;39(1). 22.
- 417 Joshi Rajesh Subhash, Jadhav, Sonali
- 418 24. Kim H, An Y, Joo CK. Gender-differences in age-related
- 419 changes of corneal astigmatism in Korean cataract patients.
- 420 BMC Ophthalmol. 2019 Jan 24;19(1):31. doi:
- 421 10.1186/s12886-018-1001-1. PMID: 30678644; PMCID:
- 422 PMC6346567.
- 423
- 424
- 425
- 426 FIGURES
- 427

430 Figure 1. Relationship between mean K and age


- 434 Figure 2. The distribution of corneal astigmatism in 0.50D
- **steps**

Box plot of corneal astigmatism by age group.

437

438 Figure 3: Box plot of corneal astigmatism values (D) in all six 439 age groups; Boxes show the interquartile range. Bold lines in the boxes represent the median (Q2 or 50 % percentile), the 440 441 upper and lower limits of the box represent the first quartile 442 (Q1 or 25 % percentile) and the third quartile (Q3 or 75 % 443 percentile), and the bars represent the extreme values 444 (maximum and minimum observations). circles represent outliers 445 446

- 448 Figure 4. Distribution of WTR and ATR CA between males
- 449 and females