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Abstract
Introduction: Models for digital triage of sick children at emergency departments of 

hospitals in resource poor settings have been developed. However, prior to their adoption, 

external validation should be performed to ensure their generalizability. 

Methods:  We externally validated a previously published nine-predictor paediatric triage 

model (SMART Triage) developed in Uganda using data from two hospitals in Kenya. Both 

discrimination and calibration were assessed, and recalibration was performed by optimizing 

the intercept for classifying patients into emergency, priority, or non-urgent categories based 

on low-risk and high-risk thresholds. 

Results: A total of 2539 patients were eligible at Hospital 1 and 2464 at Hospital 2, and 5003 

for both hospitals combined; admission rates were 8.9%, 4.5%, and 6.8%, respectively. The 

model showed good discrimination, with area under the receiver-operator curve (AUC) of 

0.826, 0.784 and 0.821, respectively. The pre-calibrated model at a low-risk threshold of 8% 

achieved a sensitivity of 93% (95% confidence interval, (CI):89%-96%), 81% (CI:74%-

88%), and 89% (CI:85%–92%), respectively, and at a high-risk threshold of 40%, the model 

achieved a specificity of 86% (CI:84%–87%), 96% (CI:95%-97%), and 91% (CI:90%-92%), 

respectively. Recalibration improved the graphical fit, but new risk thresholds were required 

to optimize sensitivity and specificity.

Conclusion: The Smart Triage model showed good discrimination on external validation but 

required recalibration to improve the graphical fit of the calibration plot. There was no 

change in the order of prioritization of patients following recalibration in the respective triage 

categories.  Recalibration required new site-specific risk thresholds that may not be needed if 

prioritization based on rank is all that is required. The Smart Triage model shows promise for 

wider application for use in triage for sick children in different settings.  
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Introduction
The global burden of child mortality remains high in low and middle-income countries 

(LMICs). Despite significant progress globally, Sub-Saharan Africa continues to record 

mortality rates of 74 (95% confidence interval (CI), 68-86) deaths per 1000 live births, which 

is approximately 14 times higher than the mortality rate of children in Europe and North 

America (1, 2). These numbers, accounting for paediatric deaths outside the neonatal period, 

are largely attributed to infectious diseases including malaria, pneumonia, and diarrhoeal 

diseases which can be prevented or treated through simple interventions and training of 

healthcare workers (3).

Early recognition of critically ill children upon arrival to hospitals supports the attainment of 

the third Sustainable Development Goal (SDG) on ending preventable deaths of children by 

2030, especially with increased availability and use of health facilities (4). Although the 

World Health Organization (WHO) has recommended the use of Emergency Triage and 

Treatment (ETAT) guidelines for the triage of sick children in resource-limited settings, its 

implementation in clinical practice has been challenging for many reasons including 

difficulties of scaling up the required training (5). Shortages of adequately trained frontline 

health workers in emergency areas has also been cited as impairing triage (6, 7). Without 

triage, children are frequently seen in order of arrival instead of according to the priority of 

illness. 

Clinical prediction models that classify children on arrival to the hospital according to risk 

(that is, emergency, priority or non-urgent cases), can help frontline health workers identify 

critically ill children and prioritize care to reduce mortality and morbidity in resource-limited 

settings (8). Several predictive triage models have been developed but few models have been 

validated externally (8, 9). 
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Prediction models tend to perform well during internal validation, but this may not be 

replicated externally, therefore, it is recommended that model performance be examined in a 

different context (10-12). Ideally, clinical prediction models should be reproducible and 

generalizable to diverse patient groups and geographical locations and models that are not 

generalizable are a waste of limited research resources.  

 In this paper, we externally validate a  previously developed nine-predictor pediatric triage 

model, referred to as the Smart Triage Model (13), used for the triaging of severely ill 

children. The original model was developed using data from Jinja, Uganda and this study 

performs external validation using data from two hospitals in Kenya. We also present results 

of updating the prediction model using recalibration-in-the-large, a method which adjusts the 

average predicted probability to be equal to the observed event rate. 

Methods
Model external validation adhered to Transparent Reporting of a multivariable prediction 

model for Individual Prognosis or Diagnosis (TRIPOD) guidelines on developing, validating, 

or updating a multivariable clinical prediction model (14) (Supplementary file S1).

Study registration 

The study was registered in Clinical Trials.gov, identifier: NCT04304235, on 11th March 

2020.

Study population and design

The Smart Triage model was developed in a study conducted at the pediatric emergency 

department (ED) in Jinja Regional Referral Hospital (JRRH), a public hospital within the 

Uganda Ministry of Health, between April 2020 and March 2021 (9). The Smart Triage 

model equation is a multiple logistic regression model that includes nine predictor variables 

which were selected using bootstrap stepwise regression and clinical expertise. The model 
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can be used for rapid identification of critically ill children at triage and can be integrated into 

any digital platform. 

 The validation of the Smart Triage model was performed using a dataset from two sites in 

Kenya, the Mbagathi County Hospital (Hospital 1) and Kiambu County Referral Hospital 

(Hospital 2), independently and in combination. Both hospitals are located in resource-

limited urban settings and the pediatric outpatient departments (OPD) in each of the two 

hospitals receive approximately 20,000 patients per year with an admission rate of 10% and 

7% respectively. 

The study was approved by institutional review boards at Kenya Medical Research Institute 

Scientific Ethics Review Unit KEMRI (SERU#3958) in Kenya and the University of British 

Columbia in Canada (ID: H19-02398; H20-00484). 

Sampling and Eligibility

Children seeking medical care at the OPD between 8:00 am and 5:00 pm on weekdays were 

screened for eligibility at JRRH, Uganda, and the two Kenya hospitals. In Kenya, assent was 

required for children above 13 years of age in addition to caregiver consent. Both sites only 

enrolled children presenting with medical illness and written informed consent was provided 

by a parent or guardian prior to enrollment. Children presenting for elective surgical 

procedures, scheduled clinic appointments, or those coming to be reviewed at the hospital for 

treatment of chronic illnesses were not eligible for enrollment. Emergency cases who were 

eligible but required immediate emergency treatment (within 15 minutes of arrival) were not 

enrolled to the study since care of the participant was prioritized. At both Kenya hospitals, 

three study nurses and two timekeepers were recruited and trained to conduct study-specific 

procedures. The timekeepers recorded arrival time for all patients arriving with an acute 

illness to the OPD and used a systematic sampling method based on 30-minute time cut-offs 
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to determine the next participant to approach for recruitment to the study. The study nurses 

verified patient eligibility, and if the first participant in a given cut off was not eligible or did 

not consent, they would examine the next participant in the same cut off depending on order 

of arrival. Study information was collected from those eligible after obtaining informed 

consent (6).

Data collection and management

The data collection method used to develop the initial model was repeated in hospitals 1 and 

2(6). Data was collected using a custom-built Android mobile application installed on a 

password secured tablet. A Masimo iSpO2® Pulse Oximeter was connected to the tablet to 

measure the pulse oximetry and heart rate. Data on the tablet was stored in an encrypted 

format. Each day, data collected using the tablets was uploaded to a REDCap (Research 

Electronic Data Capture)(15) database in a central server housed at KEMRI Wellcome Trust 

Research Programme (KWTRP) office, Nairobi. Standard operating procedures were 

developed and used for data collection and these are available on the Paediatric Sepsis CoLab 

Dataverse (16).

Primary outcome

The primary outcome was defined as a composite of any one or more of the following: 

hospital admission for more than 24 hours as determined independently by the hospital 

clinician on duty (who was not part of the study team), mortality within 24 hours of 

admission or readmission, or referral within 48 hours to any other hospital after being seen by 

a hospital clinician/s, determined through follow up calls made 7 days after the initial hospital 

visit.
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Predictors 

The nine predictors included in the JRRH final model equation were square root  of age in 

months, heart rate, temperature, mid-upper arm circumference, transformed oxygen 

saturation (using the concept of virtual shunt(17), parental concern, difficulty breathing, 

oedema, and pallor. The model was developed by multivariable logistic regression and the 

model equation which was referred to as the Smart Triage model equation is:

logit (p) = -32·888 + (0·252, square root of age) + (0·016, heart rate) + (0·819, temperature) 

+ (-0·022, mid-upper arm circumference) + (0·048 transformed oxygen saturation) + (1·793, 

parent concern) + (1·012, difficulty breathing) + (1·814, oedema) + (1·506, pallor) (13).

Sample size

We used a four-step procedure implemented in the pmsampsize R package (18) to determine 

the minimum required sample to perform validation of the model.  Assuming an input C-

statistic of 0.8, a prevalence of admission of 0.05, a Cox-Snell R-squared of 0.0697 based on 

0.05 acceptable difference in apparent and adjusted R-squared, 0.05 margin of error in 

estimation of intercept, and a minimum number of events per predictor parameter(EPP)  of 7, 

the minimal sample size required was 1117 participants with 64 events (19-22).

Observations with missing outcomes or missing 25% of the predictor variables were excluded 

from this analysis. All other missing values were imputed using K-Nearest neighbors (23).

Model validation and calibration

The Smart Triage model equation was applied to data from the two Kenya hospitals 

separately and then to the two data sets combined. The discriminative ability of the model 

was assessed using the area under the receiver-operator curve (AUC) and interpretation was 

based on the following criteria: non-informative (AUC ≤ 0·5), poor discrimination (0.5 < 
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AUC < 0·7), and good discrimination (AUC ≥ 0.7) (24). Calibration, which is a measure of 

agreement between observed and predicted values, was assessed graphically by estimating 

the slope on a calibration plot of predicted versus observed outcome rates in each decile of 

predicted probability. A calibration slope of 1 and intercept of 0 is considered ideal (25), a 

slope value greater than 1 shows that the predictions are too narrow to distinguish a positive 

and negative outcome (26).  We interpreted the calibration slope using the following criteria: 

non-informative (slope ≤ 0·5), poor calibration (0.5 < slope < 0·7), and good calibration 

(slope ≥ 0·7). We assessed calibration using the Hosmer- Lemeshow statistic (27) and a p-

value <0.05 was considered significant.

 To improve the calibration plot of predicted against observed values we performed 

recalibration-in-the-large (re-estimation of the model intercept) (28). Recalibration-in-the-

large adjusts the intercept of the original model on a correction factor in equation 1. 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑙𝑛( 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
1 ― 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑚𝑒𝑎𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑖𝑠𝑘
1 ― 𝑚𝑒𝑎𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑖𝑠𝑘

)   ……………..  equation 1

Risk stratification

A risk classification table was used to examine the accuracy of the recalibrated model in 

classifying patients into triage categories. The low-risk threshold was selected to maximize 

sensitivity to limit misclassification of emergency and priority cases as non-urgent (avoiding 

false negatives) while the high-risk threshold was selected to maximize specificity to limit 

misclassification of non-urgent or priority cases as emergency cases (avoiding false positives) 

(8). We computed the true and false positive rates, negative predictive values (NPVs), and 

positive predictive values (PPVs) for each triage group.
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Results

Demographic characteristics

At Hospital 1, 2680 patients were screened for eligibility between 24th February 2021 and 6th 

November 2022; 2539 patients (94.7%) met the inclusion criteria and were included in 

analysis. Of those that were analyzed, 226 (8.9%) had a positive primary outcome and 79.8% 

of all participants were aged 5 years or younger. No participants had 25% of the predictor 

variables missing, but 13 participants were missing the admission outcome and were thus 

excluded from analysis (Fig 1). The most common reason for admission was pneumonia, 

diagnosed using clinical signs criteria, which accounted for 55.8% of the admissions; 56.2% 

of all admission were male (Table 1).

Figure 1: Sample population flow chart for dataset used in analysis at Mbagathi County 

Hospital (Hospital 1).

Table 1: Patient’s characteristics stratified across those with and without 

outcome(admission)

 
Mbagathi County Referral 

Hospital

Kiambu Teaching and Referral 

Hospital

 
Participant(

N)
Admitted 

Not 

admitted

Participant

(N)
Admitted 

Not 

admitted

Total Participants 

(%)
2539

226(8.9

%)

2313(91.1

%)
2464

112(4.5

%)

2352(95.5

%)

Sex       

Female (%)
 1112(43.8

%)

 98(43.4

%)

 1014(91.2

%)

1211(49.1

%)

57(50.9

%)

 1154(49.1

%)
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Male (%)
 1427(56.2

%)

 128(56.

6%)

 1299(91%

)

1253(50.9

%)

55(49.1

%)

1198(50.9

%)

Age       

Less than 30 days  78(3.1%)
 23(10.2

%)
 55(2.4%)  90(3.7%)

 24(21.4

%)
 66(2.8%)

30 days - <=1 Year  674(26.5%)
 112(49.

6%)

 562(24.3

%)

 809(32.8

%)

46(41.1

%)

 763(32.4

%)

1 – <=2 years  511(20.1%)
 49(21.7

%)
 462(20%)

 628(25.5

%)

 26(23.2

%)

602(25.6

%)

2 – <=3 years 312(12.3%)
 14(6.2%

)

298 (12.9

%)

421(17.1%

)
 7(6.3%)

414 (17.6

%)

3 – <=4 years  250(9.8%)
 12(5.3%

)

 238(10.3

%)

 276(11.2

%)
 8(7.1%)

 268(11.4

%)

4 – <=5 years  202(8%)  3(1.3%)
 199(8.6%

)

 199(8.1%

)
 1(0.9%)

 198(8.4%

)

>5 - <=12 years 512(20.2%) 13(5.8%)
499(21.6%

)
41(1.7%)  0 41(1.8%)

Admission 

diagnosis
      

Malaria   7(3.1%)    0(0%)  

Septicemia   5(2.2%)    1(0.9%)  

Neonatal Sepsis   8(3.6%)    5(4.5%)  

Pneumonia
 126(55.

8%)
 

 67(59.8

%)
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Bronchiolitis  3 (1.3%)   1(0.9%)  

Gastroenteritis/Dia

rrhea
  5(2.2%)    1(0.9%)  

Meningitis/encepha

litis or other CNS 

infection

  9(4%)    1(0.9%)  

Any skin or soft 

tissue infection
 3(1.3%)   0(0%)  

Malnutrition   8(3.6%)    0(0%)  

Reactive Airway 

Disease/Asthma
  0(0%)   1(0%)  

Dehydration  
 16(7.1%

)
   5(4.5%)  

Other (e.g., fever, 

convulsions, 

Jaundice, Neonatal 

Jaundice etc.)

 36(15.9

%)
 

 30(26.8

%)
 

At Hospital 2, 2671 participants were screened for eligibility between 24th February 2021 and 

6th November 2022, of whom 2464 (92.3%) participants met the inclusion criteria and 

112(4.5%) participants had a positive primary outcome. One participant had missing 

admission outcome and 3 withdrew from the study after enrolment and thus were excluded 

from this analysis. No patient had more than 25% of predictor variables missing (Fig 2).  

Among the 112 admitted participants, 50.9% were female and 98.3% of all the participants 

were aged 5 years or younger. The most common reason for admission was pneumonia which 
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accounted for 59.8% of the admissions (Table 1). For both hospitals combined 5003 

participants were analyzed and 338(6.8%) participants had positive primary outcome.

Figure 1: Sample population flow chart for dataset used for analysis at Kiambu County 

Referral Hospital (Hospital 2).

Model performance 

At Hospital 1 the model achieved good discrimination with an AUC value of 0.826 (Fig3A) 

and a calibration slope value of 0.72. Graphically the calibration plot improved on 

performing recalibration-in-the-large (Fig 4A, 4B) when the model intercept was adjusted 

from -32·888 to -34. 393. The Hosmer-Lemeshow test pre-calibration had a p-value < 

0.00001 and on recalibration the p-value was <0.01, both p-values were below 0.05 

significance level.  

Figure 2: Area Under the receiver-operator curve-AUC; This shows the discrimination 

ability of model (C-statistic) in respective hospitals. 

Figure 3: Pre-calibration and post-calibration plot; On the left are the pre-calibration plots 

for respective sites and on the right are post-recalibration plots for respective site; The shift 

of the predicted values can be explained by the histograms

At Hospital 2 the model achieved good discrimination with an AUC value of 0.784 (Fig 3B) 

and a calibration slope value of 1.00. Graphically the calibration plot improved (Fig 4C,4D) 

when the new model intercept was adjusted from -32·888 to-34.201. The Hosmer-Lemeshow 

statistic pre-calibration had (p-value < 0.00001) and on recalibration had p-value =0.31. 
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For both sites combined the model achieved good discrimination with an AUC value of 

0.821(Fig 3C) and calibration slope value of 0.796. On performing recalibration, the model 

calibration slope improved (Fig 4E, 4F) when the new model intercept was adjusted from -

32·888 to -34.325. The Hosmer-Lemeshow test pre-calibration had a (p-value < 0.00001) and 

on recalibration had p-value <0.05. 

Risk classification

At Hospital 1 before performing recalibration the low-risk threshold of 0.08 achieved a 

sensitivity (CI) of 93% (89% to 96%) and at a higher risk threshold of 0.4 the model achieved 

specificity (CI) of 86% (84% to 87%).  On performing recalibration, the predicted values 

shifted toward zero and this required a new set of thresholds to maintain the numbers 

assigned to the various triage categories; at a low-risk threshold of 0.026 the model achieved 

sensitivity of 90% CI (86% to 93%) and at high-risk threshold of 0.13 the model achieved 

specificity of 86% CI (85% to 88%). Before calibration 60% of the admitted participants 

were categorized in the emergency category and this was unchanged with the use of the 

optimized thresholds (Table 2). 

Table 2: Pre-calibration and post-recalibration risk classification table at selected thresholds 

with low-risk threshold selected to maximize sensitivity (limit misclassification of emergency 

and priority cases as non-urgent (avoiding false negatives)) while the high-risk threshold 
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selected to maximize specificity (increase correct classification of emergency cases (avoiding 

false positives)).

At Hospital 2 before performing recalibration, the model achieved sensitivity of 81 CI (74% 

to 88%) and specificity of 96% CI (95% to 97%). On performing recalibration with a low-

risk threshold of 0.020 the model achieved sensitivity of 84% CI (77% to 90%) and at a high-

risk threshold of 0.108 the model achieved specificity of 93% CI (92% to 94%). Before 

calibration, 37% of the admitted participants were categorized in the emergency category and 

on recalibration, 46% were categorized in the emergency category (Table 2).

For both hospitals combined before performing recalibration at low-risk threshold of 0.08 the 

model achieved a sensitivity of 89% CI (85% to 92%) and at the higher risk threshold of 0.4 
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the model achieved a specificity of 91.0% CI (90% to 92%). On performing recalibration at 

low-risk threshold of 0.020 the model achieved sensitivity of 89% CI (85% to 92%) and at 

high-risk threshold of 0.106 the model achieved a specificity of 88% (87% to 89%). Before 

calibration 53% of the admitted participants were categorized in the emergency category and 

on recalibration, 59% were categorized as emergency (Table 2).

Discussion

Key results

Performance of the Smart Triage model showed stable discrimination in all the three sets of 

data which suggests that for a pair of randomly selected children, the model would assign the 

higher risk score to the one with positive outcome compared to an individual with a negative 

outcome. On graphically assessing calibration of the predicted against observed outcomes, 

the graphical plot deteriorated in all the three sets of data shifting towards overprediction. 

Recalibration-in-the-large improved the calibration plot, but this required a change in risk 

thresholds to optimize sensitivity and specificity and organize patients into clinically 

manageable risk classification triage categories. 

The stability of discrimination and increasing overprediction or underprediction has been 

observed in parallel prediction validation studies (29-32). The change in performance often 

occurs because of data variation in the patient population including changes in the outcome 

rate, disease incidence, and prevalence across different regions, patient case mix and clinical 

practice (33-36). In our case, this was attributed to fewer admissions in both sites compared 

to the hospital where the model was developed and the lower number of participants with 

pallor (anaemia), one of the predictor variables. The lower prevalence of pallor at the study 

hospitals compared to the primary hospital is expected because the primary hospital was 

located in a malaria endemic zone (anaemia is a common complication of malaria) while the 
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validation hospitals are in an area without local malaria transmission. When an algorithm is 

developed in a setting with high disease prevalence it may systematically overestimate risk 

when used in settings with lower disease incidence (37). 

Appropriately implemented prediction models can be helpful in supporting decision making 

to improve patient outcomes and prioritize allocation of resources. Integrating predictive 

analytics into electronic health record systems enables the use of predictive models and can 

allow incorporation of probability-based tools into clinical decision support systems (29, 33, 

38). In this study we performed external validation on an existing paediatric triage model 

(Smart Triage Model) which could be integrated into a health record systems in LMIC, after 

appropriate contextualization, to strengthen the triage system. 

While recalibration improved the fit of the model, it also required an adjustment of risk 

thresholds. This would limit more generalized adoption of the model if recalibration was 

required at each site. Future work will investigate options to predict optimal calibration based 

on easily collected site specific information (such as admission rate or malaria prevalence) or 

the option of using the same model and thresholds, even if calibration is not optimal.

Limitations

A significant limitation of this study was the choice of hospital admission as primary 

outcome measure as it is not the most robust measure of illness severity. However, to exclude 

admitted cases that lacked severe illness we included only children admitted more than 24 

hours. To capture children who were sent home but had severe illness we included children 

who were readmitted within 48 hours determined from a follow up call made 7 days after 

discharge. We also included mortality within 24 hours of admission or readmission to still 

capture the severely ill.
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Patient characteristics tend to change over time and in different geographical settings.  There 

may be arguments that the findings need replication in more geographical settings with varied 

event rate, case mix, and hospital contexts but we believe that findings of external validation 

of the Smart Triage model from these two hospitals is reassuring on its adaptability to varied 

contexts and patient populations. 

Conclusion
The Smart Triage model showed good discrimination on external validation but required 

modest recalibration to improve the graphical fit of the calibration plot. On recalibration, new 

site-specific set of thresholds were required to maintain the same sensitivity and specificity 

across the triage categories. There was no significant change in the distribution of patients 

into the three triage categories, which alleviates concerns about model updating for prediction 

if prioritization based on rank is all that is required. Future research could examine whether 

the Smart Triage model can be applied to different populations if only the risk thresholds are 

adjusted without recalibration. The Smart Triage model shows promise for wider application 

for use in triage for sick children in different settings.  
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